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TREND-FREE RUN ORDERS OF MIXED-LEVEL
FRACTIONAL FACTORIAL DESIGNS!

By DaNIEL C. COSTER

Utah State University

Coster and Cheng presented a generalized foldover scheme for the
construction of systematic run orders of fractional factorial designs, with
all factors having the same prime power number of levels, for which all the
main effects components of the factors are orthogonal to a polynomial trend
present in every block of the design. In this paper, we present modifications
to the foldover method that allow polynomial trend-free run orders to be
constructed in the following more general settings: Designs for which the
number of levels of each factor is not a prime power; mixed-level factorial
designs with factors at different numbers of levels; cases in which some or
all two- and higher-factor interactions, not just the main effects, are
required to be orthogonal to the polynomial trend.

1. Introduction. Suppose that the treatment combinations of a given
fractional factorial plan are to be performed in a time (or space) sequence and
that the experimenter has reason to believe that the observed yields will be
influenced by a temporal (spatial) trend over the course of the experiment. In
such cases, instead of the normally recommended randomized orders for the
runs in each block of the design, the experimenter may prefer certain system-
atic run orders that improve or maximize the efficiency with which the main
effects and certain multifactor interactions are estimated in the presence of
this nuisance trend. In this paper, we modify the generalized foldover scheme
(GFS) of Coster and Cheng (1988) to achieve optimal efficiency for this
estimation problem when the trend is modeled by a (typically, low-degree)
polynomial over the equally spaced run positions of the observations in each
block. We define optimal efficiency to be orthogonality between the factor
effects of interest and the trend effects, in terms of the usual homoscedastic
linear model (see Section 2).

The principal extensions made in this paper to the results in Coster and
Cheng (1988) involve the specification of sufficient conditions on the appear-
ance of factors at nonzero levels in sequences of generators of a fractional
factorial design such that two- and higher-factor interactions also achieve the
trend orthogonality criterion previously applied only to the problem of main
effects estimation. We further generalize the foldover approach to designs that
need not have every factor with th¢ same number of levels (mixed-level
factorials) and the number of levels need not be a prime power.
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Cox (1951) introduced systematic designs for replicated variety trials with
the criterion of efficient estimation of the treatment effects in the presence of a
smooth polynomial trend. Other early approaches to the problem of trend
elimination are discussed in Draper and Stoneman (1968), Dickinson (1974)
and Cheng (1985). John (1990) found factorial arrangements for 2" and 3"
designs for which the main effects and sometimes two-factor interactions were
linear and quadratic trend free. Cheng and Jacroux (1988) and Cheng (1990)
discuss an alternative and elegant approach, first introduced by Daniel and
Wilcoxon (1966), to the trend elimination problem for main effects and interac-
tions in unblocked two-level fractional factorial designs. For the 2" series, they
provide a construction technique with this approach that is essentially equiva-
lent to the GF'S generator sequence shown in Example 2 of Section 3. Bailey,
Cheng and Kipnis (1992) continued this development to mixed-level factorial
designs. Cheng (1990) also discusses the correspondence between the foldover
method and the Daniel and Wilcoxon scheme for designs with all factors at two
levels.

The primary advantage of the GFS for achieving the trend orthogonality
optimality criterion is the ease with which an experimenter can try various
generator sequences and quickly verify, using the sufficient conditions detailed
in Theorems 1, 2 and 3, whether trend elimination for the factor effects of
interest has been achieved. Except in very small designs, it is not difficult to
achieve orthogonality for the main effects components. Interactions present a
greater challenge, in particular when we model nonprime-leveled factors with
prime-leveled pseudofactors and require interactions among the pseudofactors
belonging to each real factor to be trend free. Examples 3 and 4 fall into this
category. Numerous examples of fractional factorial designs for factors with
two or three levels are available in two National Bureau of Standards publica-
tions, Applied Mathematics Series 48 (1957) and 54 (1959). As an illustration
of the application of the GFS to many examples, for the designs in these two
publications, Coster (1993) used the GFS to search among all generator
sequences that produced main-effect linear trend-free orders (with minimum
number of factor level changes) for a generator sequence that maximized the
number of quadratic trend-free components.

In Section 2, we summarize the definition of the mixed-level fractional
factorial designs to which the modified GFS is applied in Section 3 to obtain
optimal, trend-free run orders. All proofs of construction results are left until
the Appendix.

