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cycle around a loop of three steps: (1a, 1b) separately regress the dependent block
score (by PPR) upon each of the two predictor blocks; (2) regress the same
dependent block score (by PPR) upon a small hybrid block of dimension 2
consisting of the pair of partial predictors from step 1; (3) regress (by PPR) this
bivariate two-block predictor upon the variates of the dependent block. The
prediction function becomes a revised dependent variable for step 1, and so forth
until convergence, one hopes.

The extension of PP to two-block and multiple-block designs involves two
themes: the search for k projections rather than one, and the iterative refinement
of projections by alternating regression. Such an incorporation into PP of the
two main themes of soft modeling should considerably enhance its power for the
point clouds of complicated dimensional structure that arise in biometrics,
interdisciplinary developmental studies, and all the other arenas for which
“theoretical knowledge,” in Wold’s phrase, “is scarce.” I thank Professor Huber
and the editor of these Annals for the opportunity to see and explain this
connection.
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Peter Huber’s paper is interesting and important. In our opinion its main
contributions are:

e The formulation of abstract versions of PPDE and PPR operating on
distributions instead of samples. This complements the more intuitive un-
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derstanding by the inventors of these procedures (Friedman and Stuetzle,
1981a,b; Friedman, Stuetzle and Schroeder, 1984) and makes PP methods
amenable to theoretical analysis.

e The classification and analysis of projection indices. An especially nice
contribution in this direction is the interpretation of the original Friedman-
Tukey projection index as a measure of non-Gaussianity.

* The specification of several unsolved theoretical problems concerning con-
sistency and convergence rates of PP procedures. This will hopefully stim-
ulate additional study and lead to a more thorough understanding of the new
methods.

To use the author’s own terminology from his paper “Applications versus abstrac-
tion: the selling out of mathematical statistics?” (Huber, 1975): Peter Huber has
helped take PP from the groping phase into the squeezing phase and opened up
a new area of research in mathematical statistics. Congratulations!

We will now comment in more detail on some sections of the paper.

Section 2. In this section the author gives some estimates for the time
needed to visually inspect higher dimensional spaces and estimates that it would
take 3 to 4 hours to exhaustively inspect a four-dimensional space. Although
certainly true under the stated conditions, this does seem to be a far too
pessimistic estimate in practice. We have two reasons for this belief:

« If we watch a Grand Tour (Asimov, 1985), we get information not only from
the position of the observations at a given time, but also from the direction
and speed of their motion on the screen. Looking at 1,000 projections in a
Grand Tour conveys more information than looking at 1,000 projections
onto randomly chosen planes. How much more information we get, i.e. how
well the human visual system can, for example, detect clusters in the speed
and direction of the movement of dots, is an interesting open question. In
our experience with Grand Tour implementations we found that clusters
could be detected through motion even when the static pictures would not
show any structure at all. Of course, the information conveyed by motion
tends to show up in the static pictures as well, at least at some point, but we
argue that the wealth of information in dynamic graphics transcends the
mere purpose of finding static informative pictures. In the situation men-
tioned above, the Grand Tour tells us that in the two dimensions spanned
by the screen coordinates there is no significant structure, whereas the two
dimensions coded by the speed reveal clusters. This is a statement about the
shape of the point cloud in a four-dimensional subspace.

 There are not very many examples of structure detectable by projection, but
only if the projection plane is correct to within, say, five degrees. The only
example that came to mind is a cylindrical hole all the way through the data.
Note that in the case of the parallel planes produced by RANDU, which
supposedly are difficult to detect, the squint angle is indeed five degrees, but
this of course does not mean that the projection plane has to be within +2.5
degrees of one particular plane in order for the viewer to detect the structure.
Any plane which is orthogonal or within +2.5 degrees of orthogonality to
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the RANDU planes will show them, and a rough calculation indicates that
this condition will be satisfied for about one out of every 24 randomly chosen
projection planes.

The RANDU planes do suggest several questions about PP. First, it seems
doubtful that any sample version of PP would pick up the planes, because of the
smoothing involved in computing projection indices. Second, even if the sample
estimate of the projection index had minima at projections which show the
RANDU planes, the valleys might be much too narrow to be found by conven-
tional optimizers, which depend on the presence of a nontrivial slope in the
index. The fact that the planes are visible only for projections correct to within
+2.5 degrees translates most likely into a PP-index which consists of flat mesas
with insufficient slope to hint at the locations of the narrow canyons which
contain the minima. In spite of being promoters of PP methods ourselves, we are
not quite convinced that this example makes a strong case for PP. On the
opposite, it might highlight some unresolved problems.

It is difficult to say how successful manual search and the Grand Tour are in
practice, as one never knows what one is missing. Still we may say that the
structures we have found in actual data sets rarely ever appear only in a very
narrow neighborhood of planes. (Of course that might be the reason why they
were found in the first place.) A case in point are the four-dimensional particle
physics data shown in the PRIM-9 movie (Fisherkeller, Friedman and Tukey,
1974). If this data set is viewed using a Grand Tour, the four connected rods near
which the data are concentrated are apparent almost immediately.

