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EXTREMAL INDEX ESTIMATION FOR A WEAKLY
DEPENDENT STATIONARY SEQUENCE"

By Ta1LEN HsING
Texas A &M University

Under stationarity and weak dependence, the statistical significance
and the estimation of the extremal index are considered. It is shown that
the distribution of the sample maximum can be uniformly approximated
given the extremal index and the marginal distribution as the sample size
increases. An adaptive procedure is proposed for estimating the extremal
index. The procedure is shown to be asymptotically optimal in a class of
estimators.

1. Introduction. The problem of estimating the tail distribution of the
maximum of a large number of observations has its roots in many important
practical situations and has long been studied by statisticians. See Gumbel
(1958), Galambos (1978) and Leadbetter, Lindgren and Rootzén (1983). In this
paper we consider the problem in the context of stationarity, for which the
notion of an extremal index provides a powerful modeling tool. Roughly
speaking, the extremal index together with the marginal distribution paints a
very vivid picture of the distribution of the maximum. Qur goals are to further
motivate the use of the extremal index and consider how it can be estimated.

Throughout this paper, we assume that {¢;} is a strictly stationary sequence
of random variables with a continuous marginal distribution F. Write F =
1 — F and x, = sup{x: F(x) < 1}. Also write

Mij= max ‘fk and Mn=M1 ne
’ i<k<j ’
We say that the extremal index of {¢;} is equal to 6 if
(1.1) lim P[nF(M,) > x| =e™%, x>0.

- This is essentially equivalent to saying that the distribution of nF(M,)
converges weakly to an exponential distribution with mean 6~ '. The extremal
index 6 exists for most weakly dependent stationary sequences with continu-
ous marginal distributions. The notion of the extremal index was implicitly
mentioned in Theorem 2 of Loynes (1965). However, the formal definition and
the terminology first appeared in Leadbetter (1983). .

By Boole’s inequality, regardless of the dependence structure,

limian[nF(Mn) > x] >1-x, x>0.
Comparing this with (1.1) for small x, it is readily concluded that 6 € [0, 1].
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Examples show that 6 can be of any value in [0, 1]. The extremal index
measures the strength of the dependence of {¢;}. It is plausible to say that
0 = 0 corresponds to a long memory sequence, 0 < # <1 a short memory
sequence, and 6 = 1 a no memory sequence (insofar as the tail dependence
structure is concerned). If 6 > 0, then the dependence is weak so that M, can
be normalized with the normalization which is appropriate for the maximum
of n iid. random variables from F, whereas if 6 = 0, then the dependence is
so strong that a different normalization is called for. Thus the nature of long
memory sequences is very different from that of short or no memory se-
quences. In this paper we focus on the case 6 > 0, which we assume hence-
forth.

It is interesting to note in passing a parallel situation. If, instead, one is
interested in the asymptotic distribution of L7_,¢;, the role of 6 will be in a
sense played by the value of the spectral density at 0 [cf. Grenander and Szegé
(1958)].

Some theoretical results are available for the purpose of understanding and
computing the extremal index. Here and hereafter, F~! denotes the right
continuous inverse of F. Leadbetter (1983) showed that under a mixing
condition called D, for any sequence r, which tends to « but is o(n) (and
constrained in some way by D),

E Zn: I(fj > F‘l(x/n))

j=1

M, > F_I(x/n))

1.2 _
(1.2) r, P&, > F1(x/n)] 1

— asn — o,

- P[Mrn>F‘1(x/n)] 0

from which he obtained the interpretation that 6! is the mean number of
exceedances of a high level in a “cluster” of large observations. See also Hsing,
Hiisler and Leadbetter (1988). O’Brien (1987) showed that if {¢;} satisfies a
mixing condition called AIM, for some {r,} satisfying constraints similar to
those mentioned previously,

(1.3) P[M,, <F Yx/n)lg,>F Ya/n)] 6 asn o,

which, when given the structure of {¢;}, is very useful for computing the
extremal index. See also Hsing (1989), Chernick, Hsing and McCormick (1991)
and Rootzén (1988) for related results. Examples illustrating the extremal
index can also be found in Chernick (1981), Davis and Resnick (1985), Denzel
and O’Brien (1975), de Haan, Resnick, Rootzén and de Vries (1989) and
Leadbetter, Lindgren and Rootzén (1983), to name a few. Recently, a number
of papers discussed the estimation of 6. These include Hsing (1990, 1991a),
Joe (1991), Leadbetter, Weissman, de Haan and Rootzén (1989), Nandagopalan
(1990), Smith (1989) and Smith and Weissman (1993).

An important statistical issue in this context is to understand what informa-
tion the extremal index provides. The definition (1.1) shows that, in general
terms, the distribution of M, can be approximated by F"%(x). In practice
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where the distribution of the maximum is of interest, the tail portion of that
distribution is almost always the focus. For example, when a study is done to
determine how high a sea dike should be, the criterion might be that the dike
should be high enough so that the probability of floods in 1000 years is less
than a small probability. Equation (1.1) itself does not provide information of
how good the approximation is toward the tail. We show in Section 3 that
under a very general condition,

P[M, > x]

lim sup T—W(T) _

n—o

1|—>0.

This shows that to estimate the tail distribution of M,,, it suffices to estimate 6
and the marginal tail distribution. Much effort has been put into the problem
of estimating the tail marginal distribution in the i.i.d. case. See Gumbel
(1958), Pickands (1975), Smith (1987), Dekkers and de Haan (1989) and
Dekkers, Einmahl and de Haan (1989), among others. Hsing (1991b) partially
confirmed that the same problem under a weakly dependent stationary setting
can be treated in similar ways.

We consider the problem of estimating the extremal index in Section 2.
There we suggest a model motivated by (1.3) and consider the problem in that
setting. While the model puts restriction on the class of processes from which
the observations are generated, it is nevertheless quite rich and is suitable for
most situations. The estimator that we propose to use contains a tuning
constant which partially determines the quality of the estimate. We show that
it is possible to choose from data the optimal tuning constant, relative to the
mean squared error criterion. To keep the presentation concise, parts of the
proofs are given in simplified settings. Extensions of those proofs to more
general settings are intuitively obvious but technically complicated.