2. Mixed-level fractional factorial model. Let G denote a fractional
factorial design involving n factors, say a,,...,a,, with n;, > 1 of these
factors at s; levels, for i = 1,..., q, where each s, is a distinct prime number.
Then n =n; + -+ +n,. Let the levels of any factor with s; levels be the set
of integers {0,1,...,s; — 1}, with all arithmetic on these levels being per-
formed modulo s;. A complete factorial design in all n factors would require
§11s3% *+* §g7 runs or treatment combinations.
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We use the notation
(2.1) G = s{rvPur . sf]nq,pq,rq)

to denote a (possibly) blocked and/or fractional factorial design in the n
factors. For each i =1,...,q and the n; factors with s; levels, let G, =
s{nePir) denote an s; ~p; fraction of the complete factorlal design found by
selectlng a set of p, 1ndependent defining effects, n; > p, > 0, involving only
these n; factors. We assume that the fraction chosen always contains the
treatment combination 1 in which all the n; factors are at level 0. Another r;
independent effects are used to block the s?:7”: runs into s’ blocks each of
size s;""Pi""i. Then the notation of (2.1) implies that G = G, X Gy X -+ X G,
the product of the subdesigns G;, that is, if rung;, €G;, fori =1,...,q, then
G contains treatment combination g, g, - - g,. We assume that the principal
blocks of each sub-design generate the pr1nc1pa1 block of G, the block contain-
ing the run 1. Thus, G contains N = 311 “P1sg2P2 .-+ spa"Pe runs blocked
into B = silsy? - s;¢ blocks each of size R = N/B. While other methods
may be used to define mixed-level fractional factorial designs, this product
structure for G has, for our purposes, the two-fold advantage that (i) it is an
easily applied method that is in common use and (ii) it proves compatible with
the generalized foldover scheme used below to achieve the design objective of
trend orthogonality.

Define r =r; + -+ +r,and p =p,; + -+ +p,. Let B, denote the principal
block of G. Then the treatment combmatlons of G may be found by choosing
h =n — p — r independent runs in B; and forming all possible powers and
products among them to generate B,. There are k; = n; — p; — r; within-block
generators of B, contributed by each subdes1gn G, say g;;, j=1,...,h;,
i =1,...,q9. Then every run in B; has the general form

=£I[I'lgfw]

where ¢;; ranges over the set {0,...,s; — 1} foreach i = 1,..., q. The remain-
ing B — 1 blocks of G may be generated in a similar fashion using indepen-
dent between-block runs g, ..., g, from distinct blocks of G.

In Coster and Cheng (1988), trend orthogonality via the GFS was developed
for main effects (only) plans with all n factors having the same prime power
number of levels, s™, m > 1, s prime. The results of Section 3 allow us to
cover not only this prime-powered case but more general mixed-level fractional
factorial designs by modeling non-prime leveled factors by products of prime
leveled pseudofactors and requiring all main effects and interactions among
these pseudofactors to achieve the trend orthogonality condition. Theorem 2
provides the primary construction results for this purpose.

Following the development in Coster and Cheng (1988), we define below the
form of the polynomial trend present in each block of G and the main effects
components of each of the n factors. In these definitions, s is any one of the

prime numbers s, ..., S,
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DeriniTION 1. The system of orthogonal polynomials on m equally spaced
points [ = 0,...,m — 1is the set {P,,,, k= 0,1,2,..., m — 1} of polynomials
satisfying

m-—1
(2.2) Y P, (l)=0 foral £>1,
=0
m—1
(2.3) Y Pou(D) Py (1) =0 forall k #F,
=0

where P,,(l) =1 and P,,(l) is a polynomial of degree k. We assume that
each polynomial in the system is scaled so that its values are always integers.

DEFINITION 2 (Factor effects). The s coefficients of the jth main effects
component of a factor, 1 <j <s — 1, are Pjs(l), 0 <! <s — 1, the values of
the orthogonal polynomial of degree j on s equally spaced points.

DEFINITION 3 (Trend effects). The R values of a polynomial trend of
degree j, 1 <j <R — 1, in a block of size R are Pjg(l), 0 <! <R — 1, the
values of the orthogonal polynomial of degree j on R equally spaced points.

