The Annals of Statistics
1993, Vol. 21, No. 4, 1926-1947

COMPARING NONPARAMETRIC VERSUS PARAMETRIC
REGRESSION FITS?

By W. HARDLE AND E. MAMMEN

Humboldt-Universitit zu Berlin

In general, there will be visible differences between a parametric and a
nonparametric curve estimate. It is therefore quite natural to compare
these in order to decide whether the parametric model could be justified.
An asymptotic quantification is the distribution of the integrated squared
difference between these curves. We show that the standard way of boot-
strapping this statistic fails. We use and analyse a different form of
bootstrapping for this task. We call this method the wild bootstrap and
apply it to fitting Engel curves in expenditure data analysis.

1. Motivation. The appropriateness of parametric modelling of regres-
sion data may be judged by comparison with a nonparametric smoothing
estimator. For this purpose one may use a squared deviation measure between
the two fits. The integrated squared deviation can be used as a test statistic for
testing the parametric model where the critical value is determined by the
asymptotic distribution of this statistic. The convergence to the asymptotic
normal distribution is quite slow so that it seems more appropriate not to use
the asymptotic critical values. A way of computing critical values could possi-
bly be based on resampling from the entire set of observations. It is shown
here that this method of bootstrapping fails. Instead we propose in this setting
a new variant of the bootstrap [due to Wu (1986)] which we call the wild
bootstrap. The classical bootstrap—to resample from the entire data—does not
work. The bootstrapped statistic has not the same limit behaviour. It will be
" shown that the wild bootstrap works. The fact that classic resampling does not
work here is theoretically appealing and can be understood via a Hoeffding
decomposition. Indeed the quadratic term of the proposed test statistic domi-
nates asymptotically the linear term.

It is surprising that although the nonparametric approach in modelling
regression relationships has received a lot of attention recently [see Collomb,
(1981)], there are only a few theoretical results on how to compare parametric
with nonparametric fits. In practical studies the importance of compar-
ing parametric with nonparametric curves has been pointed out in the analy-
sis of growth curves by Gasser, Kohler, Miiller, Lago, Molinari annd Prader
(1985). Another example stems from the analysis of the income distribution of
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British households (Family Expenditure Survey, 1968-1983). Hildenbrand
and Hildenbrand (1986) found that the widely used lognormal fit for the
income distribution was not able to model the seemingly bimodal distribution.

Theoretical results in this direction are offered by Yanagimoto and
Yanagimoto (1987), Cleveland and Devlin (1988), Neuhaus (1986, 1988), Cox,
Koh, Wahba and Yandell (1988), Azzalini, Bowman and Hardle (1989), Cox
and Koh (1989), Munson and Jernigan (1989), Eubank and Spiegelman (1990),
Hardle and Marron (1990), le Cessie and van Houwelingen (1991), Staniswalis
and Severini (1991). LaRiccia (1991) used the idea of comparing a parametric
model for the quantile function against a nonparametric alternative for testing
a composite goodness-of-fit null hypothesis. An asymptotic y?2 distribution was
derived.

In Section 2 we derive the asymptotic distribution of the squared deviation
between the parametric and the nonparametric fit. The asymptotic distribu-
tion could be estimated with the ‘“plug-in” method, although the involved
functionals seem to be rather complicated. Section 3 is devoted to the question
of how to bootstrap in this setting. Section 4 gives several simulations and an
application to Engel curve estimation. The proofs are given in Section 5.

2. How far is the nonparametric from the parametric model? We
consider the following model. Given are n iid. observations {(X;, Y,)}",
(X; € R?, Y; € R) with unknown regression function m(-) = E(Y|X, = -). We
write also Y; = m(X,) + ¢; with E(¢;|X;) = 0. We do not assume that the &,
are conditional i.i.d. as in Eubank and Spiegelman (1990) and Héardle and
Marron (1990). In particular, this contains the case of conditional het-
eroscedasticity. We are interested in the following testing problem. We wish to
test the parametric model {m,: 6 € B} against the nonparametric alternative
which only assumes that m(-) is “smooth.” A natural approach is to plot a
parametric regression estimator m; and a kernel estimator 1, with band-
width A = h, and kernel K [Nadaraya (1964); Watson (1964)]:

ﬁz () _ Z?=1Kh('_Xi)Yi
" TR - X))
K,(*) =h™K(- /h).

For simplification of notation the dependence of § and % on n will be dropped.