In Section 4 we consider the m-dependent case in detail. There is it possible
to consider specifically how P[M, >«x], P[M,, <x|¢, > x] and F(x) are
related. As a result, we obtain refined versions of (1.2) and (1.3). These results
can be used to suggest models which contain # and hence different ways of
estimating 6. In particular, we will mention an approach motivated by (1.2).

To consider the distributions of other extreme order statistics, additional
parameters will have to be included. This is best seen from the viewpoint of a
functional limit theorem. See Hsing (1993) for details.

2. Statistical estimation. Consider the problem of estimating the ex-
tremal index in the following setting. As mentioned in Section 1, {¢;} is a
stationary sequence of random variables with a continuous marginal distribu-
tion function F and a nonzero extremal index 6. Assume also that there exists
a finite positive integer r > 2 such that

(2.1) P[M,,, <xl¢ >x] =0+ R(F(x)),

where R(p) - 0 as p —» 0. We assume that r can be chosen in some way, but
R is unknown. The role of r and how it is determined will be explained in
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more detail below. While, by (1.3) [Theorem 2.1 of O’Brien (1987)], (2.1)
obviously holds if {¢;} is m-dependent where m < r (cf. Theorem 4.2), interest-
ingly enough such a representation is appropriate for many weakly dependent
sequences whose ranges of dependence are infinite. This property is studied by
Chernick, Hsing and McCormick (1991) [cf. Leadbetter and Nandagopolan
(1989)]. This class of models is very rich so that (2.1) is a rather reasonable
model for most situations. Compare also with (3.3). We first give some
examples of {¢£ j} for which (2.1) holds.

ExampLE A. Let {Z;} be i.i.d. with distribution G, where
G(z) =1-G(2) =nz"*(1 + vz F +0(27P)) asz— o,
where a,n, 8 > 0 and y € R. Define
¢ = max(Z;, pZ;41),

where p > 1 is a constant. Since {¢;} is 2-dependent, (2.1) holds with r = 2
where straightforward computations show that

pe mp® + mp*(1 +p°) vp"(p" - 1)
1 +p° (1 +p%)° " (1 +p%)°
+o(x*) +o(x7P).
The form of the remainder R depends on whether @ > B or a < .

Pl&, <xlé; > x] =

ExampLE B. Consider the following sequence defined in Smith and
Weissman (1993). Let {I;} be i.i.d. Bernoulli with P[I; = 1] =p €(0,1) and
{Z.} be i.i.d. continuous also independent of {I;}. Define

§1 = Zl:
and ¢;, j > 2, recursively by
§ =&l +2Z,(1; - 1).
It is easy to show that {¢,;} has extremal index 6 = 1 — p, and (2.1) holds with
r=2and R(p) ~ (1 —p)p.

ExampLE C. Consider the AR(1) Cauchy sequence ¢; = p¢;_; + Z;, where
p € (0,1) and {Z;} is i.i.d. standard Cauchy. Assume also that £, has the same
distribution as 1 — p times the standard Cauchy random variable so that {¢;} is
strictly stationary with this marginal distribution. By Chernick, Hsing and
McCormick (1991), the extremal index is 1 — p. It is shown in the Appendix
that

(2.2) Pl¢, <xlé, >x] =1—p +cF(x)(1 + o(1)),

where

dy
c=-21-p)+(1 p°f Ry 2(1—p)f1_py
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Define
I (x) =I1(§;>x =2 My ;,,—1) and I, o(x) = I(§ > x).
The estimator of 6 that we propose to use under (2.1) is

Xi_1I; (%)
=1Ii,2(x) ’

where x is a tuning constant which determines the quality of the estimate.
Generally speaking, in order to estimate 6 well, x should be large enough so
that the relevant tail characteristics of {£;} are captured by the quantities
included in 6 (x). In reality, the choice of x typically has to be made from
data. Thus we will consider the properties of 6(x) for x = F, (p) =
[np] + 1th largest value of the sample ¢,,...,¢,. Note that although the
procedure én requires observing &,,..., ¢, .,_1, without any loss of generality
we will regard the sample size as n for convenience.

Under a mixing condition such as Leadbetter’s condition D [Leadbetter
(1974)] or any stronger condition, it is easy to see [cf. Chernick, Hsing and
McCormick (1991), Theorem 1.1] that (2.1) implies

6,(x) =

(2.3) P[M,,<x,{>xlé >x] >0 asx —xg,all j>r.

Then one simply observes that if (2.1) holds for some r = r, then it holds for
all r > r,, where the remainder R depends on r. Thus one has some flexibility
in choosing r. Note that the effectiveness of the estimator 0 is partly affected
by the choice of r. For example, using the mean squared error criterion,
typically the best choice of r tends to be the smallest integer r for which (2.1)
holds, and when a larger integer r is used, the limiting mean squared error
will generally have the same order of magnitude but possibly a larger coeffi-
cient. For situations where the estimation of 6 is called for, the theoretical
structure of the sequence is normally unknown. Thus we recommend selecting
r conservatively; namely r should be as small as possible, but should reason-
ably cover the range of dependence. Using model selection techniques, this can
be achieved in a number of ways. Smith and Weissman (1993) consider some
issues in a related context.

Our first result shows that én(x) is weakly consistent for a wide range of x
values.

THEOREM 2.1. Let 0 < A; < Ay < ® be constants, and let p, be such that
P, = 0 and np, — . Assume that (2.1) holds, and for x, = F~*(Ap,), A €
[Ag, Ag],

(2.4) lim sup |Z2-1 Cov(ly,o(%n), T, S(xn))|

s=1,2.
n—w F(x,)
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Then

(2.5) sup |§n(x) - 0| -, 0
F~YAgp,)<x<F~YA;p,)

and

(2.6) sup 6.(x) — 6] -, 0,

F Y Wyp,)<x<F; '(X,p,)
for all Xy, Xy satisfying Ay < X; < Ny < A,

Proor. For a nonrandom x, write
-1

b.(x) — 6= (("F(x))_l ~i11i’2(x)
X {(nF(x))_l ,_il(Ii,l(x) — EI (%))

—O(nF(x))_l i (Ii,z(x) - EIi,z(x)) + F(x)_l(EIl,l(x) - 0EI1,2(x))}-
i=1

In order to show (2.5) it therefore suffices to show
|Z?=1(Ii,1(x) - EIi,l(x))| 5