Another relevant point is illustrated by this data set: The two outermost rods
are formed by a small number of observations only, and yet they can be seen
without much trouble. The reason why we are able to perceive them is that the
five or so points (out of a data set of 500) in each of the sparse rods show a linear
arrangement of striking purity. In the human visual system, the clarity of a
structure can counterbalance sparsity of the data, whereas automated statistical
procedures tend to discard minorities, no matter how striking the features they
show.

The particle physics data are particularly suitable for visual inspection with
three-dimensional rotations and Grand Tour methods because their structure
(the four rods) is one-dimensional. The situation is less gratifying when the
structure has intrinsic dimensionality higher than three or four. Then we run
into the problem that “most projections look normal” according to Diaconis and
Freedman (1984). It is typical that the illustration for this effect presented by
Huber is a hypercube in seven dimensions, i.e. a configuration which spans a
solid seven-dimensional body. The need for optimization over projections be-
comes more urgent for structure with low codimension, but it does not seem
likely to replace dynamic graphics. The ideal environment for graphical explo-
ration would probably combine PP with the Grand Tour and three-dimensional
rotations.

Section 8. In the beginning of this section, the author sketches several ways
to proceed, after an interesting projection has been found. He states that his
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option 2 corresponds to PP classification. This is not the case. PP classification,
as suggested by Friedman and Stuetzle, is very similar to PP regression. In the
case of binary response (2 classes) the idea is to construct a PP model for the
conditional probability P(Y = 1|x) of getting a class 1 observation, given
predictor vector x. Because probabilities should be positive, it is attractive to
build a multiplicative model

P(Y =1|x) ~ [I]% g(a]'x).

One possibility for a projection index is the residual sum of squares. This approach
was implemented and tested by Henry (1983).

Section 9. At the end of his discussion of PPR the author states that “in
general, it is possible to improve the fit by various versions of backfitting: omit
one of the earlier summands g;, determine the best possible replacement and
then iterate. Usually, the directions a; are kept constant in this process.” This
idea, suggested by Friedman and Stuetzle (1981), sounds somewhat ad hoc, but
can be easily justified. Suppose we have fixed directions a; - - - a,,, and we wish
to find functions g; - -+ g, that minimize the expected residual sum of squares

E(r) = E(Y — 37, g(alx))>

It is easy to see that this quantity is minimized if the model agrees with the
response in the marginals along a, - - - a,,:

E(Y|ajx = 2) = E(Z] g/@fx) | ayx = 2),
or
E(Y — X s gj(a,-TX)I alx=2)=g.2), k=1---m.

This is a linear system of equations for the g;. If we knew all but one of the
functions, we could immediately get the remaining one using the above equation.
The obvious idea now is to start with trial guesses for the g’s and then in cyclical
order replace each one by an improved version according to the above equation,
until convergence. This way of solving systems of linear equations is well known
in numerical analysis; it is called the Gauss-Seidel method. A proof of convergence
for the backfitting process is also contained in a forthcoming paper by Breiman
and Friedman (1985).

Section 15. This section, where the author discusses several variants of
projection pursuit density estimation, merits close scrutiny. Let f (x) denote the
true unknown data density, from which we have an i.i.d. sample x; --- x,, and
let go(x) denote an initial guess for f(x). We wish to find directions a; and
functions h; such that go(x) [] h;(alx) = f (x). (This is what the author calls the
“synthetic view” of PPDE resp. PPDA, in contrast to the “analytic view” to be
discussed below.) Suppose we have already estimated %k terms of the model, and
denote g*(x) = g%(x) [I% h;j(afx). We wish to determine the next direction
a4+ such that it maximizes the marginal relative entropy E( f., g%), and then

put hpy = fo,, /800
We will now concentrate on the estimation of the model marginal, because
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this is a crucial point where the various algorithmic approaches differ. Without
restriction of generality, we pick a;., to be the first coordinate direction, and for
notational simplicity we denote the marginal of any multivariate density p(x)
along this direction by p, (z).

The ﬁrst approach mentloned in the paper is to generate a sample Y1+ YN
from g* and then estimate g by a kernel estimate, such as

8¥@)=1/2NA) TN, Iz—A<ys<z+ A)

This is the approach used in the original implementation of PPDE. The sample
was generated using the accept/reject method. The process is described in detail
in Friedman, Stuetzle and Schroeder (1984).

The second approach mentioned in the paper 1s to generate a sample from g°
instead of g*, and estimate the marginal by

g1(z) = (1/2NA) T, Lz — A s yu < 2 + A)(g"(y)/g°(y:)).

