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SOME INCOMPLETE BUT BOUNDEDLY COMPLETE
LOCATION FAMILIES

By L. MATTNER

Universitdt Hamburg

A general result concerning noncompleteness of location families of
probability measures on Euclidean space is pointed out. Examples include
boundedly complete families, such as those generated by certain scale
mixtures of the standard Gaussian distribution. These examples illuminate
completeness criteria for location families and compare favourably in sim-
plicity with previously known examples of incomplete boundedly complete
(nonlocation) families.

1. Introduction. Completeness of a family of probability measures can
occasionally be used to simplify the mathematical analysis of estimation
problems [see, e.g., pages 79-81 in Lehmann (1983), Theorem 2.1 in Ghosh
and Singh (1966), and the theorem in Pfanzagl (1979)]. For applications to
testing problems the weaker concept of bounded completeness is just as useful
[see, e.g., Lehmann (1986), pages 144 and 300].

It is known from a few examples that, in general, bounded completeness is
strictly weaker than completeness. The classical example can be found in
[Lehmann (1986), page 173] and, apparently, the only further examples in the
statistical literature are given by Bar-Lev and Plachky (1989) in the paramet-
ric case, and by Hoeffding (1977) in the nonparametric case.

Sometimes it turns out to be rather difficult to decide whether a given
family is complete or at least boundedly complete. Hence general criteria are
desirable. Many of the more important and better analysed families are either
exponential families or group families. Exponential families with parameter
space having nonempty interior are complete. No such simple condition is
known for group families in general. However, partial results are known for
the special case of location families on Euclidean spaces.

The present note quickly reviews classical and recent completeness criteria
for location families (Theorems 2.1 and 2.2) and points out a general result on
noncompleteness of (possibly boundedly complete) location families. Examples
derived from this result serve two purposes. First, they show that the seem-
ingly technical condition (i) in Theorem 2.2 must not be omitted without
substitute. Second, they enlarge the short list of noncomplete boundedly
complete families mentioned above by some quite natural examples.
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2. Location families. For 9 € R? let 8, denote the Dirac measure
located at 9. For any probability measure u on the Borel sets of R¢, we call

P={6yxp: 9 R

the location family generated by w. If u = fA%, that is, u has the density f
with respect to Lebesgue measure A%, then we also say that f generates &. In
what follows, we write #x for the inner product and |¢| for the Euclidean norm
of vectors ¢ and x.

Bounded completeness of & in the absolutely continuous case is neatly
characterized in terms of the characteristic function ¢ — [(¢) =
[ exp(itx) du(x) of w.

THEOREM 2.1. If p = fA%, then & is boundedly complete if and only if
at) +# 0 for every t € R

This follows from a classical approximation theorem of Wiener [see Reiter
(1968) for an exposition], as observed by Ghosh and Singh (1966).

In an attempt to find an analogous criterion for completeness, the present
author obtained the following result [see Mattner (1992)].

THEOREM 2.2. Assume that u = fA? and that the following conditions
hold:

Q) f(x +y) <CQA + [x[®*f(y) for some finite C and k and all x, y € R%.
(i) 4 is infinitely often differentiable in R?\ A for some finite set A.

Then & is complete if and only if i(t) + 0 for every t € R,

Since the above conditions (i) and (ii) look a bit technical, it may seem likely
that they could be omitted without affecting the validity of the theorem.
However, if condition (i) is omitted, then Theorem 2.2 becomes false. For, as
the following observation makes precise, in case of light tailed densities f
[which are excluded by condition (i)], completeness implies zero-freeness of [i
even in part of C%. This is really a stronger condition than zero-freeness of
on RY as is seen by considering Example 2.6.

Lemma 2.3. If [exp(—syx) du(x) < © for some s, € R? and & is com-
plete, then (¢t +is) # 0 for every t € R% and every s on the line segment
Joining 0 and s,.