@D F‘l(/\zpn)zI:ZF‘l(/\lpn) nF(x) P

(2.8) sup |Z?=1(Ii,2(x_) - EIi,2(x))| S0,
F~'(Ayp)<x<F YA,p,) nF(x) P

and

(2.9) sup |EI1,1(x) - 0E11,2(x)| 50

FYAyp,)<x<F~YAp,) F(x)

Formula (2.9) follows readily from (2.1). We next prove (2.8). For any positive
integer k, write

x}k)=F—1(Pn(/\1+ (Ag —A)(R —j)/k)), 0<j<k.
It suffices to show
IZ?=1(Ii,2(x,(‘k)) - EIi’2(xJ(.k)))|

2.10 sup -_0, k>1,
( ) O<j<k np, i
' Z:L= Ii x(k) - Ii X
lim limsupP| sup sup | 1( ’2( J ) . ))l >e| =0,
(2.11) koo 5 e 1<j<k x}k_)lgxsxj(k) np,
>0,
o |F(x{®) - F(x)|
(2.12) lim limsup sup sup =0
k=e now 1<j<k o®) cx<a® Pn
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Formula (2.10) follows from (2.4) using Chebyshev’s inequality and (2.12)
follows from the definition of x{*). To show (2.11), fix ¢ > 0 and observe that,
by (2.4),

IZ?=1(Ii,2(x}k)) - Ii,2(x))l

sup sup
1<j<k JCJ(k_)ISxSxJ(Ie) np,
= sup ~p >
1<j<k npn k

which is less than ¢ for large k. This proves (2.11) and hence (2.8). We omit
the proof of (2.7) which follows from essentially the same argument. Thus (2.5)
is proved. To prove (2.6), note that, by (2.4),

P[Fn_l(/\,2pn) =< F_l()‘zpn)] =P Z Ii,z(F_l(Mpn)) < Xgnp, | = 0.
i=1

Similarly,
P[F;Y(Xyp,) = F'(\,p,)] = 0.
Thus (2.6) follows from (2.5). O

We now address the issue of selectmg the optimal threshold x, or equiva-
lently, the optimal p in 6 (F-(p)), using the information given by a sample.
The criterion that we will use is the mean squared error criterion. Much of the
difficulty in selecting the optimal threshold arises from the fact that the
unknown function R in (2.1) partly determines the mean squared error of
6, (F-Yp)). Therefore, to decide the optimal p, it is crucial to have some
information on R. If R can be estimated accurately enough from the data,
then a p can be picked to minimize the asymptotic mean squared error of
6 (F-%p)). Tt is indeed very difficult to solve this problem in its entire
generality, because we do not yet have a complete understanding of the nature
of the function R. However, there is evidence to believe that the model

R(p) = L(p)p*,
where L is nonzero and slowly varying at 0 and B > 0, is satisfied by a large
class of processes. See Feller (1971) for some general information on the
notion of slow variation. In fact, for most of the processes for which we could
specifically compute R, R has the very simple form

(2.13) R(p) ~mp® asp -0,

where n # 0 and B > 0. Three such examples are given by Examples A
through C. See the paragraph following Theorem 4.2 for a discussion on the
value of B. As a first step in solving this problem, let us assume henceforth in
this section that (2.13) holds. To illustrate how to proceed in this situation, we
make a technical simplification at this point. If we assume that {¢;} has an
infinite range of dependence but satisfies some mixing condition, the techmcal
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details involved in deciding the optimal p will be quite lengthy and indeed
rather overwhelming so that the clarity of the presentation will be less than
ideal. It seems feasible in this case to compromise details and clarity by
presenting the proofs in the very simple m-dependence setting, whereby rigor
is preserved and the reader will be able to see what is involved in making
extensions. Thus, in the rest of this section, we assume that {¢ j} is m-depen-
dent for some finite m, keeping in mind that the results hold under more
general assumptions of dependence. To be specific, recall that {¢;} is m-depen-
dent if o{¢;: j <k} is independent of o{¢;: j >k + m} for all k. Whether
m <r or m > r, where r is the constant appearing in (2.1), is irrelevant.

Let p, be such that p, — 0 and np, — . First note that we can write

.(F(p)) - i( (FZH(p2)) — L o(F(p,))
(2.14) B

" [np,]

[ ] ZEI ( n_l(pn))_e =:An+Bn'

It is clear that the variance and bias of §,(F. X(p,)) are contributed by A, and
B,,, respectively. We first analyze A,,.

LEMMA 2.2.

(np,)"*(p7 ' F(F, (p,)) — 1) = 0p(1).
Proor. It is easy to see that, for x > 0,
P((np,)"*(p; *F(F; Y(pa)) — 1) 2 2
— P[F 4 (p,) < FY(p,(1+ 2/ymp, )|

=P[ ‘él(@ > F_l(Pn(l +x/\/§7:))) <np,|=P[Y,(x) < —x],

=II(§j > F‘l(pn(l + x/@))) - npn(l + x/‘/ﬁ)

V(%) =
np,

and similarly, for x < 0,
P[(np,)"*(p; ' F(F; Y(p,)) — 1) <x] = P[Y,(x) = —x +0(1)].

By Lemma 4 of Deo (1973), following the arguments on page 874 in that paper,
it is easy to show that for any fixed x, the limiting distribution of Y,(x) is the
same as that of Y,(0). Since the latter is clearly stochastically bounded, the
result follows. O
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The stochastic equicontinuity argument in the preceding proof will be used
in two other places below. See also Billingsley (1968) and Withers (1975).
Define

(2.15) X,(u) = (np,) 72 ¥ [Lo(F-"(upa)) — EL o(F-*(up,))],

i=1

for u in a neighborhood of 1.

LEMMA 2.3.
(npn)l/zAn —4 normal(0, 6).

Proor. By Lemma 4 of Deo (1973), arguing as on page 874 in that paper, it
can be seen that for every sequence of nonnegative constants ¢, tending to 0,
we have
(2.16) sup | X, (u) — X,(1)] -, 0,

l-g,<u<l+e,

where X,(u) is defined by (2.15). Note that

F. Y (p,) =F (p;'F(F; " (p,))P,)-

Hence, by (2.16) and Lemma 2.2, (np,)'/?A, has the same asymptotic distribu-
tion as X,,(1). Thus the only issue in question is the variance of the limit. Note
that (2.1) together with m-dependence implies (2.3), since (2.3) obviously
holds if r» > m, and for r < m, Theorem 2.1 of O’Brien (1987) implies that
P[M, , <x|¢ > x]— 6 [cf. Hsing (1989)] which in turn implies (2.3). Note
that

L (F Y p)),(F ' (p,))=0 fori=2,...,r.
By this, (2.1) and (2.3),
0p,(1 +0(1)), i1=1,
EIl,I(F_l(pn))li,l(ﬁ_l(pn)) = 0’ 2<i <r,
o(p,), i>r+1.