The linear model for the N observations is
(24) Y = (XDXZ’T)(B,I) 3’27 ,3), + €,

where ¢ is an N-vector of zero mean, uncorrelated random errors, X, is an
N X 7 matrix of factor effect coefficients, X, is an N X B matrix of block effect
coefficients, and T is an N X k£ matrix of polynomial trend coefficients, the
same in every block, of degrees 1,..., k. The first R rows of X = (X;,X,, T)
correspond to the R treatment combinations in the principal block B;, the
next R rows to the treatment combinations in the second block, and so on.
The terms B;, B, and B, are the corresponding factor, block and trend
parameter effects, respectively. The product design definition of G, the as-
sumption of the same degree trend in each block, together with the require-
ments that (i) only one effect from each alias set is included in X, and (ii) no
effects confounded with blocks are included in X; imply that, for the normal-
ized columns of X:

XX, =1, XX,=0, X,T=0.

We may now define the design criterion for trend elimination.

DEFiNITION 4 (Design optimality). A run order of design G is optimal for
the estimation of the factor effects of interest, B, in the presence of a nuisance
k-degree polynomial trend in each block, if

(2.5) X/T = 0.
If condition (2.5) is satisfied, we say that the run order of G is k-trend free.
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If x is any un-normalized column of X, and t any column of T, then we call
the usual inner product x't the time count between x and t. Criterion (2.5)
states that all the time counts are zero for an optimal run order. As stated in
the Introduction, our primary objective is to satisfy optimality condition (2.5)
in a setting where X, contains columns representing main effects plus certain
two- and higher-factor interactions among factors not constrained to have the
same prime power number of levels.

3. Construction of optimal run orders by the GFS. We begin by
modifying the generalized foldover scheme, GFS, of Coster and Cheng (1988)
for the mixed-level fractional factorial designs defined in the previous section.
We then present conditions under which both main effect and interaction
components of the n factors become orthogonal to the polynomial trend. This
leads to a stepwise construction method for optimal run orders of G. In what
follows, we may assume that G is run in a single block of size N. The usual
block structure is replaced after Theorem 2 and the advantage of blocking is
demonstrated by Theorem 3.

DeriNITION 5 (GFS for G). Suppose that {g;,...,g,_,} are n — p genera-
tors of G. Assume that g;, j=1,...,n — p, contains at a nonzero level at
least one factor with f; levels, f; €{s;,..., s/}, and that any run g of the
design is of the form g = [17_Pg¢ for a unique choice of &, 0 < ¢, <f, — 1,
i=1,...,n —p. Let Uy = 1. Then the run order of G produced by the GFS
with respect to generator sequence {g,,...,g,_,} and foldover sequence
{fi,..., f,—p} is given by U, _, where

(31 U=Uti(8) = (UonUpsgyo. . Upigf™),  j=1....n—p.

ExampLE 1. Let G = 221032 L0 he defined by I = AB for the two fac-
tors with two levels and by I = CD for those with three levels. If we choose
g, = abc’d and f, = 2 followed by g, = cd? and f, = 3, by Definition 5, the
GFS (3.1) generates U, = (1, abc?d) and U, = (U,, U,cd?, U,c?d) giving run
order

G = U, = (1, abc?d, cd?, ab, c®d, abcd?),

which is not the simple product G§ X Gy = (1, ab, cd?, abed?, c2d, abc?d),
where G, = (1, ab) and G, = (1, cd?, c%d).

In Example 1, since f; = 2, the highest power of g, used is f; — 1 = 1. The
choice of generators in Example 1 would fail if, instead, f; were set to 3, since
g? = g,. In this case, a different choice of g, and f, would be required.

DEFINITION 6 (k-trend free factor effects over U,). Let factors ay,...,a

’ m’

m > 1, have t,,...,t,, levels, respectively. Then the m-factor interaction in
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factors a4,...,a,, is k-trend free for some %2 > 0 over the run order of U; if

(a) at least one of the m factors, say a,, occurs equally often at each of its
levels over U; and

(b) all t = T1j>(t, — 1) interaction components are orthogonal to the trend
polynomials Pgy,..., P,y.

Condition (a) of Definition 6 ensures that our definition of k-trend free
interactions is in keeping with the definition for k-trend free main effects only,
that is, m = 1, in Coster and Cheng (1988). When constructing run orders
with the GFS (3.1) of Definition 5, if factor a, with ¢, levels, I = 1,..., m, is at
a nonzero level in some generator g, of U; for which f, = ¢, v <j, then a,
occurs equally often at each of its levels over U;. By appearing equally often at
each of its levels, the main effects components of factor a, are orthogonal to
the constant polynomial P,, and we say that a, is O-trend free. However, we
do not require all m factors to meet condition (a) of Definition 6 because it is
frequently possible for all ¢ of the interaction components to be k-trend free
before each one of the m factors has appeared at a nonzero level and at its
foldover level in some generator. For example, if G = 2 X 3 is a factorial
design with factor a at three levels and factor b at 2 levels, and if g, = a,
fi=3and g, = b, f, =2, then both components of the AB-interaction are
zero-trend free over U, and are one-trend free over G = U,.

