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where PP actually misinforms. Some examples are given in the last chapter of
the paper. Are there any really bad ones? CT wasn’t really accepted by radiologists
until the existing counterexamples and artifacts were well understood and this
was only achieved (I think) because the set of things one might want to place in
the aperture of a CT scanner is severely limited. Not so for PP because of its
great generality. Somehow the universe of possible data set candidates for PP
should be defined and limited by a mathematical model.
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Huber has given us an organized and well-classified account of diverse prob-
lems in statistics which may be approached from the point of view of projection
pursuit. He also has brought to light certain connections which are not immedi-
ately obvious and indicated a number of important and challenging areas for
further research. Very appropriately Huber warns us of the need for benchmarks
and stopping criteria especially where iterative or stepwise searches are used to
get at ever finer data structures. What follows are elaborations of several topics
raised in the Huber paper.

Location, scale and structure. Huber has clearly pointed out the connection
between the invariance structure of the projection index and the kind of problem
which gets solved. For many interesting multivariate problems, global location
and global scale questions are incidental and one might deal with orthonormalized
data to begin with. At least the location and scale should be handled separately
from the search for other structure. It seems that the same should also be true
for density estimation although it is not clear whether or not Huber would agree.

Search methods. It seems worthwhile to distinguish between reconnaissance
and pinpoint searches. Reconnaissance means that the p-dimensional orthonor-
malized data space is scanned unguided by jumping quickly through all orthants.
A reasonable procedure might select interesting data projections from the class
of 37/2 projections of the form

Y cix;, where c¢;=—c,0,+c for i=1,-:-,p,

and c is a suitable constant such as 1.0 or 2.0. Some of the interesting projections
may then be refined by a guided localized interactive pinpoint search. Recon-
naissance of this kind is important if there may be multiple but well-separated
projections of interest. Thus reconnaissance is limited to p < 10 or 15 and for
larger p one must be resigned to having large unexplored possibilities.
Sometimes one may be interested in finding any interesting projection as
opposed to all interesting projections or even a globally optimized projection.
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516 DISCUSSION

Such may be the case, for example, if one is looking for a pair of separated
clusters. Then the search is often facilitated by the presence of redundant
variables, albeit they are globally orthogonal, as well as useless variables. The
implication is that interesting projections would exist for which relatively few
variables have nonzero coefficients. Then some stepwise or hierarchical version
of a reconnaissance search might permit the inspection of high-dimensional data

sets.

Clusters. The first goal of a data analysis of multivariate observations is
commonly to determine whether they should be regarded as homogeneous or
whether they should be split into subsets each of which would permit a simpler
description than the data set as a whole. Here reduction of dimensionality is not
the explicit goal; it is not so important to find an optimal projection as opposed
to one that does the job of dichotomizing the data. Interesting projections will be
those which exhibit bimodality or multimodality as opposed to projections based
on variance criteria or other criteria not explicitly tied to cluster separation.

Then one searches for further dichotomies using separate projections of each
subset of the first dichotomy. Such a procedure was used, for example, in Switzer
(1971) and accords with Huber’s suggestion that iterative projections should
always remove the structure uncovered at preceding steps of the iteration. It is
important to note that clustering of data may occur on both large and small
scales in the observation space. Once a partition of the data set into clusters has
been tentatively achieved then the large clusters might each be separately
reanalyzed by some form of principal components in order to find a concise
description or reduction in dimensionality for each such cluster. The small
clusters might be treated in the fashion of outlier data.

Classification. When the multivariate data are partitioned a priori into classes
then one typically searches for a low-dimensional projection of the data in which
the class centroids are well separated relative to the overall variation. This is the
approach of Fisher’s linear discriminant analysis, robustified by Huber in his
section on two-sample problems. However, such analyses are usually preliminary
to the real task of finding an assignment rule for future unclassified data points.
This may then be accomplished by partitioning the low-dimensional space into
assignment regions using bisectors between centroid pairs or some other algo-
rithm which tries harder to minimize misclassification error rates.

However, it 'would seem that the search for a projection ought to be guided
from the start by the objective of getting good assignment rules for future
observations or, equivalently, characterizing how distributions differ in different
classes—without forcing something like a location shift perspective on the
problem. When there are more than two classes, especially when there are many
classes, there are likely to be clusters of classes, that is, several scales of class
separation. Then tree-like sequences of univariate projections, corresponding to
hierarchical assignment rules are likely to be more useful than any single two-
or three-dimensional projection.
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Deconvolution of time series. Huber has described a class of projection pursuit
procedures wherein the segments of length d from a univariate time series are
treated as the basic d-dimensional observations. Projections which give rise to
least normal univariate distributions are candidates for the desired filter or
inverse filter to be applied to the time series. While considerable success is
claimed for such procedures, their rationale seems to depend in part on supposing
that the deconvolved series should be an i.i.d. sequence. In many geophysical
problems the deconvolved series is expected to look like a step function corre-
sponding to stratigraphy. This suggests that the projection index should pay
some attention to the time order of the deconvolved series. For example, one
might consider an index based on the scaled total variation of the deconvolved

series.
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As always, it is a pleasure to see the carefully thought through and neatly
organized result of Huberizing a field.

I shall confine my detailed comments to Section 19, where the x,. are
essentially the column sums of a Buys-Ballot table (e.g. Whittaker and Robinson,
1924).

This approach was once more conventional than the periodogram (not then
yet invented). We can improve its behavior somewhat by replacing equally
weighted sums, of X,., over p, by windowed sums, where the (data) window
tends finitely to zero at the nearest points which would have appeared in the
sum if their values had been observable, but which were not observed.

The difficulty with harmonics and subharmonics can be minimized by begin-
ning with the largest Fourier amplitude |c(p)|? which will also be better
calculated with a data window (and, further, if more refined assessment of periods
is desired, padded rather extensively with zeroes), and then using Buys-Ballot
technique to identify—and then subtract—a general periodic constituent whose
period is sufficiently close to the Fourier-selected period. A new set of Fourier
amplitudes can then be found (cheaply by an FFT), and the cycle repeated.

Notice that

Y (1/m?)cos 2w (27™fo)t

shows that we cannot hope, whatever our approach, to always avoid selecting a
harmonic of a frequency also present. So we must be prepared to also have a
revision process, in which, once we have a good finite sum of periodic terms, we
look for harmonic relations among their periods and corresponding reductions of
the number of periodic terms. This is needed for the approach suggested above,
as well as for any other approach.