The question arises if visible differences between m; and 7, can be
explained by stochastic fluctuations or if they suggest to use nonparametric
instead of parametric methods. One way to proceed is to measure the distance
between m g and 7, and to use this distance as test statistic for testing the
parametric model. Here we study the L,-distance between the nonparametric
and parametric fits. The use of this distance is motivated by mathematical
convenience. Certainly from a more data analytic point of view distances would
be more satisfactory which reflect similarities in the shape of the regression
functions, but nevertheless we will restrict ourselves to the treatment of the
weighted L,-distance [(#1, — mg)*m where 7 is a weight function.
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Let %}, , denote the (random) smoothing operator
L K(r - X;)g(X,)
i-1Kn(r = X))

‘}Z/h,ng( .) =

Because of E(ih,(*)|X,,..., X,) = %), ,m(-) we consider the following modi-
fication of the squared deviation between 7, and m:

T, = nh®/2 [(fup(x) = K5 ;me(x)) () da.

In this definition 7%, is compared with the parametric “estimate” J%;, ,m; of
the conditional expectation of .
We propose to use T, as a test statistic to test the parametric hypothesis,

m € {m,: 6 € O}.

On the hypothesis, 7, is asymptotically equivalent to the sum of a constant
and a purely quadratic form (see the proof of Proposition 1). On the contrary,
the test statistic [(#, — m¢)®7 contains asymptotically also a linear term.
This linear term makes this test only sensitive against certain “smooth”
deviations from the hypothesis (see Proposition 2).

Alternative definitions of a test statistic are possible. The integral may be
replaced by a sum (e.g., over the design points). Furthermore the integrand
may be multiplied by a power of f,(-)=n"'Y?_ K,(-—X,). Under our
assumptions the asymptotic arguments for these modifications are applicable
but constants might have to be changed.

For an approximate calculation of critical values we determine the asymp-
totic distribution of T, for a parametric m = m, . Furthermore for a compari-
son of T, with other goodness-of-fit tests we calculate the asymptotic power of
T,, if m (possibly depending on 7) lies in the alternative: say m(x) = m (x) =
mgy(x) + ¢, A, (x) for certain sequences ¢, and A,. It is most appropriate to
choose c, such that the asymptotic power of T, is bounded away from 1 and
from the level. We will show that for instance for “regular” constant A (x) =
A(x) this will be the case for ¢, = n=1/2p~4/4,

3. Assumptions. We make the following assumptions on the stochastic
nature of the observations and the parametric estimator of the regression
function.

(A1). With probability 1 X; lies in a compact set (w.lo.g. [0,1]?). The
marginal density f(-) of X, is bounded away from zero.

(A2). m(-) and f(-) are twice continuously differentiable. 7 is continu-
ously differentiable.

(A3). A,(+)is bounded (uniformly in x and n) and ¢, = n=/2h~=%/4, This
contains the parametric case in particular because A, = 0 is possible.
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(A4). o%) = var(YJ|X, = x) is bounded away from 0 and from c.

(Ab). Eexp(te;) is uniformly bounded in i and n for |¢| small enough
[where ¢, = Y, — m(X,)].

Before stating our assumptions for the parametric model let us consider the
special case of a k-dimensional linear model,

mg(+) = 0,81(x) + -+ +0,8,(x) =(9, g()>

where g is a R*-valued function. With a smooth weight function w the
weighted least squares estimator 0 = 6 is defined by

6 = argmin ¥ w(X,)(Y, - my(X,))"
4 i=1

In the linear model 6 can easily be calculated:

b= ( > w(X»g(Xi)g(Xi)T) Y w(X,)g(X,)Y,.

i=1 i=1

Consider now a regression function m = m, which may lie in the hypotheses
or in the alternative. We want to write m as m(:) = m,(-) + c,A,(+) for
some 6, (which may also depend on n) and A,,. 6, and A, (- ) may be chosen as
follows:

= argminfw(x)(m(x) - m,,(x))2 dx,

A (1) = —(m( ) = me(0))-

With this choice of m, and A,, A, is orthogonal to {m,(x): § € ©} in the
following sense:

fw(x)f(x)An(x)gj(x) de=0, j=1,... k.

This implies that the expectation of 0 is approximately 6, as can be seen by
the following stochastic expansion of 9:

-1

* (fw(x) f(x)g(x)eg(x)" d'x)

1 n
{; ; w(X,)g(X,)e; +c fw(x)f(x)An(x)g(x)dx} +0 (

7

6o+ = 3 h(X)e, + 0, (22
= + — Ve. _r
0 ni=1 ( z)31+ p(‘/;)a
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where

-1
h() = [ fw() F(2)e(x)e () dx) w80,
If g, h are bounded functions, then especially this implies the following:

(P1). my(+) —me(+) = (1/n)Er., < g(+), X)) > ¢; + 0,(nlogn) /%)
(uniformly in x), where g and h are bounded functions takmg values in R*
for some k.