Thus it follows from m-dependence that the asymptotic variance of X, (1) is 6.
0O

To handle B,,, we need the following two lemmas.

LEMMA 2.4. There exist subsets :/1,...,%1 of {1,2,...,n} such that
Sup; < ; < (n — #(H) = o(y/n/p,) and

sup ‘P[fi > F;Y(p,) = Mi+1,i+r—1]

l<i<n

(2.17) o )
~P[£,> F X(p) = My, ]| = o( Pn )

n
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where F, Xp,) is the [np] + 1th largest value of &y, .. &, F (pn) is the
[np] + lth largest value of ¢;, j € 7, and (51, M2 ,) has the same distribu-
tion as (¢, M, ,) but is independent of F, {p,),i=1,...,n.

Proor. Let £ ={1,2,...,i—-m,i+r—1+m,...,n}. By m-depen-
dence (¢;, M; ;,,_,) is independent of F, j(p,). Observe that

‘P[gi > Fn_l(pn) = Mi+1,i+r—1] - P[él > F,;}(pn) > Mz,r]
=|P[§z > Fn_l(pn) = Mi+1,i+r—1] - P[gz > Fn_}(pn) > Mi+1,i+r—1]|
SP[FJ,KP,,) <¢& <F Y p,) forsomek =i,...,i+r— 1],

Since n — #(#) = 2m + r — 2, the number of £;,...,&, that are in the
interval (F,, X pn) F Y(p,)] can at most be 2m + r — 1. Thus the last proba-
bility is easily shown to be bounded by

i+r—12m+r—2

h Y P[¢&, isthe [np,] + jthlargest value of &,,...,¢,]

where C is a constant independent of i. This completes the proof. O

LEMMA 2.5. Let F, ; be as defined in Lemma 2.4. Then uniformly in i,
E(F(F, (p,))) =pn(1 + 0((npn)_1/2))
and

E(FFHY(F;i(pa))) ~ PR

Proor. Both asymptotic statements are proved using similar arguments.
Thus we illustrate by proving the first statement, whose proof is the more
difficult of the two. Let n' = #(_#) and define

Z, = (np,)""p; 'F(F; X(p,)) — 1},

Liend(&> F Y (pa(1+a(np,) %)) = Wp,(1 + x(np,) %)
Vrpa(1 + x(np,) %)

Yn,i(x) =

and
Yn,i = Yn,i(O) .
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By the proof of Lemma 2.2, for x > 0,
P[Z,;>x] = P[Yn’i(x) < (npn - n’pn(l " x(npn)_l/z))
(218) X(\/n/pn(l +x(npn)_1/2))—1}

=P[Yn,i(x) < —x/\/l +x(npn)_1/2(1 + o(l))],

where the error of approximation o(1) is uniform in i and x > 0. Similarly,
uniformly for all i and x < 0,

(2.19) P(Z,, <x]=P|Y,(x) > —x/y1 +x(np,) /(1 + o(1))].

1t is clear that, for a fixed A > 0,
sup |P[Zn,z > x] _P[Yn,i < _x]|

0<x<A
< sup |P[Z,;>=x]-P[Y, (x) < —x]]
0<x<A
+ sup |P[Y, (x) < —x] - P[Y, ;< —x]],
0<x<A

where the first term on the right tends to 0 by (2.18) and the second term
tends to 0 by the standard arguments for proving sample path equicontinuity.
Thus

(2.20) sup |P[Z,,>x] - P[Y,,< —x]|>0, A>o.
0<x<A

Similarly,

(2.21) sup |P[Z, ;< —x]-P[Y,,>x]|>0, A>0.
0<x<A '

By m-dependence and the fact that Y, , is a normalized partial sum of
indicators, E(Y, ,(x))* is bounded in n, i and x [cf. Deo (1973) and Ibragimov
(1962)]. Thus by (2 18), (2.19) and the Schwarz inequality, for any fixed A > 0
there exists a constant C such that

2 1 1 1

Ve #

[P[IZ,, ,|>x]dx<0[ dx.

Thus we have

(2.22) llm lim [ P(Z, ;| > x] dx =
Also
(2.23) lim lim [ P[|Y, | >x]dx =0

A—>oon—oow A
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Since EY, ; = 0, by (2.20) through (2.23), we have

0= lim EY, , = lim [ (P[Y,,>x] - P[¥, , < —x])dx
n—wJq

n—o

A—>oon—oow

— lim lim [*(P[Y, ,>x] - P[Y,, < —x])dx
0

A—> o n—ow

~ lim lim [%(P[Z,, < -x] - P[Z, > x]) dx
0

~ lim ["(P[Z,, < -z] - P[Z,, > x])dx = — lim EZ, .
0

n—o n—x

This concludes the proof of the first assertion of the lemma. O
The asymptotic behavior of B, is now derived as follows.

LeEMmMmA 2.6.
B, = o((np,) %) + npB(1 + o(1)).

Proor. Using the notation of Lemma 2.4, by (2.14) and (2.17) we have

(224) B, =o((np,) ") + (np,) ' L P|&> F X(p,) = My, | - 0.
i=1
By independence a? Lemma 2.5, uniformly ini = 1,...,n,
Plé > FiX(p,) 2 My, |
(2.25) = 0E(F(F, {(p,))) + nE(FP*Y(F, Xp,)))(1 +o(1))
= 0p,(1 + o((np,) %)) + mpE (L + o(1)).

