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Professor Huber neatly reminds us how both principal-components analysis
and multiple linear regression may be viewed as special cases of PP. In this note
I would like to suggest a ramification of PP that incorporates the considerably
wider class of soft models (iterated regression protocols), variants of canonical
correlations analysis, lately developed by Herman Wold.

1. Section 7 of Huber’s article considers “questions of k-dimensional projec-
tions.” Rephrasing this as “one k-dimensional projection,” I shall reverse the
multiplicities to consider k one-dimensional projections instead. As Huber notes,
for a computation of multiple dimensions to be most easily interpretable, each
should be characterized uniquely. The simplest identification represents the
measurement space R" as the direct product [][%;R™ of subspaces. In the
language of causal modeling, these are measurement blocks.

Partition Huber’s random vector X as (X;:X,: + * - : X)), conformally with the
projection vector a = (a;:ay: - -+ :az). Each X; or a; is a vector of length n;, with
Y% n; = d, the original dimension of X. Our “multiple projection” is then the k-
vector (Z,, +++, Z,) = (aT X3, + - -, af X)). An appropriate normalization sets each
vector g; to length 1, so that the vector a has Euclidean norm k rather than 1.
The space of multiple projections, then, is no longer the unit d-sphere S%?, but
rather the direct product []%,S™" of unit n;-spheres.

2. PP finds interesting projections by the numerical examination of an objec-
tive function Q that measures “interestingness” in some fashion. For the objective
functions Q(Z) of a single projection, interestingness seems to have a useful
general interpretation: nonnormality. For the multiple PP I am suggesting here,
there is a more fundamental aspect of interest: dependence. For instance, for k =
2 we might use Q(Z;, Z,) = {correlation}. The projection vector a = (a;, a;) that
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maximizes this @ gives us, of course, the usual first pair of canonical variates
relating the X;-block to the X,-block.

Canonical variates may be computed by a scheme of alternating regressions
(Lyttkens, 1972). Beginning with an arbitrary projection a, of the X;-block, we
regress aj X; on the indicators of the X,-block, regress the resulting predictor
a?X, on the indicators of the X;-block, and so on, back and forth. Upon suitable
normalization, the X;- and X,-predictors almost always converge to the first pair
of canonical variates. For this objective function Q = {correlation}, therefore, we
achieve the ends of PP by an alternating iteration of projections that considerably
reduces the dimensionality of the task. This will prove an interesting paradigm.

Fits to other simple models involving correlations can be computed by this
same strategy. Consider, for instance, an arbitrary projection a” of one single
block X of measurements. Regress a”X on each of the variates of the X-block
separately, then sum all the predicted values. The new linear combination that
results is proportional to Zxxa”. Iteration of this cycle of summed simple
regressions results in projections Z%xa”, :--, Z%xa”, ---, that converge in
direction, almost always, to the first principal component of the covariance
matrix 2 xx.

There is a two-block extension of this, the so-called MIMIC model. Beginning
with an arbitrary projection alX;, we regress it separately upon a list of n,
predictors X, -+ + X, ,,. The sum of the n, predicted values from these separate
regressions may be regressed in turn upon the variables of the X;-block as a
whole; the predicted value from this multiple regression is the next candidate for
a;. Iterated, this procedure converges to the projection of the X;-block that has
highest summed squared correlations with the variables of the X,-block severally.
Wold (1975) surveys these and other one- and two-block iterated regression
protocols.

3. To pass from these three examples (canonical correlations, principal com-
ponents, MIMIC) to a prescription for general analysis of k > 2 blocks is not
difficult. The regression protocol for the general soft model (Wold, 1980, 1982)
consists of a series of these same elements—regressions of each projection Z;
upon the variables X; of other blocks—in a sequence formally embodying a
recursive causal scheme. Choices between simple and multiple regressions are
involved also, and rules for combination of diverse predictors of the same Z; from
all the blocks to which it is linked in the recursion.