For the parametric model we will assume in this section only (P1). By
linearization it can be shown that (P1) holds also for weighted least squares
estimators § in nonlinear models if m(-) and w(-) are “smooth” and A, and
8, are chosen similarly with g;(-) = (9,36, dmg (+).

For the kernel K we make the followmg assumptions.

(K1). The kernel K is a symmetric, twice continuously differentiable
function with compact support, furthermore (K(u)du = 1.

(K2). The bandwidth A fulfills A = h, ~ n=1/@+9,

In particular (K2) is fulfilled for every choice of the bandwidth # which is
asymptotically optimal for the class of twice continuously differentiable regres-
sion functions. For simplicity of notation we do not consider bandwidths which
are asymptotically optimal for other smoothness classes.

4. The asymptotic behavior of T,,. In the following proposition we will
approximate the distribution of T, by a Gaussian distribution with mean
which converges to infinity (also for the null hypothesis). We will measure the
distance between these distributions by the following modification of the
Mallows distance

d(w,v) = }i{l:l{;(E”X— YIPAL: 2(X)=p, £(Y) = v).
Convergence in this metric is equivalent to weak convergence.
ProrosiTioN 1. Assume (A1)-(A5), (P1), (K1) and (K2). Then
d(_/(Tn), N(bh + j(fz/hAn)zw,V)) -0,

where
by = h=4/2K®(0) [ %:)(x) dx

o*(x)o?(y)m(x)m(y)

_ opd
V= 2kt [ S

(KP(x - y))* dxdy.
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%, denotes the following smoothing operator:

#,8() = [Ku(-— t)g(2) dt.

K denotes the j-times convolution product of K,. If o*(-) is continuous, V
can be chosen as

o?(x)] " (2)*

F2(x) dx.

V=2K®(0) [ [

Because of the slow order of convergence, we do not recommend using
Proposition 1 for the approximate calculation of critical values (see also the
simulations in Section 6). We will use Proposition 1 to study consistency of
different bootstrap procedures in the next section. The proposition gives also a
rough impression on the power of T, . It shows that for d = 1 the power of the
goodness of fit test based on T, is asymptotically constant on regions of
the form {m, + n~%2°A: [(#),A)’w = const.}. This can be compared with the
behavior of other goodness of fit tests. The accuracy of the parametric model
may also be checked by testing against a higher dimensional parametric model
or by test statistics which are asymptotically of Cramér—von Mises type or of
Kolmogorov—Smirnov type. These tests have nontrivial power on points con-
tiguous to the parametric model (i.e., m = m, + n~'/?A) but they are of more
parametric nature—in the sense that they look into certain one-dimensional
directions [Durbin and Knott (1972) and Milbrodt and Strasser (1990)]. The
nonparametric behaviour of T, (nearly the same power for all deviations of
fixed weighted L,-norm) must be paid by the larger distance (n~°/%° instead of
n~1/2) which can be detected by the test.

We expect that the proposition holds true also for data adapted bandwidth A
as long as A/h —, 1 but we do not investigate this further. In a related
context (two-sample tests based on kernel density estimates) this has been
shown by tightness arguments; see Chapter 3 of Mammen (1992).

Tests based on the statistic [(#, — m;)>7m behave quite differently. This
can be seen from Proposition 2. This test is an asymptotic linear test. It is
sensitive to deviations from the hypothesis in one direction of order n~1/2.

ProrosITION 2. Suppose (Al), (A2), (A4), (A5), (P1), (K1), (K2) and
(A3) A,(-) is bounded (uniformly in x and n) and c,, = n~ /2.

Furthermore, suppose that o*(+) is continuous and for simplicity, that the
dimension d is 1. Then

d(./(nhl/zf(ﬁzh - m;,)zw),

N(b’h + n1/2h % [p(x) A (x)m(x) dx,V’)) -0,
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where
2f'(x)
f(x)

cx = fuzK(u)du,

p(x) =m'(x) + m'(x),

b, = b, + 2cZnh®? [pz(x)w(x) dx,

V' =V+ c,z(nhsf[p(x)w(x)

—h(x) f(x) [p(2)g(u)m() du| o*(x) f}(x) dx.