Among the foldover levels {f;, j = 1,...,n — p} there are exactly n; — p;
appearances of the level s;, i = 1,..., q. If this last condition were not met, G
would not be correctly generated. Note that generator g; may contain, at
nonzero levels, other factors with numbers of levels not equal to the foldover
level f;. This has the advantage that it easily produces run orders of G that
are not simply the product of the separately ordered subdesigns G, (see the
last part of Example 1). This latter run order, while it might have the trend
orthogonality properties we seek, would be considered too systematic for many
practical applications.

We now state our primary construction results. Theorem 1 is a generaliza-
tion, for our mixed-level factorial design structure, of the results in Coster and
Cheng (1988) that guarantee k-trend free main effects components. Essen-
tially the same conditions must be met. Our primary result, Theorem 2,
provides sufficient conditions on the generator and foldover sequences that
ensure trend orthogonality for two- and (possibly) higher-factor interactions.
We then recover the usual block structure and show how this is useful in
Theorem 3. Before presenting these theorems, we state in Lemma 1 the
essential requirement that any m-factor interaction that is k-trend free over
U,_, remains k-trend free over U, (and hence over G). In what follows, the
terminology and notation of Definition 5 apply. Proofs are in the Appendix.

LEmMA 1. Suppose that the m-factor interaction in factors a,,...,a,,
m > 1, is k-trend free, k > 0, over U,_, according to Definition 6, for some
v €1{2,...,n — p}. Then this same interaction is also k-trend free over each

piece U,_.,g’, j=1,..., f, — 1, of U, and hence is k-trend free over U,.
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Note that some of the components of the m-factor interaction of interest
may not be part of the columns of the effects matrix X, of (2.4) because of
aliasing or confounding in the blocking and fractionating schemes. However,
our definition applies to all the components of the interaction even though
some of these components are not part of the final estimation problem.

THEOREM 1. Let a be any one of the n factors and let a have s levels,
s €{sy,..., 8.}, s prime. Suppose that factor a is at a nonzero level in (k + 1),
k > 0, of the generators for which the corresponding foldover level is s. Then
all s — 1 main effects components, as given by Definition 2, are k-trend free
over G.

Theorem 1 is, in fact, a special case of Theorem 2(ii) below and no proof of
Theorem 1 is given in the Appendix. However, we have stated the sufficient
conditions for main effects to be k-trend free in a separate theorem because of
the assumed importance to the experimenter of achieving trend orthogonality
for main effects before being concerned about interaction components.

Each factor must be at a nonzero level at its foldover level in at least one
generator, that is, the main effects of all n factors are necessarily zero-trend
free over G. If the conditions of Theorem 1 are met for all n factors, the
resulting run order is an optimal k-trend free main effects plan. Note one
limitation of the GF'S for constructing %-trend free main effects run orders of
an unblocked design G: if n; — p; = 1 when s; > 3, so that there is only one
use of foldover level s;, or n; — p, < 2 when s; = 2, then the main effects of
the factor(s) with s; levels cannot be made k-trend free for any £ > 1. For
example, G = 22 does not have a one-trend free main effects run order. Indeed,
any design having only four distinct treatment combinations among the set of
factors with two levels suffers from this same limitation. Consequently, no
one-trend free run order of G = 62 can be found by the GFS using two
pseudofactors each with two levels.

THEOREM 2. Suppose that all the components of an (m — 1)-factor interac-
tion, (m > 2), involving factors ay,...,a,,_, are k-trend over U,_;, 2 <v <
n — p. Suppose that a factor a,, with s levels is at a nonzero level &,,,in g,
and the foldover level is f,. Then one of the following cases may apply:

@ If a, ¢€{ay,...,a,,_,}, then the m-factor interaction in factors
Qy...,a,, is k-trend free over U, if factor a,, is at level zero in generators
g,-.,8 10U, .

Gi) ifa,, €fay,...,a,_1), say a,, = ay, then the (m — 1)-factor interaction
in factors ay,...,a,,_, is (k + 1)-trend free over U, if ay,...,a,,_, are at
level zero in g, and f, = s.