The result follows from (2.24) and (2.25). O

Combining the conclusions of Lemmas 2.3 and 2.6, we have

(2.26) 6,(F,'(p,)) — 6 =npE(1+0(1)) + (np,) *Z,(1 + o(1)),

where the limiting distribution of Z, is normal(0, #). Thus one can loosely
write

o 6
. _ .2 28
MSE(6,(F, '(p,))) = n*p2* + np,

Thus the p, which minimizes this expression is
(2.27) Pu.o = Aon (1/@B+D]

where
) g \l/@B+D
0o 23"72 *
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It is clear that
A = (7]
B 0) - 0) -+ normal na, 1|

0

The goal now is to find preliminary estimates of 6, 8 and 7, from which p,, ,
can be estimated.
For p, = n7?, it follows from (2.26) that

6 + Op(n~A=-2/2), if
(2.28) é‘n(pn—1(n—a)) _

<8<
28 +1 8 <1,

+ nn=% i <
0 + nn=%(1 + 0p(1)), if0<3 58 + 1

To estimate a, B and y, we consider a method inspired by Hall and Welsh
(1985). Suppose we can pick two positive constants B; and B, such that
B1 < B < B,. While the method will be particularly effective if the bounds are

chosen accurately, we do not assess the precise effect of the choice of the
bounds. Next choose 8, §, and 8, such that

1-6
(2.29) 231+1<5<1 and 0 <4, <8, < 28,
Define
0 =6,(F; (n7?)),
STl sy 4
log <€"(€" (n )) 0‘> A nPBA®2=8D | \/ p B82~81)
(2.30) {0(F, (70 — 6)

log(n®2 %) ’
M= n’g‘sl[é\n(ﬁ,fl(n'al)) - é].

LemmMmA 2.7.  Under the assumptions stated previously, as n — o,

fio,m,  6-,0, B=pB+op(1/logn).
Proor. Now (2.29) implies that
1-6 1 1 1
< < < <
28, 2B, +1 28+1 2B, +1

5,

where the leftmost inequality is equivalent to § > 1/(28, + 1). Consequently,
it follows from (2.29) that

(2.31) 0<8,<8,< <8<1

28 + 1
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and
(2.32) B, < Bd, < —
By (2.31) and (2.28),
6,(FH(n™%)) = 6 + mn"28(1 + 0p(1)),
(2.33) 0,(F,Y(n=%)) = 0 + nn=%8(1 + 0p(1)),

6 =0+ 0p(n-1A-272]
It is clear that § —, 6. By (2.32) and (2.33),
6u(F N (n™2)) - 6
0,(F Y (n™%)) +6
Since B; < B < By,

= nP272)(1 + 0,(1)).

- 1
(2.34) B=B+0P(logn).

Similarly,
0,(F, Y (n=2)) — § = qn=P%(1 + 0p(1)).
Therefore, by (2.34), 7 —, 0. This completes the proof. O

We now summarize the preceding derivation in the following result.

THEOREM 2.8. Suppose that {¢;} is m-dependent, (2.1) holds with R(p) ~
np#? for some r>2, n+#0 and B > 0. Then the asymptotic mean squared
error of 6,(F; (p,)) is minimized with

0 1/(28+1)
2B1%n )
Furthermore, for 6, 7 and B defined by (2.30), and writing

~ 1/(28+1)
. é /2B
pn,O = ~ ’

2B9%n

pn =pn,0 = (

we have

A

pn,O
pn,O

—>p1 asn — o,

Under the conditions of the preceding theorem, 6 can be estimated by the
adaptive estimate 6, (F (p Dn o). Now that we have a good estimate of 6, a
marginal improvement can be made by applying again the preceding proce-
dure, with § replaced by 6, (F,(p Pn.o)-
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3. Approximating the distribution of the maximum. Let {¢;} be
stationary and have a nonzero extremal index 6. The main result of this
section, Theorem 3.1, shows that the distribution of M, is determined by the
dependence structure of {¢,} through 6 if n is large. For convenience, we work
under the following mixing condition. For ¢ > 0 and 1 <! < n — 1, define

a,(l;c) = Sup{llej+l+1,j+l+k <xIMy ;> x] - P[Mk,sx]l:
J k> 1,j+l+k5n,xzﬁ‘1(c/n)>.

We assume in this section that, for each ¢ > 0,

(3.1) a(l;c) = limsupa,(l;c) >0 asl - «.

n—oow

Note that this implies that for each ¢ > 0, there exists a sequence {/,} such
that

(3.2) l,/n >0 and «a,(l,;c) >0 asn — «.
Observe that
P[Mj+l+1,j+l+k <xlM, ; < x] - P[M, <x]
_P[M,,;> ]

= P[—Ml—~<—x](P[Mk <x] _P[Mj+l+1,j+l+k <x|M ;> x]),
»J —

where

liminf inf  inf P[M, ; <x] > liminfP[M, , < F'(c/n)]

n—owo x>F Yc/n) l<j<n
=e %> 0.
Thus (3.1) and (3.2) hold with «, replaced by &, defined by
a,(l;c) = Sup<|P[Mj+l+1,j+l+k <zlM, ;< x]
—P[M,<x]|:j,k=1,j+l+k<n,x=FYc/n)}.

Thus (3.1) implies O’Brien’s AIM(F~(¢/n)) [cf. O’Brien (1987)] and it follows
readily from O’Brien (1987), Theorem 2.1, that

lim limsup|P[M, ,, < F~*(c/n)l¢, > FY(c/n)] — 6| =0,

m-o 5 50

which implies that
(3.3) lim limsup|P[M, ,, <xlé& >x] —6]=0.

— 00 x_)xo

The main result of this section is the following.
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THEOREM 3.1. Under the mixing condition (3.1),
P[M, > x] ‘

limsup m—‘)“—l =0,

n—® gl x

where 0/0 is interpreted as 1.

Proor. First fix m €{1,2,...} and 0 < ¢, < ¢; < ». By (3.2) we can pick
r,, such that

34) r,/n—0, l,/r, = 0, k,a,(l,;c;) >0 asn —> o,
where ., = [n/r,]. Write

k
M, = max(fj:j ef{l,...,k,r,} — Lj {ir, = 1,,...,ir,}|.
i=1
By the triangle inequality,
P[M, > x] |P[M,>x]-P[M,>x]|
1-F(x) ll = 1- F(x)
. |P[M, >x] -1+ P"[M, , <x
1-F(x)
|Prl M, < 3] - F(x)
- 1- Fo(x)
= A,(x) + B,(x) + Cy(x).
Making use of Lemmas 3.2 through 3.5 (which follows), we get

; P[M, > ¢]
imsup sup | ——;7— —
now allx|l— Fon(x)
, P[M, > x] ’
< limsup  sup —— o
n—o  x<F ¢, /n) 1-F n(x)
) P(M, > x] ‘
+limsup  sup —
n—ow  x>FYe /n) 1- F0n(x)
. P[M, >x] :
< limsup  sup ——— — 1|+ limsup sup A,(x)
noo  x<FYe,/n) 1-F ('x) now x> F e /n)
+ lim sup sup B,(x) + limsup sup B,(x)
n—=0 Fle, /n)<x<F Yco/n) n—o  x>F Yeo/n)

+limsup sup C,(x)
n—o x>F—-l(cl/n)
2" cs C1
= 1 — e fa + 1 — e b + l_e—ocls(m’cl)’
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where e(m,c;) > 0 as m — . Thus the result follows from first letting
m — o, and then ¢, > 0 and ¢; - «. O

We remark that it is also possible to assess the rate of convergence of the
convergence statement in subsection 3.1, if additional information on the
dependence structure is given. See Hsing (1990).