5. How to bootstrap. The proof of Proposition 1 is based on a stochastic
expansion with error terms of order n~!/!°, Therefore the theorem can only
give a rough idea of the stochastic behaviour of T, if the sample is small. In
the simulations given in the next section we will see that the normal approxi-
mation does not work very well for moderate sample sizes. We will study in
this section bootstrap methods as an alternative to asymptotics. We consider
three different possibilities of bootstrapping:

1. the naive resampling method;
2. the adjusted residual bootstrap;
3. the wild bootstrap.

We show that only the third type of bootstrap will work. The naive
bootstrap consists of simple resampling from the original observations. That is
the bootstrap sample {(X}*, Y;*)}_; is drawn (with replacement) out of the set
{(X,, Y)¥",. Then create T* " like T, by the squared deviation between the
parametric fit m .« and the nonparametric fit /7% (both computed from the
bootstrap sample {(X*, Y;*)}",),

TN = ph?/2 [(#5(x) = K4 ampe(x)) (%) dx.

The conditional distribution Z*(T*"N) = _Z(T*"|{(X,, Y;)}.,)) can be
approximated by Monte Carlo simulations. From this Monte Carlo approxima-
tion define the (1 — a) quantile ¥ and reject the parametric hypothesis if
T, > tN. We call this the naive bootstrap because this resampling does not
correctly reflect the stochastic structure of our model as we will see below.
The bootstrap estimate should suffice two conditions. If m lies in the
parametric model, Z*(T*) should consistently estimate the distribution of
T,. On the alternative .#*(T'*) should approximate a distribution of 7', under
the null hypothesis. This is important for a good power performance. For the
second aim we consider the following modification. The bootstrap with ad-
justed residuals is defined by resampling from the observations {(X;,Y; —
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M (X)) + my( X)) ,. T** might now be created like T, by the squared
deviance between the parametric fit and the nonparametric fit. As above the
conditional distribution Z*(T**)=_Z(T**|{(X,, Y,)}’_,) can be approxi-
mated by Monte Carlo simulations. From #*(T*#) define the (1 — ) quan-
tile £4 and reject the parametric hypothesis if T, > 2. We call this the
adJusted residual bootstrap. In the following theorem we show that on the null
hypothesis both Z*(T**) and .#*(T* ") have variance larger than that of
Z(T,). This implies that naive bootstrap and adjusted residual bootstrap do
not work. Both procedures lead to very conservative tests.

THEOREM 1. Assume (A1)-(Ab), (K1), (K2) and A, = 0. (This implies
that m lies on the hypothesis, i.e., m =m, for a 6,.) Deﬁne 6* N and 64
but with the bootstrap data (X} Y*)}," 1 instead of (X,, Y )" ,. Assume for
6* = 6%V (or = 6**, resp.)

(PY)  mp() —my () =

S|~

L 1
i§1<g( ), h(X,))ef + Op(m)’

where & = Y* — m(X}*). Assume also that the variance function o*(*) is
continuous. Then the bootstrap estimates of the variance of T, converge as
follows:

var*(T* ") — 8var(T,) —, 0,

var*(T**) — var(T,)

_4f [o2(x)]*72(x)

0 dx [(K®(t) - KO(1)) dt >, 0.

As above it can easily be seen that (PY1) is fulfilled for weighted least squares
estimators  in linear models. Furthermore it can be shown that (P1) holds
for nonlinear models under standard regularity conditions. Theorem 1 shows
that the above proposed bootstrap procedures (also after a bias correction) are
inconsistent. At first sight this result seems to be surprising and against the
intuition of the bootstrap. The deeper reason lies in the fact that under the
bootstrap distribution the regression function is not the conditional expecta-
tion of the observation. Under our assumptions we get almost surely
E*(Y*|X}) = Y;*, which is typically different from my(X;). Here E* denotes
the conditional expectation E(- [{(X;, Y))}_;). Wu (1986) has pointed out
inconsistency for bootstrap estimates of the least-squares estimator in linear
models for nonconstant conditional variance function. In our case the boot-
strap will also break down, even for homoscedastic errors. As an alternative we
recommend the wild bootstrap which is related to proposals of Wu (1986) [see
also Beran (1986), Liu (1988) and Mammen (1993)].
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This approach does not mimic the i.i.d. structure of (X,,Y;). It is rather
constructed so that

E*(YIX}) = my( X7).
For this purpose define
& =Y, —mu(X,).