Case (i) of Theorem 2 indicates that the m-factor interaction inherits the
k-trend free property of the (m — 1)-factor interaction, provided that factor
a,, has not appeared at a nonzero level in the generators of U,_,. Of greater
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import is condition (ii), as it produces an improvement in trend robustness for
the (m — 1)-factor interaction, from % to (k + 1), provided that a,, = a,
appears at a nonzero level in g, while the other (m — 2) factors are at level
zero in this generator.

ExaMPLE 2. Suppose that the design is G = s %9, a complete factorial
design in n factors each with s levels, where s is a prime number and n > 4.
Then, for the following two cases:

(i) n is even, and we choose generators
g, =a, " a,_4a;,1 """ Q,, t=1,...,n—1,
= . [q(s —1)Xmod s)].
gn =a; a, 905" ’
(i) n is odd, and we choose generators

— — (s —1)mod s) _
g, =0, ay,, g,-1=0; an—3a[r;1—2 ]7 g,=0a,,

g, =a, " a;_10;,10,_1, 1=2,...,n— 2.

The resulting run order of G has all n(s — 1) main effects components and all
n(n — 1)(s — 1)2/2 two-factor interaction components one-trend free. Note
that the integer ¢ in the generator expressions above is any choice of 1 < q <
s — 1 such that we obtain a complete set of n independent generators. It is
sufficient to choose q # (n — 2) (mod s). Note that each factor is at a nonzero
level in at least two generators, making main effects at least one-trend free.
For each pair of distinct factors a;, a;,i # j, at least one generator has a; at a
nonzero level while a; is at level zero and the converse holds in some other
generator. Hence, by Theorem 2(ii), all two-factor interactions are one-trend
free.

For example, the design G = 2+%9 presented in Coster and Cheng (1988)
would now use generator sequence {bcd, acd, abd, abc}, while design G =
26:0.0 would have generator sequence {bcde, acd, abd, abc,e}. In a similar
fashion, design G = 3%+ %9 is generated by the sequence {bcd, acd, abd, abc?},
except that the foldover level is now 3, not 2, at every stage. For this last case,
the value ¢ = 1 was used for g, since (4 — 2) = 2 (mod 3) cannot be used.

Our construction objectives are now apparent. To achieve main effects
orthogonality to a kth degree trend, we seek a generator foldover sequence
that has each factor appearing at a nonzero level and at its foldover level in
(k + 1) generators. Interactions involving two factors are k-trend free if one
factor is at a nonzero level while the other is at level zero in (2 + 1) generators
with the appropriate foldover levels, or if case (i) applies to the two factors of
interest. We may similarly proceed to conditions for higher factor interactions
to be trend free. When attempting to meet the trend orthogonality conditions
for main effects, if the foldover level for a generator is f,, we would like to
have as many as possible of the factors with f, levels appearing at a nonzero
level in g,. Conversely, trend orthogonality for two-factor interactions requires
these factors to be isolated from one another in g,, that is, one at level zero
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and the other at a nonzero level in this generator. Clearly, these conditions
compete with each other and in some cases run orders with, say, all main
effects and two-factor interaction components k-trend free cannot be gener-
ated by the GFS.

We now replace the usual block structure of G defined by (2.1) and state a
theorem that exploits the block structure and, in particular, the assumption
that the same degree trend is present in every block. Recall that the principal
block uses A = n — p — r generators. Let g, h + 1 < v < n — p, be a between
block generator with foldover level f,. Then, with the GFS construction
method, the following conditions hold (see the Appendix for the proof).

THEOREM 3 (Blocked designs). Suppose that factor a, with t, = f, levels is
at a nonzero level in g,. Then:

() all t; — 1 main effects components of a, are orthogonal to all the trend
columns of matrix T of model (2.4);

(i) if factors a, ..., a,, are at level zero in g, then the m-factor interaction
ina,...,a,, is orthogonal to all the trend columns of matrix T of model (2.4).