When all its regressions are multiple, any soft model is equivalent to a
constrained canonical correlations analysis of the ultimately dependent block
upon all the others (Bookstein, 1980, 1982). The constraints express the separa-
tion of the predictor blocks and break their symmetry. They drop the canonical
r? below that of the first pair of ordinary canonical variates but, in exchange,
enable us to interpret each projection Z; = al X; as the value of a latent variable
summarizing the import of all the variables of its block for other variables
elsewhere in the scheme. According to an unpublished theorem of mine, for
k > 2 these simple iterative protocols for such estimation all converge quickly to
the true optimal constrained r%

This view of soft modeling as constrained canonical correlation is somewhat
at odds with its usual presentation. Along with Jéreskog’s LISREL, soft modeling
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is generally couched as a technique for causal modeling in the social sciences
(Joreskog and Wold, 1982). I find it much more realistically conceived as the
species of multiblock PP I have just sketched: a search for the suite of projections,
one per subspace, that bear to one another the optimum of some extended
canonical relation.

4. This said, we may return, at last, to Professor Huber’s theme. The simplest
multiblock soft model, canonical correlations analysis, may be viewed as an
extension of PPR to the case of a vector-valued dependent variable. The Y of
Huber’s Section 9 becomes a block of some dimension greater than 1. For gentle
nonlinearities, at least, PPR could be generalized to this context by exploiting
the “soft” strategy of back-and-forth regressions, each now a PPR. An algorithm
would begin with a first guess at a summary predictand from one of the blocks
(perhaps its ordinary first canonical variate with respect to the other block).
There would follow the PPR of this single variable upon all the dimensions of
the second block. The resulting predicted value is then regressed (by PPR) upon
all the dimensions of the first block, and so on. By careful tuning of PPR, it
should be possible to induce this algorithm to converge to the pair of ridge
functions, one upon each block, with the highest correlation.

Such an extension of PP to two blocks; by invoking the iterative tactics of soft
modeling, would often be very handy. For instance, within the tensor biometrics
in which I specialize (Bookstein, 1984), the shape of a triangle is represented as
one complex variable—a block of dimension 2. Any shape variable is a projection
of this shape 2-space along a direction not known in advance of the analysis.
Then any PPR involving shape data must “softly” construct its dependent
variable Y at the same time that it produces a prediction function.

Two-block PP might be ideal for relating the control space of a complex process
(settings of dials, etc.) to a multivariate vector of state or output. The modeling
of a semistable phenomena by catastrophe theory, for instance, is such a search
for a highly nonlinear, although stereotyped, structure in the relation of one
block to a second.

Likewise, an extension of PPR is, in my view, the only promising means of
searching for nonlinearity in the three-block soft models. Potential applications
include blocks of variables that depend upon their measured values at several
earlier times, and blocks of loosely measured outcomes (e.g., children’s achieve-
ment) that depend upon precursors of two essentially different sorts (e.g., some
neurological,;some socioeconomic). In genetics, the relation between a vector of
observations on offspring and the same vector of observations for each of two
parents might submit to a three-block PPR for which the ridge expressions were
constrained to have the same formula in each block. Such dependencies are sure
to involve thresholds, interactions, and all the other delicious complexities with
which PP seems uniquely suited to cope. In these ways PP should aid us to
formulate a dependent variable at the same time that it helps us to untangle its
dependencies.

The three-block soft models (Bookstein, 1980, 1982) unfold into PP by
interpreting every multiple regression as a PPR. Any estimation would begin
with a candidate dependent variable that is the first canonical variate of the
dependent block with respect to the pool of all the other blocks. One would then
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cycle around a loop of three steps: (1a, 1b) separately regress the dependent block
score (by PPR) upon each of the two predictor blocks; (2) regress the same
dependent block score (by PPR) upon a small hybrid block of dimension 2
consisting of the pair of partial predictors from step 1; (3) regress (by PPR) this
bivariate two-block predictor upon the variates of the dependent block. The
prediction function becomes a revised dependent variable for step 1, and so forth
until convergence, one hopes.

The extension of PP to two-block and multiple-block designs involves two
themes: the search for k projections rather than one, and the iterative refinement
of projections by alternating regression. Such an incorporation into PP of the
two main themes of soft modeling should considerably enhance its power for the
point clouds of complicated dimensional structure that arise in biometrics,
interdisciplinary developmental studies, and all the other arenas for which
“theoretical knowledge,” in Wold’s phrase, “is scarce.” I thank Professor Huber
and the editor of these Annals for the opportunity to see and explain this
connection.
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Peter Huber’s paper is interesting and important. In our opinion its main
contributions are:

e The formulation of abstract versions of PPDE and PPR operating on
distributions instead of samples. This complements the more intuitive un-