Since we are going to use this single residual é; to estimate the conditional
distribution _Z(Y; — m(X,))IX,) by an F, we are calhng it the wild bootstrap.
More precisely define an arbitrary dlstrlbutlon F, such that

EpZ =0,
EptZ2 = (éi)2’
EF,Z3 = (5i)3-

We use a two-point distribution which is uniquely determined by these re-
quirements. For other constructlons see Liu (1988).

Now construct independent £* ~ F, and use (X,, Y;* = my(X,) + ¢*) as
bootstrap observations. Then create T* W like T, by the squared deviation
between the parametric fit and the nonparametrlc fit. From the Monte Carlo
approximation of _#*(T* ") construct the (1 — &) quantile 7 and reject the
parametric hypothesis if T, > 7. In the following theorem we show that this
procedure works. On the null hypothesis it estimates consistently the distribu-
tion of T,. On the alternative the wild bootstrap estimate converges to a
distribution under the null hypothesis. Note that the wild bootstrap mimics
correctly the conditional expectation E*(Y;*) = my(X,).

THEOREM 2. Assume (A1)-(AD), (P1), (K1) and (K2). Furthermore sup-
pose for the parametric estimator 6* (based on the bootstrap sample)

1n 1
(PT)  miyp() —my(7) = — gl(g(x),h(Xi))e?‘ + Op(—‘/=-)-

nlogn
Then
d(£*(T*"%),N(b,,V)) -

where b, and V are defined in Theorem 1.

Like (P1) condition (P1") is also fulfilled under standard regularity condi-
tions. Note that the proposed wild bootstrap procedure requires rather weak
assumptions on the conditional distributions of the errors. If one had prior
information on the error structure, one could modify the resampling scheme.
One such prior information is smoothness of the variance function o%(x). In
this case we propose to define the variance of F, as 62(X,), where 62(-) is a
nonparametric estimator of o2(-), see Carroll (1982). For another bootstrap
procedure where the conditional error distributions vary smoothly with x, see
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Cao-Abad and Gonzales-Manteiga (1990). For the special case where the errors
are conditionally i.i.d. one could bootstrap from the entire set of (scaled)
residuals. We expect that these schemes would work better under the addi-
tional model assumptions.

6. Simulations and applications. We have checked the validity of our
asymptotic results in a Monte Carlo experiment. In a first simulation we
generated {X;}* ,, n = 100, uniformly in [0,1] and Y, = m(X,) +¢; with
g; ~ N(0,0?), o = 0.1, independent of X,. The regression function has been
put m(x) = 0. For construction of the smooth kernel we have used the quartic
kernel

K(u) =31 - u®)’I(lul < 1).

The integral of the test statistic 7, has been numerically approximated. The
bootstrap resampling was performed B = 100 times for each sample, that is,
the Monte Carlo approximation to Z*(T*") has been performed by B
repetitions of the Wild Bootstrap algorithm. In order to study the distribution
of T, the whole sampling mechanism procedure was carried out M = 1000
times.

0.08 0.10

3 —_

Fic. 1. Monte Carlo density of T,, bootstrap density estimate and normal density. The thin line
1 is the Monte Carlo density of T,; line 2 is the kernel density of T,f from ONE bootstrap sample.
Line 3 is the normal density with asymptotic mean and variance, given in Proposition 1; line 4 is
the normal density approximation with estimated mean and variance. The parametric model
consists of constant functions.
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0.00 0.02 0.04 0.06 0.08 0.10

3 —

Fic. 2. Monte Carlo density of T,,, bootstrap density estimate and normal density. The thin line
1 is the Monte Carlo density of T,; line 2 is the kernel density of T} from ONE bootstrap sample.
Line 3 is the normal density with asymptotic mean and variance, given in Proposition 1; line 4 is
the normal density approximation with estimated mean and variance. The parametric model
consists of linear functions.

At first we consider the parametric model of polynomials of degree £,
k =0,1,2,3. The true regression curve m(-) is in this model class for each k.
For the kernel estimator the bandwidth 2 = 0.2 has been chosen. In Figures
1-4 we present four curves for each k.

The thin line 1 denotes the Monte Carlo kernel estimate of the density of T,
from the M runs. The medium thin line 2 is the kernel density of one
bootstrap sample out of the M runs (taken at random). The thick line 3
corresponds to the normal theory density as given in Proposition 1 based on
the true b, and V. The dashed line 4 finally shows the normal theory density
based on estimated &, and V. The quantities b, and V have been estimated by
the so-called ““plug-in”’ method, that is, consistent estimators f,(+) and ¢2(-)
(also based on the kernel technique) have been used. The stability (under
variation of the smoothing parameter) of these estimators was satisfactory and
did not affect Figures 1-4.