The approach of Bailey, Cheng and Kipnis (1992) and the GFS ideas
presented here provide the experimenter with alternative (although closely
related) methodologies and some flexibility in constructing trend-free run
orders. One possible advantage to the use of pseudofactors and the GFS might
be as follows. A factor with a nonprime number of levels frequently contains
subsets of levels that are of special interest to the experimenter, for example,
treatments versus controls. In small fractional factorial designs, it may not be
possible to have all effects (say main effects and two-factor effects) trend free.
Instead, the experimenter might use pseudofactors to describe the effects of
special interest, and arrange for these to be trend-free, while sacrificing trend
robustness for the other components associated with the overall effect. For
example, suppose factor A at 4 levels represents two controls and two test
treatments, in the order (Control,, Control,, Treatment,, Treatment,). Code
the levels of A by two two-level pseudofactors B, and B,, with their four
treatment combinations being (11,22, 21, 12), corresponding to the order of
the levels of A given above. Then the B, B, interaction contrast is equivalent
to the contrast comparing average treatment effect to average control effect,
usually a comparison of primary interest. If not all components of A can be
made trend free, the experimenter might use a trend free order for the B,B,
interaction, giving lower priority to making the main effects of either pseudo-
factor trend free. If instead the factor A had six levels, then the second
pseudofactor, B;, would have three levels. Assuming that the B,B, interac-
tion again represents contrasts of special interest, the experimenter must look
for generators and corresponding foldover levels to make the interaction
components trend resistant. For example, g, = b,, f; =2 and g, = b,, f, =3
makes both interaction components one-trend-free, but the main effects com-
ponents are only zero-trend-free.
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We end this paper with two examples. Example 3 shows how interactions
among pseudofactors are made trend free, resulting in trend free main effects
components for the real factors. Example 4 combines both pseudofactors and
blocking for a mixed-level, blocked factorial design.

ExampLE 3. Consider designs for n factors each with a proper prime-power
number of levels. For our purposes, we will restrict attention to the prime
powers 4, 8 and 9. (The prime powers 16, 25, 27 and so on seem unreasonably
large for most practical factorial designs in at least n > 2 factors, especially
complete factorial designs.)

To use the GFS construction method of Section 3 and the results developed
there, we first define pseudofactors, each with a prime number of levels, to
represent each real factor. If each factor a; has s™ levels, s prime, m > 1, let
m pseudofactors each with s levelsbe a,;, j = 1,...,m. Then all main effects
and interactions among the m pseudofactors are equivalent to the s™ — 1
main effects components of the real factor. Thus, a factor with four levels
requires two pseudofactors each at two levels, a factor with nine levels is
represented by two pseudofactors with three levels, and so on. Then, we have
the following construction results:

(a) For n > 2 factors each at ¢t = 4 or ¢t = 9 levels, there is a run order of
G = t" with all main effects components one-trend free. This follows from the
fact that for the 2n > 4 pseudofactors with two or three levels, respectively,
Example 2 above produces a run order with all main effects and two-factor
interactions one-trend free, which is more than sufficient to make the main
effects of the real factors one-trend free.

(b) For n > 2 factors each at ¢ = 8 levels, there is a run order of G = ¢"
with all main effects components one-trend free. In this case, we have the
additional requirement that the three factor interaction between each set of
pseudofactors (a;;, @;5, @;3) also be one-trend free. A sequence of generators
having the required properties is

n n n
g = .l_Ilail’ g2 = l_Ilaiz» 83 = l_[lai3»
i= i= i=

n—-1 3
84= || I'1 a;;i|Qr1Q 52, 85 =Q11Q,3,--->

where the remaining (n — 5) generators may be anything to complete the
design. Note that the two- and three-factor interactions among each set of
three pseudofactors are one-trend free over U,, by Theorem 2(i) and (ii), while
g, and g, simply meet the main effects requirement that each pseudofactor
appear at least twice in the sequence.

ExaMPLE 4. Suppose G is a 2 X 3 X 4 X 6 factorial blocked into six blocks
of size 24. Let factor a be at two levels; factor b be at three levels; factor ¢ be
at four levels; and factor d be at six levels. Let factor ¢ be represented by two
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pseudofactors, ¢, and c,, each at two levels. Let factor d be represented by two
pseudofactors, d; at two levels and d, at three levels. Suppose that the effects
confounded with blocks are AC,C,D,, part of the ACD interaction, and BD,.
Then, if four within-block generators and two between-block generators and
their foldover levels are:

g, =acy, f1 =2, g, = acy, fy =2, g3 = acicydy, f3=2,

g,=bd}, f,=3, g5 =ccxdy, f5=2, gs=0bd,, f¢=3,

the resulting run-order is one-trend free in the four real factors. Note that g,
and g, make the C,C, interaction and the A main effect one-trend free. When
g, is used, the C; and C, main effects become one-trend free also, making real
factor C main effects one-trend free over U;. The D, D, interaction is one-trend
free over U,. Because the foldover level can be 3 for only one within-block
generator, the main effects of the three-leveled factors b and d, can only be
made one-trend free ‘“between blocks” after use of g;. The main effect of d;
becomes one-trend free over U;. Because of the blocking in this example, by
Theorem 3, many of the two- and three-factor interactions among the six
pseudofactors are also one-trend free.