In the following we will apply the simple but useful facts that

1 1

3.5 < =

( ) 1-— FOn(x) 1-— e—GnF(x)

and

(3.6) PR > 0, is increasing in v for a > 1.

—e
LEmMmA 3.2.
’ P[M, > x] 1 2e~ %
imsup  sup —r o | /.
n—ow  x<F e /n) 1-F° (x) 1-efa

Proor. Straightforward arguments show
P[M, > x]
1-F(x)

P[M, < x] F"(x)
( 1_Fo(x) | 1-F(x) )

limsup  sup
n—ow  x<F ¢ /n)

< lim sup sup
n—oo  x<FYey/n)

; P[M, <FNeym)] =~ F"(F Y(cy/n))
= 11:1_)s::p 1—-F"(F '(c,/n)) 1-F"(F(c,/n))
2e 1

IA
O

1 _ e—0c1 *

LemMA 3.3.
lim sup A, (x)=0.

2% x>FYey/n))

Proor. By Boole’s inequality,
(kol, + 1) F(x)
1- F(x)

A (x) <

Thus, by (3.5), (3.6) and (3.4),
kyl, +r, ¢y
sup A,(x) < =5 20 asn o a
x>F ey /n) n l1-e
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LEMMA 3.4.
lim sup B,(x)=0
72 Fle, /n)<x<F~Yco/n)
and
2
. Co
limsup sup B,(x) < T

n—o®©  xsF-lco/n)

Proor. It suffices to show that, for x > F~(c,/n),

n n(ln7cl) n2F2(x) knnﬁ(x)an(ln;cl)
BD Bul®) < T poy M ToFo) 2(1 — Fo*(x))

This is so since the first bound of (3.7) together with (3.5) and (3.4) implies
that

_ e—OCo
F‘l(cl/n)<xsF‘1(c0/n)

and the second bound of (3.7) plus (3.5), (3.6) and (3.4) imply that

sup B (x) < Cg + COknan(ln;cl) N Cg as n — o
n = —6 —0 _ ,—6 *
2> F-leg /m) 1—e % = 2(1—e %) ~1-e %

The first term on the right of (3.7) comes from repeatedly applying

k, k,
V M; 1yrv1,ir,—1, <% _P[M1,r,,—l,, Sx]P \% M 1y i1,ir,-1, Sx}
=j i=j+1

<a,(l,;cy), 1<j<k,,

and the triangle inequality. A different argument is needed to derive the
second term on the right of (3.7). By the triangle inequality, we get

|P[M, >x] -1+ P*[M, , <z
<|P[M, > x| - k,P[M, _, >x]|
#[aP[M, 1, > ] = (1= PH[M,,_,, < ])].
By Bonferroni’s inequality and Boole’s inequality,

0<k,P[M,_, >x] - (1-P*"[M,_, <x])

k. (k 1 - 1)(r, -1
Blha 1) gty g < ke =D S
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By the same token plus the assumed mixing condition,
0<k,P[M, , >x]|-P[M,>x]

< TP[M,R_,R >x|(P[M, _,, >zx] +a,(l,;c))

R F(x)an(Lysey).

(kb — D(rm — 1s)
2

Inequality (3.7) follows from this. O

LEMMa 3.5.

. C1
limsup sup Co(x) < ——=-&(m,cy),
n-w  x>F Ye./n) 1-e

where e(m,c;) = 0 as m — « for fixed 0 < c; < .

Proor. By Bonferroni’s inequality, there exists a constant B > 0 such
that

(3.8) 1 - Fo/kn(x) — r,0F(x) < Br2F%(x),

for all x > F~(c,/n). Next write

rn_ln
P[M,_, >x| -r,0F(x)= ¥ P[&>x2Myy, ;] — r.0F(x)
i=1
rn_ln _
= Z P[gl >x =z M2,rn—ln—i+l] - rnOF(x)7
i=1
which can be seen to equal
rn — rn
ZP[§1>xZM2,m]_rn0F(x) - Z P[‘fl>xZM2,m]
i=1 i=r,—l,—m+2
r,—l,-m+1
- Pl¢g,>x=>M, ., M, .1, _; _i11>%
(3.9) igl [¢1 2, 1 rply—it1 > X]
rn_ln

+ )y Plé,>x=My, ;i

i=r,—l,-m+2

= Cn,m,l(x) + Cn,m,Z(x) + Cn,m,3(x) + Cn,m,4(x)'
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Now using the elementary inequality,
kol P[M,,; < x] = F/*(x)|

Cn(x) = 1-— FOn(x)
k,|P[M, _,>x]| = r,0F(x)| |1—F"/*(x) - r,6F(x)]
< 1-F™(x) * 1-F(x) ’

it follows from (3.8) and (3.9) that
BrnZFZ(x) + Z;'1=1|Cn,m,i(x)|

C.(x) <k, 1= Fo(x)

Clearly, by Boole’s inequality,

BriF?(x) +|C, o) +]C, 1, o(%)|
1 - Fo(x)

limsup sup %,
n—oo  x>F-Ye /n)

Br2F%*(x) + (I, + 2m — 2)F(x)
1-F(x) ’

< limsup sup &,
noo  x>F Yey/n)

and, by (3.5), (3.6) and (3.4), is bounded by
Brze?/n® + (1, + 2m — 2)c,/n

limsup sup %, —ry =
n—oo x> F-Ye,/n) 1-e

Write

knlcn,m,l(x)l

81( m, cl) = lim sup sup —].TW(_DC-_)— ,

n->%  xsF-c,/n)
which, by (3.3), (3.5) and (3.6), is bounded by

knrncl/n
1-—e %

sup |P[M, ,, <=xl& >x] — 0]
x>F e /n)

lim sup

n—o
€1 .
= WhmsuﬂP[Mz,m <zxl¢g >x] — 9.