In all four cases the wild bootstrap estimates the distribution of the T,
distance quite well. The normal approximation with estimated b, and V is
totally misleading. The normal densities have considerable mass on the nega-
tive axis. The inaccuracy of the normal approximations increases with the
dimension of the parametric model. To study the power of our bootstrap test
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Fic. 3. Monte Carlo density of T, bootstrap density estimate and normal density. The thin line
1 is the Monte Carlo density of T,; line 2 is the kernel density of T} from ONE bootstrap sample.
Line 3 is the normal density with asymptotic mean and variance, given in Proposition 1; line 4 is
the normal density approximation with estimated mean and variance. The parametric model
consists of quadratic polynomials.

we have chosen the parametric model,
mg(x) =0, + 0,x + %2
and for different ¢ the regression function
m(x) =2x —x>+c(x—3)(x - 3)(x - 3).

Monte Carlo estimates of the power are summarized in Table 1 for different ¢
and different bandwidth A.

The bandwidth has an influence on the level. We have on purpose selected a
range of bandwidth wider than the fluctuation of crossvalidated bandwidth
which was on average 0.23. For bandwidths around this value the level was
held at 0.05; the more extreme smoothing parameters led to an under- and
over-estimation of the level respectively.

In case of using a data adaptative bandwidth A the randomness of A might
also affect the level. To capture this in the bootstrap resampling one could also
use a data adaptive bandwidth A*, based on the bootstrap sample, in every
bootstrap loop. For a discussion of this procedure in a related context see
Chapter 3 in Mammen (1992). In our simulations the bandwidth 4 is fixed and
nonrandom.
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0.00 0.01 0.02 0.03 0.04 0.05 0.06

X
2 —_3 —y

c —

Fic. 4. Monte Carlo density of T,,, bootstrap density estimate and normal density. The thin line
1 is the Monte Carlo density of T,,; line 2 is the kernel density of T;¥ from ONE bootstrap sample.
Line 3 is the normal density with asymptotic mean and variance, given in Proposition 1; line 4 is
the normal density approximation with estimated mean and variance. The parametric model
consists of cubic polynomials.

Figure 5 shows a linear fit and a working fit and a nonparametric smoothing
estimate for the Engel curve for food as a function of total expenditure. The
Engel curve is the mean expenditure curve for a certain good. Theoretical
economists and econometricians are interested in the form of this regression
curve since this form has consequences on theoretical and social questions, see
Engel (1895). For the particularly chosen parametric form we refer to Leser
(1963). The data came from the Family Expenditure Survey (1968-1983). The
data used for this figure was from 1969; the X and the Y data have been
rescaled by the mean of X. The quartic kernel has been used with a bandwidth
of h = 0.2. The bootstrap test rejected the linear regression model for all

TABLE 1
Monte Carlo estimates of the power for the regression function m(x) = 2x — x2 +
c(x — 1/4)x — 1/2)x — 3/4). The level has been chosen to be 0.05

h,c 0.0 0.5 1.0 2.0

0.10 0.105 0.157 0.325 0.784
0.20 0.054 0.120 0.252 0.795
0.25 0.053 0.099 0.263 0.765

0.30 0.039 0.078 0.225 0.714
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3

Fic. 5. Working, linear and kernel smoother fit for a food expenditure Engel curve. The linear fit
has label 1, the Working curve has label 2 and the nonparametric kernel smoother has label 3.

considered bandwidths for both variables. For food the Working curve has
been rejected only for some small bandwidths. This is of course due to the fact
of an inflated value of the statistic T),. The crossvalidated bandwidth for this
data set lies at h = 0.2. For a picture of the crossvalidation function see
Hardle [(1990), Section 5]. A summary of the bootstrap estimates of the
observed critical values is given in Table 2.

TABLE 2
Observed critical values for two parametric fits for the Family Expenditure data set.
The number of bootstrap simulations is 100

Working Working Linear Linear

h Fuel Food Fuel Food
0.05 0.0 0.0 0.0 0.0
0.10 0.0 0.0 0.0 0.0
0.15 0.02 0.08 0.0 0.0
0.20 0.05 0.38 0.0 0.0
0.25 0.08 0.57 0.0 0.0
0.30 0.06 0.62 0.0 0.0
0.35 0.05 0.55 0.0 0.0
0.40 0.06 0.55 0.0 0.0
0.45 0.07 0.54 0.0 0.0

0.50 0.08 0.51 0.0 0.0
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7. Proofs. W.lo.g. we will give the proofs only for d = 1 and =(x) = 1.