It has the advantage that g° can be chosen to make generation of the sample
easy; we can for example pick it to be multivariate Gaussian with the same mean
and covariance matrix as the sample. This approach was also considered at the
time when PPDE was invented, and was rejected. The reason was that, vaguely
speaking, sampling from g° instead of g* leads to a loss of efficiency in estimating
the model marginal, which would have to be compensated for by an increase in
the Monte Carlo sample size N. As the program seems to spend most of its time
estimating marginals, for which the work grows at least linearly in N, and only
a small part generating the Monte Carlo observations, it seemed reasonable to
generate Monte Carlo observations according to g* and keep N smaller.

To see precisely in what sense sampling from a distribution other than g* will
in general result in a loss of efficiency of the marginal estimate, we will now
compute the expected value and variance of §f and find out how they depend on
the choice of g° Note that £} is equal to g¢ if we choose g° = g*.

For the expected value we obtain

E(£1(2)) = (1/20)Ep(I(z — A < Y: < z + A)(g*(Y)/(g°(Y)))
=Espl(z—A=<Y, =z+ A).

This means that the expected value does not depend on g°; the bias of the
marginal estimate is controlled solely by the window width A.

Let us now compute the variance of ¥ and see how it depends on the choice
of g% We use the ANOVA-like decomposition

var u(Y) = E(var(u(Y)]| Y1) + var(E(u(Y)| Y1))
with
uY)=Iz—- A=Y, <z+ A)(g"Y)/g°(Y)).
This gives
var §8(z) = E((z — A < Y, < z + A)var(g*(Y)/g°(Y)| Y1))

+var(l(z — A = Y1 < z + A)(gf(Y1)/8?(Y1))).
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The first term vanishes if
gk(yl cee W) = c(y1) 8%y *++ yw),

i.e. if the two densities are proportional for any fixed value of the first coordinate.
If we make the first term vanish, the variance still depends on the choice of
function c(y;). By choosing this function, we allocate the precision of our
estimate—we influence, for which values of the first coordinate we estimate the
marginal more precisely and for which we estimate it less precisely. Optimal
allocation of the mass of g° in the marginal depends on the measure we choose
to define the distance between true and estimated marginal. The point is that,
whatever allocation of precision we choose, g° should be proportional to g* for
any fixed value of the first coordinate. This condition is satisfied in particular if
g’ =g

The third approach was assigned to a student for investigation shortly after
the first successful implementation of PPDE, and after some trials was discovered
not to work at all. The reason is quite fundamental. The approach is based on
the analytic view of PPDA as sketched by the author in Section 11.3: iteratively
construct a function, say u(x), such that the true density f(x), multiplied by this
function, is equal to the initial guess go(x):

f(X)u(x) = go(x).

In the paper, u(x) is the reciprocal of a product of ridge functions, but this is
incidental. The essential point is that such a function u(x) exists only if the
initial guess g, is absolutely continuous with respect to f(x). We have no control
over f(x), and so we cannot make sure that u(x) exists. On the other hand, we
can pick a strictly positive initial guess go(x) and thus make sure that an
augmenting function u(x) with

go(x)u(x) = f(x)

does exist.

It is instructive to have a brief look at a situation where an implementation
of the analytic view will run into problems. Suppose the sample consists of two
isolated clusters, and our initial guess go(x) is a multivariate Gaussian density
with the same mean and covariance as the sample. Let us say we have found a
direction a,such that in the marginal along a, the clusters are nicely separated.
The marginal of the Gaussian of course will again be Gaussian, and its center
will be somewhere between the modes of the data marginal. We now have to find
a function v(z) such that the marginals of f(x)v(alx) and go(x) along a, agree.
In sample terms this means that we have to determine weights for the observa-
tions such that a kernel density estimate applied to the projections of the weighted
observations is equal to the marginal of go(x). This will be impossible because
no observations project between the projections of the two clusters, and therefore
no conceivable weighting will give a nonzero estimate (unless we choose the
width of the kernel very large, in which case we end up with a highly biased
estimate).
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Professor Huber’s stimulating paper has greatly advanced our knowledge of
the projection pursuit methodology. Our discussion will be confined to the
convergence of the projection pursuit density approximation method (PPDA). In
Proposition 14.3 he proved the uniform and L,-convergence of the PPDA by
assuming that the density f can be deconvoluted with a Gaussian component.
This is a very strong smoothness condition on f. Our original attempt was to
prove his conjecture that the convergence still holds under more general smooth-
ness condition on f. Failing this, we have instead found a smoothed version of
the PPDA that converges uniformly and in L, to f with no smoothness condition
required on f. Our modification is described as follows.

Let {g®} be the sequence of approximating densities defined in Proposition
14.3. Define the smoothed approximating density £*’ by convoluting g® with a
normal density

(1) g® =g® « N(0, oil,),
where ¢, satisfies

2) 7672 —>0 and ¢,—>0 as k— o