1 x> %o
Finally, define

knlcn,m,3(x)|

eg(m,cy) = limsup  sup 1= For(x)

n—-w  x>F e, /n)
which is bounded by
kyro P& > %, My, > x|
1-F(x)

limsup sup
noo  x>F-c,/n)
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Thus, by the assumed mixing condition, (3.5) and (3.6),

k,ryci/n(r,c/n + a,(m;ey)) ¢y
eg(m,c;) < limsup 1 - o 0 =1z e_oClan(m;cl).
n—ooo

It is easy to see that

g(m’cl) = el(m’cl) + 83(ma cl)

(limsup|P[M2,m <zxléE >x] —0|+ an(m;cl)),
x—xg

31
< —
- 1 _ e—0c1

which approaches 0 as m — « by (3.1) and (3.3). This concludes the proof. O

4. The extremal index of an m-dependent sequence. Assume in this
section that {¢;} is an m-dependent stationary sequence of random variables
for some ﬁnlte m. This section is devoted to finding the asymptotic relation-
ship between F(x) and P[M, > x] and between F(x) and P[M, , < x|¢ > x].
The following results are useful in a number of ways. First, they provide a
better understanding of how the extremal index relates to local dependence
and explain the sources of the approximation errors in (1.2), (1.3) and (2.1).
More importantly, they are useful in suggesting alternative ways of modeling
dependence in the context of estimating the extremal index.

We could derive the results in this section in a more general setting of
dependence. But the amount of extra work outweighs what would be gained by
doing so.

For convenience, define

ak(x)=ZP[ N (&>,

1<j<k

ﬁk<x)=z<ik—1>P[ n (gi,>x)},

1<j<k

where the summations are taken over the set

{Grooosip)il=i < 0 <ip<m}).
Define
m 1)k,
6(x) = Xiq( I;) (%) :
(x)
(4.1)
mo 1\ k
(ay - DD B

F(x)
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THEOREM 4.1. Suppose r =, and x = x,, are such that r - © and rF(x)
— 0 asn — . Then

P(M, > x) 0'(x) B rF(x)

(4.2) —Fe 6(x) + — 5 8(x)” + o(rF(x)).
Proor. First write
(43) PIM,> 2] = £ (-1)*"p(x),
where
P = BTG

For % < r define

B,,={itl<i;< - <iyp<r},

By, ={i€B,,:0<i,—i;<m-1},

B, = {i € B, ,: there exists j suchthat 0 <i, —i; <m — 1,

0<i; y—iy<m-—1landi; —i;,_; >m},

B® ={ieB,, m<i,—i <3m— 3},

B, = {i € B, ,: there exists j such that i, —i; >m and i; — i; > m}.
If k> r, B, , and B{), denote null sets. Note that

(B§;f>,)° ={ieB, ,:foreach j, (i; —i)) A (i, —i,) <m — 1}.
Thus
BY, - (B®,)" n (B U B

Consequently, B,, , = U%_,B{/), and hence

pr(x) = ) P[ N (& >x)

B UBP UBP UBY, | 1</<k

Here and hereafter, we use the convention that any summation over the null
set is 0. It is easy to conclude from m-dependence that

Y p[ N (& >x)

icBP, |1<j<k

< (3mk_ 3)er(x) = o(r?*F?*(x))

> Pl N (&,>x) s(g)ﬁ3(x)=o(rzﬁz(x)).

ieBf®, |1sj<k
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Thus

+o(r’F*(x)), 1<k=<m,

Y p[n(%>@

B UBP, 1<j<k

P =V TP N (&,>x)

B, l<j<k
o(r’F?*(x)), k>2m + 1.
It follows from (4.3) that

PML>H=}§(—U”1ZP[rW(Q>x)

Bil,)r 1<j<k

+o(r’F?(x)), m+1<k<2m,

(4.4) o
+E}ﬂV“ZP[ﬂ(Q>ﬂ-MUWu»

B, 1<j<k

Observe that

Y P n(@>@]

B, 1<j<k

= Y (r—ik+1)+P[ n (&,> =)

1=i;<: <ip<m 1<j<k

(4.5)

)

where (-),= -V 0, and

ZP[ N (&>x)

B;;Z,)r l<j<k
= X )y I(r—i,—j,2m)
(4.6)  s+t=k 1=ij< - <i,=m
sizm 1o Sl
r_is_jt
XP[(](Q>x4P[r](Q>x) Y (r—i,—j,—u+1).
l<i<s l<ix<t u=m

Notice that up to this point we have not made use of the fact that » —» «, and
the arguments will also be applicable in the proof of Lemma 4.2. However, we
assume that r — o from this point on. For large r, it follows from (4.5) that

(4.7) ZP[O(Q>0

3521_), 1<j<k
and from (4.6) that

ZP[O(Q>Q

=ra,(x) — Bu(x), 1<k <m,

2

ST aman) +o(rF@),

(4.8) B, l1sisk Plicm
1<t<m

l1<k<2m.
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By (4.4), (4.7) and (4.8),
P[M,>x]=r ¥ (-1)"ay(x) + ¥ (-1)*Bu(x)
k=1 k=1

2

r m 2 =
-5 E (D)  ay(x)]| +o(r?F3(x)).
k=1
This concludes the proof. O
Comparing (4.2) with Leadbetter’s result (1.2), it is readily seen that the

extremal index of {¢;} exists and is equal to 6 if and only if 6(x) converges to 9
as x — x,. In this case,

(4.9) —P”;( >)x] — 0= (0(x) - 6) + ol(rx) - rF(;)ez + o(rF(x)).