Proor oF ProprosITION 1. First note that
o 1
(7.1) fu(x) = ;l_i
=f(x) + 0,(n %% logn)  (uniformlyin x),
[see Collomb and Hérdle (1986)] and that
(72)  y(x) =m(x) +0,(n %% logn)  (uniformly in x),

[see Mack and Silverman (1982)] for d = 1. For d > 1 one shows for every
n > 0 that

() = m(x) + O,(n~2/@*D*")  (uniformly in x).

Ky(X; —x)
=1

This can be proved as in Hardle [(1990), Section 4] calculating the moments of
my, [, using (A5) and the Lipschitz continuity of the kernel.
First we show for g > 0,

P(n_1 i K (X, —x)(Y, - m(X;)) > Cn_z/(“d)\/logn) =0(n"?)
n=1

for C large enough. This follows by the following simple application of the
Markov inequality. Choose k& > 2 + d /2. Then for a constant ¢ > 0 it holds
with A, = n2@*D-"L/log n K,(X, — %),

P(n‘1 f‘, Ku(X; —x)(Y; - m(X;)) = Cn=2/4*Dy/log n)

i=1
< {E’ exp([nz/(‘”"”\/log,rn][n_lKh(X1 - x)ei])}nexp(—C(log n))
<[1+E[A, P+ +E[A,][1 + exp(4,)]] n°
< [1+c(logn)/n + o((logn)/n)]"n=¢
<exp(clogn) + o(logn)n=¢

< nc—C+o(1) — O(n_q).

Similarly one can treat n 'Y?_ K,(X; — x)Xm(X,) = Y)), fi(x) - f(x) and
f(x) — f,(x). Now note that f,(x), f and 8/dx[n 'L}, K (X, — x)m(X,)] are
bounded by deterministic constants with polynomial growth and that with
(A5)

1=

sup {B/Bx[n‘l Y KX, —x)Y,|=0,(h %logn).
x =1
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Equations (7.1) and (7.2) give

T, = nih [ (#up(x) = Sy i) d

= i [ () = Hy () (fc(( ))) dx + 0,(1)
_ n\/ﬁfol ((1/n)LP_ Ku(X; - xf)z((";;Xz) +&; — my(X;))) dx + 0,(1).

Now apply (P1) and m(-) = m,(+) + n~/2h/“A, (-): Then one gets

Tn = n‘/ﬁfol(Un,l(x) + Un,2(x) + Un,3(x))2dx + Op(]‘)’

where
U, (x) = (1/n)Ei_ Ky(X; — x)n V27V (X)) ’
f(x)
_ (1/n)E7_ Ky(X; — x)e,
Un,2(x) - f(x) ’
—(1/n) L Ku(X; — x)(1/n)Z0_18(X;) "h(X))e,
Un,3(x) = f(x) :

By straightforward calculations one gets

En\/ﬁfolUf,S(x) dx — 0,

Enzh[f () U, J(x)dx]2—>0

forl1 <i<j<3.
This implies

T - n\/inOIUf,l(x) + U2,(x) dx + 0,(1)
= n,1+Tn T 3+0p(1)
where
T,,= n\/ﬁfl[Unz’l(x)] dx

N
Tz = Tfo Fi(x)

ﬁ 1. Ku(X; — 2) Ku(X; — x)g;8;
h /0 f2(x)

]-ZL IKh(X ) H

L
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We will show
1
(7.3) T, = fojz/hAn(x)zdx +0,(1),
(7.4) T, , = b, + 0,(1),
(7.5) Z(T,3) = N(0,V) (weakly).

But (7.3)-(7.5) entail the statement of Proposition 1. It remains to show
(7.3)-(7.5).

PrOOF OF (7.3). Arguing as above one sees that

_ Ku(X; - x)n~ V2RV (X))

1((1/n)E
T,,= n\/ﬁfo 72(x) dx
n _ . 2

_ fl ((1/n)zi=1K}i(2Xi x)An(Xz)) dx + op(l)
0 f3(x)

- fl,;gthn(x)zdx + 0,(1).
0

ProoF oF (7.4). First note
1KW( X, —x)°

ETn’z = EVEL —WUZ(.’C) dx

K _ 2

= bh + 0(1).
Because of var(T, ,|X;,. .., X,) = 0,(h~%n"1) = 0,(1) this implies (7.4).