APPENDIX

The proofs of Lemma 1 and Theorems 2 and 3 are presented here.

Proor oF LEMMA 1. Without loss of generality, let the m factors be
ay...,0a,,, with ¢, having ¢, levels, [ = 1,..., m. Let f denote the number of
runs in U,_;. Let n, €{0,...,¢, — 1} be the possible levels of factor a,. In
generator g, let factor a; be at level ¢, for some ¢, €{0,...,¢, — 1}.

Let the treatment combination (7,,...,n,,) occur ¢(n,,...,n,,) times over
U,_, in run positions i(nl,---,nm)j’ j=1,...,¢(ny,...,m,,). By the statement of
the lemma, the m-factor interaction is k-trend free over U,_,. This means
that, for the trend of degree u, 0 < u < k, and for every component (q,, ..., q,,)
of the interaction, 1 < ¢, <t, — 1,

t—1 t—1

(A1) 0=% - X | Wn(ni,--m) [T, (m)],
n1=0 Nm=0 =1
where
c(My,.ey M)
(A.2) Won(M1s-esmy) = '.Zl PuN(i(nl,...,nm)j)
j=

is the contribution to the time count, from the trend of degree u with any
component of the m-factor interaction, made by the treatment combination
(74y...,m,,) over the run positions of U,_,. If c(n,...,7n,) =0, set
W,nMpoosm,,) = 0.

Now consider the f run positions in U,_;g,. Over these next f runs, the
contribution to the time count from the trend of degree ¥ made by those run
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positions containing treatment combination (n;,...,n,,) in U,_; is, by (A.2),
C(nlyu'?nm)
Z PuN(l(nl ..... Nm)J + f)
j=1
u c(Nyy- s M)
(A.3) = L |0 L Piwlic .nmi)
j1:0 j: 1
= Z bjl( f)leN(nD""nm)'
J1=0
In the run positions of U,_,g,, the treatment combination (7,,...,7n,,) is

replaced by (n; + &4,...,m,, + £,,), where it is understood that the addition
(n; + ¢,) is performed modulo ¢;,, j=1,...,m. Hence, the value of the

(qy-.-,q,,)-component of the m-factor interaction at such a run position
becomes
(A4) l_[ P, ,(n +&).

As was done with the trend polynomials P, (-)in (A.3),foreach I =1,...,m
we may express the term in the product of expression (A.4) as
-1

(A.5) P+ &)= X di(£)Piy(m),

llv

where the coefficients d; depend on ¢, but not on 7,. However by Definition
2, summing the left-hand side of (A.5) over 1, = 0,. — 1 yields 0, as does
each term on the right-hand side of (A.5) except the first, constant term
involving Py, (7,), where the sum is d,(¢)¢,. Hence, we must have that
do(§)=0for ! =1,...,m. Then the time count T, from the trend of degree
u with the (¢4, ..., q,,) component of the interaction over the f run positions
of U,_.g, is, using (A.3) and (A.5),

tH-1 t,—1
T,= Y " X {[ Y bW N1, m0) ]l_[ q,t,(m+§z)}

71=0 Nm=0 \[J1=0
v t-1 t,—1 m
=X X X {bjl(f)]._.[dil(fl)
Ji=0i,=1 i,=1 =1
t—1 t,—1
X[ Z e Z WGIN(T’D' . "nm) ]._.[ tltl(nl)}
n,=0 Nm=0
=0,
because, by (A.1), the inner summations within the brackets “[ --- ] are all
equal to 0.

Hence, every component of the m-factor interaction is k-trend free over
' _18,, and by the same argument is k-trend free over each piece U,_;gY,



2084 D. C. COSTER

=1,..., f, — 1 with ¢, replaced by w¢, in the expressions above. So this
interaction remains k-trend free over G. O

Proor oF THEOREM 2. Before establishing the results, we introduce a
slightly more convenient notation. Let the level of factor a; be ¢,;; in generator
g,/=1...,mand j=1,...,v, and the foldover levels be f;, as usual. For
index i; €{0,..., f; — 1}, j = 1,..., v, the run position in U, given by a fixed
choice of (i, ...,7,) may be expressed as

v - v—1 v—1
Z(I_Ifz) =fi, +d, f=l_[le, d=Z(l_[le)
j=1 = =1 j=1\lL=1
where d depends on i,,...,i7,_; but not on i,. The level of factor a, in this
run position is of the form

