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have

| f(x) = FR() | < (2m)™/2 f | f(x) = f(x — any) |e "V dy

(8) < (21r)_d/2{2 sup.f(x) . e I12 gy

+ f | fx) = fx = ouy) | 012 dy} :
Iyli=R
whose first term can be made arbitrarily small by choosing a large R since sup,f(x)
< o follows from the uniform continuity of f, and whose second term, for fixed
R, can be made arbitrarily small (uniformly in x) by choosing a small 4, (k large)
again from the uniform continuity of f. This and (3) imply the uniform conver-
gence of % to .0

The uniform continuity condition on f is much weaker than the condition in
Proposition 14.3 that f can be deconvoluted with a normal density.

Our last remark concerns the choice of o} in the smoother (1), which depends
on the knowledge of .. An optimal choice of g, can be obtained by equating the
convergence rates of §® — f® and f® — f. Let us further assume that f satisfies
the Lipschitz condition of order A

[ (1) = fx) | = Clan — 2|,

where C is independent of x,, x,. Then | f(x) — f*(x) | in (8) is bounded above
by C’s}. This and the rate 7}/?6%? in (3) are of the same order if

or = cT}/2eN,
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Dr. Huber’s scholarly paper invests the impressive techniques of projection
pursuit with a halo of mathematical formalism. Key questions clearly concern
the choice of properties that it is scientifically fruitful to pursue. My judgment,
based on totally inadequate experience, is that, except in fairly extreme cases,
peculiarities of univariate distributional form are often of fairly fleeting interest
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494 DISCUSSION

and hence may not be good pointers to multidimensional structure. Consideration
of bivariate properties and, in particular, the search for two directions with
maximum curvature of regression (Cox and Small, 1978, Section 4.2) may be
more promising. Certainly that gives quite direct diagnosis of both smooth
nonlinearity and groups of points away from a broadly linear form. There is
much scope for empirical and theoretical study.
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This work makes a great contribution by introducing the unifying notion that
projections are interesting if they minimize indices of randomness. Before, there
was a sea of isolated, seemingly disjoint, ideas. Now there is some order, and a
way of connecting the applied success stories of projection pursuit to more
classical statistics. This often suggests new research projects.

One project involves notions of projection suitable for discrete data such as
contingency tables and the analysis of preferences. I have introduced one such
notion which involves projecting discrete data along “lines” of things like finite
geometries. More formally, let X be a finite set (such as all binary k-tuples). Let
f: X — R be a summary of the data (the proportion of students with a given
pattern of correct/incorrect in a k item test). Let Y be a class of subsets of X.
The Radon transform of f at y € Y is the sum

f(y) = ey f(x)

The class Y is a projection base if it partitions into y;, ---, y. where each y; is
itself a partition of X.

In the example, the sets y? = {x: x; = 0}, and y} = {x: X; = 1} form a projection
base. The Radon transform amounts to asking how many students answered the
ith question eorrectly.

If the sets y; are considered as lines in a geometry with points x, a projection
base corresponds to the Euclidean axiom: for each point and line, there is a
unique line through the point parallel to the given line. If X = R?, and Y is taken
as all affine hyperplanes, the Radon transform gives ordinary projection.

A theory can be built in this generality. Many of the basic results seem to go
through: for most data sets, most projections are close to uniform. Thus projec-
tions are interesting if they are far from uniform, and projection pursuit is forced
on us.

I have analyzed several sets of discrete data using this approach. It leads to