This motivates the following estimator which has a different form from 0 in
Section 2. For given constants x and r, define

T I(M(i) > x)
(g >x) 7

67,,(x, r)=

where

M(i) = max §; and k=[n/r].
(G—Dr+l<j<ir
Under fairly general conditions 6 (xn, r,) estimates 6 consistently [cf. Hsing
(1991a)]. Equation (4.9) is useful in suggesting models for the bias of this
estimator. Although we do not investigate this approach in the present paper,
we mention the following simple observation. It can be seen from the proof of
Theorem 4.1 that for any fixed r,

P[M, > x]
rF(x)

-0 asx —x,

despite the fact that the range of dependence of {¢;} is finite. Compare this
with (2.1), where r can be chosen fixed for a large class of processes whose
ranges of dependence may possibly be infinite. Thus both x and r in ,(x, r)
will always have to be chosen to ensure a good rate of convergence even if {¢;)
is m-dependent. This fact alone makes 0 more difficult to implement.

The following result is a refinement of (1.3) under m-dependence.

THEOREM 4.2. Suppose r = r, > m and x = x,, are such that rF(x) - 0 as
n — . Then

(4.10) P[M, , <xl& > x] = 0(x) + e(x) + o(r’F(x)),



EXTREMAL INDEX ESTIMATION 2067

where 0(x) is defined by (4.1), and

_ _1 2m
e(z) = (F(x)) XL (-1)*"" L
k=1 s+t=k 1=i; ~<{ssm
1585m Lo esm
xI(r—is—j,Zm)P[ (6,,>x)] [ N (&,>x)|.
1<l<s l<i<t
Along any infinite subsequence x = x,, for which r > 3m, &(x) = —F(x)§%(x).

Proor. By stationarity and (4.4),
P[¢,>x>M,,]=P[M,,>x]-P[M,, ,>x]

(4.11) _
=A + B +o(r’F?(x)),
where
Z( 1)k+1(ZP n (§i1>x) — ZP n (§i1>x))
k=1 B, 1<j<k 1 1<j<k
and

B= Z( 1)’““(21’ N (&>x)

B2, 1<j<k

- Y PN (fij>x)

B@. 1<j<k

|

= Y (r—iy+DP| N (& >x)
1=i;< - <ip<m 1<j<k
=ra;(x) — Bx(%),

for 1 <k <m if r>m, and the identity also holds for 1 <k <m — 1 if
r=m — 1. Thus, for r>m + 1,

(4.12) A= ki_z’.l(—l)k”ak(x),

By (4.7),

ZP n (gij>x)

Bil,)r l<j<k

and for r = m,

A=mE (~D " ay(x) + L (-1 Ba(x)
k=1 k=1
m-—1 m-—1
(4.13) -(m—-1) kgl(—l)’*“ak(x) - kgl(—nkﬁk(x)

S (-1 lay(x),
k=1
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since (m — Da,,(x) = B,,(x). By (4.6), whether r > m + 1 or r = m,

ZP[ N (&>%)]- X P[ N (&>x)

Biz)r 1<j<k Bf)r—l 1<j<k
= X Y I(r-i,—jizm)
(4'14) st+i=k 1=i;<- - <i,<m ° ‘
Isgzmimn< e <ism
x| N (6,>0)]F] N (>3]
1<i<s 1<i<t

and thus B = F(x)e(x), where e(x) is given by the statement of the lemma.
Hence (4.10) follows from (4.11) through (4.14). If » > 3m, then the indicator
in (4.14) is equal to 1, and it is easily seen that e(x) = —F(x)0%(x). This
completes the proof. O

By Theorem 4.2, if the extremal index 6 exists and r > 3m, then
P[M,, <xl¢ >x] — 0= (0(x) —0) — 6°F(x)(1 + o(F(x))).

The expression on the right, which is denoted by R(F(x)) in (2.1), can be
regarded as the sum of two components. The first component 8 — 6(x) de-
pends on the local dependence structure, whereas the (fixed) order of magni-
tude of the second component —F(x)0? merely reflects short-range depen-
dence. Thus the value of 8 in (2.13) is most likely to be less than or equal to 1.
But it is theoretically possible to have

(0(x) — 0) — 6°F(x) = o( F(x)),

however unlikely this may be. For instance, in Example A of Section 2, for.
fixed p and a = B, if 0,y are constrained by

(1 +p*(1 +p%)) =y(p* - 1),
then R(p) =o(p). When this occurs, the optimal rate of convergence of
0 (F; Yp,)) is faster than n~1/3,

APPENDIX

We now derive (2.2) in Example C of Section 2. Let G be the standard
Cauchy c.d.f,, and use the notation of Example C. By stationarity,

P&, > x > £,] = P[£, <x < §&,) = P[£, <x, pé, + Z, > x]

= [* G(x - p2) dF(2).

Let

1
A(x) =Ple > a2 6] - — dF ().

1
—w| X — p2 3(x — pz)3
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Also write

fx 1( 1 1
wT \X —pZ  3(x — pz)

3 ) dF(z)

- ; —w X — P2 wf_xx - pz 377[_00(35 —p2)3

= B(x) + C(x) + D(x).
By the expansion

1/1 1 1
(A1) G(u)——(;—m+5ﬁ—'~) as u — »,
we get ‘
A(x) + D(x) = O(F3(x)).

Letting y = z/x, by (A.1) and dominated convergence,

1-p -1 dy
B =~ | G ma s e
1-p .- y =o
S f—w T=ppy? 7P f py)y [CErnrai
Next write
C(x) = Cy(x) + Cy(x),

where

Cyx) = — / dF(z) = (1 — 2F(x))

= (1 - p)F(x) - 2(1 —p)F?(2)(1 + o(1))
and
x 2p2 x 22
Cy(x) = }‘Z et Ok mzxfo i ().

By Karamata’s theorem [cf. Feller (1971)],

ax 22
lim lim x/o pe dF(z) = 0.

al0x—ow

Thus

. x 22
Jim ) 727 AF()
. . x 22
lim lim xfaxm dF(Z)

al0x—ox

Y (1 —p)x*dy
lim hmf e CRENG]
al0y—e Py 11'[1+(1—p)xy]

- 7T(l—p)/o 1—p?y?’

= lim
awﬂ(l—p)f 1—py
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Thus
2p2 1 1 dy
Cal) ~ mx? w(1—p) j;) 1 - p2y?
- 9n2(1 _ 1 dy o
2% (1= p) [ T aa F(%)-
Summarizing,
Pl¢>x = &) =
L T T 0 1 —p 4+ cF(x)(1 + o(1)),
o p + cF(x)(1 + o(1))
where
-1 dy 1 dy
c=-2(1-p)+(1 _P)3f‘waT)y2 +2p%(1 —P)fo 150

This proves (2.2).
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