14
Z gljij = fl* + ivflv,
j=1

where ¢ is also independent of i,. Arithmetic in the above expression is
understood to be carried out modulo ¢,. Then the assumptions of the theorem
together with Lemma 1 imply that, forany 0 <z <k andall1 <g, <¢,— 1,
l=1,...,m,
fi-1 fi-1—1
(A6) 0= Z t Z uN( fl + d) ]._.[ qltl(gl* + iuglv) ’
=

i1=0 i,_1=0

forany i, =0,...,f, — L

PRrOOF OR PART (i). The time count over U, between the trend of degree %
and any component of the m-factor interaction is expression (A.6) summed
also over i, except that the product at the end now runs from I = 1to [ =
and includes a term of the form P, ut (&, +i,€,,,)- By the assumptions of part
(1), ¢ = 0, independent of i,,...,7,_;, so this addltlonal term in the product
may be taken outside the summations over i,,...,i,_; and by expression (A.6)
the result is 0 for each value of i,. O

Note that part (i) allows a factor that has not yet appeared in any previous
generator to inherit, in its interactions with those other factors already used in
the earlier generators, any trend free properties existing among this first set of
factors.

PrOOF OF PART (ii). The time count over U, between the trend of degree
(k + 1) and any component of the (m — 1)-factor interaction is of the form

fi-1 fi—1
(A7) T(k+1,v)= Y -+ X Ppyn(fi, +d) H aelEF + 1,60.).
i1=0 i,=0

By the assumptions of part (i), ¢, = ¢,,, # 0, §,=0,1=2,...,m — 1 and
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f, = s. If we express the trend polynomial in (A.7) in the form
E+1

(A.8) Py n(fi, +d) = ¥ a,(fi,)P,n(d),

u=0

where «, , (fi,) = 1 independent of i,, we may write (A.7) as

k+1 s—1 fi-1 fo-1—1
T(h+1v)= ¥ Yelfi,) X - XL
(A9) u=01i,=0 i,=0 i,.1=0
m—1
X{ PuN(d) ll_[2 qutl(ff)}qutm(g;':z + ivfmv)}~
For u =0,...,k, the inner summations over i,,...,7,_; yield 0 for any

value of i, by the assumptions of the theorem and Lemma 1. Then, since
a,,(fi,) = 1, expression (A.9) reduces to

fi—-1 fi-1—1 m—1
T(k+1,v)= ) - ) {Pk+1,N(d) zl_Iz Pq,t,(fi")
i;=0 i,_,=0 =

X

s—1
Z P mtm(grﬂ:z + ivgmu)}}'
i,=0

Finally, the inner summation over i, always yields 0 by (2.2) of Definition 1.
Hence, the (m — 1)-factor interaction is (2 + 1)-trend free over U,. O

Proor oF THEOREM 3. Let factor a, be at level ¢ # 0in g,,.

Proor or PART (i). When U,_, is folded over with respect to generator g,
at foldover level f, = ¢,, each block of size R of U,_, generates f,_; — 1 new
blocks of the same size. If factor a, is at level ¢; in run position j, j = 1,..., R,
in any block of U,_,, then a, is at level ¢; + i ¢ in some block of U, generated
from this starting block. Since ¢; + i,¢ takes each possible level of a; exactly
once as i, runs from 0 to f, — 1, and since the trend polynomial of any degree
k is the same in every such block in run position j, the contribution to the
time count from starting position j for any main effects component g, of a, is
given by

fi—-1
(A.10) .ZOqutl(fj +1,€)Pyr(J)
1,=

which is 0 for every j by (2.2) of Definition 1. Hence, a, is k-trend free over G
forany0 <k <R-1.0

Proor oF PART (ii). For starting position 1 <j < R of any fixed block of
U,_, and trend polynomial of degree 0 < k2 < R — 1, since a,,...,a,, are at
level zero in g, the product of P, z(j) and any component of the (m — 1)-factor
interaction in factors a,,...,a,, is constant for this same position j in all
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f, — 1 blocks generated from the current starting block of interest. So the time
count contributed by position j is the same as (A.10) except for the addition of
a constant product, that does not depend on i,, involving any component of
the (m — 1)-factor interaction. The resulting sum is again 0 for every j and
hence the m-factor interaction of a;,...,a,, is k-trend free over G. D
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