ProoF. Let g(x) = exp({x) for x € R with { = —s + it. Since & is

complete and g Zintegrable and does not vanish [#], we have for some
9 € R4

0% [g(x +9) du(x) = ePa(~il),

that is, 4(t +is) # 0. O



2160 L. MATTNER

Using Lemma 2.3, it is easy to show that, for very light tailed probability
measures, completeness of & is very exceptional:

THEOREM 2.4. Let u be a probability measure on R? such that for some ¢,
5>0,

(1) fexp(a|x|1+5) du(x) < .
Then & is complete if and only if u is Gaussian (possibly degenerate).

CoOROLLARY 2.5. If u has compact support, then & is complete if and only
if w is a Dirac measure.

Proor oF THEOREM 2.4. The if part is, in case that u is nondegenerate (i.e.,
has a Gaussian density with respect to A?), contained in the completeness
theorem for exponential families mentioned in the Introduction. The obvious
reduction of the degenerate cases (i concentrated on some strict subspace of
R?) to nondegenerate cases in lower dimensions is left to the reader.

To prove the only if part, assume that & is complete and let X be a
random vector with distribution u. Fix any ¢t € R? with |¢| = 1 and consider
the location family 2 generated by the distribution v of ¢X.

2 is complete, since it is the family of distributions of the random variables
(X + 9) with 9 € R9, that is, 2 is induced by the complete family & via a
statistic. Since |¢| = 1, (1) clearly continues to hold when v replaces u. By an
application of Young’s inequality ab < (1/p)a® + (1/9)b? (a, 6 >0, 1/p +
1/g =1) with p =1 + §, we get

2(¢)] < fexp((el/”lxl)(e‘l/”lgl)) dv(x)
<Aexp(Bi"), (eC?

for some finite constants A, B.

Thus # is an entire characteristic function of finite order without zeros (the
latter in view of Lemma 2.3). By a theorem of Marcinkiewicz [see, e.g., Linnik
and Ostrovskil (1977), page 42, Corollary], v must be Gaussian.

Since ¢ was arbitrary, we conclude that u is Gaussian. O

ExampLE 2.6. The following measures u or densities f generate incom-
plete but boundedly complete location families & on R.

() f(x)=(1/6)x%~3)?  (1/V2m)e /2,
(b) Nontrivial finite scale mixtures of the standard Gaussian N(0, 1)-distri-
bution, for example,

p=1%-N(0,1) + 1 N(0,2).

© fx)=1721 - |xD,+1/2)X1/a)1 — |ax|), with a > 0 irrational.
(@ pd{—-1P = ({1 = 1/6, ({0} = 2/3.
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ProoF. In each case noncompleteness of & obviously follows from Theo-
rem 2.4. To verify bounded completeness, we apply Theorem 2.1. The charac-
teristic functions are given by

2

1(/14d . 1 ,
@ ang|(F5) o) e guroenn

(b) At) = 3¢/ + je
1 sin®(t/2) 1 sin®(t/2a)
2 (2" 2 (t/2a)
[see Feller (1971), page 502],

(c) () =

(d) A(t) =2+ Lcost,

respectively. In each case ji is zero-free on the real line [in case (c) observe that
Aa(t) = 0 would imply that ¢/27 and (¢/2w)X1/a) were nonzero integers,
contradicting the irrationality of «]. O

ReEMARK. Evidently, Example 2.6(b) may be extended to nondiscrete mixing
measures with compact support. On the other hand, Student’s ¢-densities as
well as the symmetric stable laws are examples of scale mixtures of N(0, 1)-dis-
tributions (see the following Note) for which completeness of the generated
location families has been proved [Mattner (1992), Theorems 3.1 and 3.2].

Note. The scale mixture properties stated above are well known and
follow from the possibility of representing the corresponding characteristic
functions as scale mixtures of the standard Gaussian characteristic function.
In case of the ¢-densities see Mattner (1992) for an explicit formula. In case of
the symmetric stable laws with characteristic function [i(¢) = e " for some
a<(0,2) apply Bernsteln s theorem to the completely monotone function
A = o(1) = e X" [Feller (1971), page 439 and Criterion 2 on page 441]. [This
argument is essentially due to Bochner (1937)].
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