Proor or (7.5). Put

1K (X; —x)Ky(X; — x) PR
W = ‘/i?nfo 72(x) J dxee;, ifi+#}j,

ijn

0, otherwise.

Tn,3 = ijn

iJ
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According to Theorem 2.1 in de Jong (1987) for (7.5) it suffices to prove

(7.6) var(T, ) > V,

(7.7) max i var(W,;,) [var(T, 3) = 0,
1<z<nj_1

(7.8) ET s/(var(T, 3)) - 3.

The proof of (7.6) is straightforward. Statement (7.7) follows from

1
var (W) = 0| =37
For the proof of (7.8) note that
ET,:‘3—122 E Uanln+82 EW, +482”k1EW Wi Wer Wi

zjn ijn' ' jkn

+1922 E UnW 2Wikn

= 3var(Tn’3) + 0(1),

(here ©” denotes summation over only all pairwise different indices) be-

cause of
4 1 1

EWIZnW23nW34nW41n
_/Kh(lh x))Kp(ug —x) Kp(ug —x3) - Kp(uy — x4)
F2(x1) - f2(xy)
Xf(uy) -+ f(uy)dey - degduy - duy - O(1)
B2
O(? th(lh —ug) Ky(uy —ug) Ky(ug —uy)

XKh(U4 - ul) du1 ce dU4

of s an-of ] (2

Z—) JEw(u)* KD (u) du
1

ol )

*
var( 3) —2ZE Un o

ElenW22:>,nW31n = O(
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We will give only indications of the proofs of Proposition 2 and Theorems 1
and 2.

ProOF OF PROPOSITION 2. First note that
nhl/2 f(r’r‘zh - mb)Zﬂ- = nhl/2 /(Vn,l(x) + e +Vn,4(x))27r(x) dx,
where
Vn,l(x) = mh(x) - Ji/h,nm(x),
Voo(x) = #, ,m(x) — m(x),
Vn,3 = m(x) - m‘,(x),
Vn,4 = ma(x) - m;,(x).

Now nh'/*V, (x)?w(x)dx can be expanded as nh'/?*(U, (x)*m(x)dx in the
proof of Proposition 1. The other terms can be treated similarly. For instance,
one gets

onhl/2 an,z(x)Vn,g,(x)w(x) dx = nh1/2cKcn[h2p(x)A(x)7T(x) dx + Op(]-)

= n!/2h% %k [ p(x) A(x)7(x) dx + 0,(1).

O

Proor oF THEOREM 1. As in the proof of Proposition 1 (but by a little bit
finer arguments) one shows first for T* = T* ¥ (or T* = T*4) that (note
that A, = 0)

vh K®(X* — X¥)n¥n*
- 5 ( - J)*mm”
n 1<i,j<n f(Xz )f(XJ )

for a random variable I' with

E*T? = 0,(1).
Here E* denotes the conditional expectation given {(X,, Y} ,.{(X}, n¥)} are

122 1 i

drawn (with replacement) out of the set {(X;, n,)} where
1 n
=g ZgT(Xi)h(Xj)Ej if T* =T*",
j=1

1 r KX, —X,)e,
m=&+(m— %, ,m(X)-— Y —i‘(——i)—i if T* = T*4,
n;i fu(X;)
Define
Ky (X7 — X )nin}

YUf(XF) (XS
Put a = E*(A;)) for i +j.
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Then one gets with a = 0,(n~"h~"):
h
var*(T*) = ?var*(ZAij) +0,(1)
i,J

= % var*( Y Aij) +0,(1)

i1#j

= %E*( ZAij - a)2 +0,(1)

i#j

h 2

i#]

+£E*4 Y (A —a)(Aj,—a)+o0,(1)

i#j+k+i

= 2RE*A%, + 4hnE*A Az + 0,(1)

Ky(X, - X,)°
22:f(X)f(X)

h KX, - X)K\(X; - X,)
w2 F(X) X)Xy T

+ op(l).

This gives for T* = T* ¥ by straightforward calculations

K, (X; - X,
var*(T* V) = 2Z—A———L88 +0,(1).

G FAX) (X))

But the right-hand term converges in probability to its expectation. This
proves the first statement of Theorem 1. The second statement follows by a
very lengthy evaluation of the above approximation of var*(T* 4). O

Proor oF THEOREM 2. The proof goes along the lines of Proposition 1.
Especially (A5) entails sup, ¢? = O,(log n) and Elg;|® < const. (uniformly in i
and n). This can be used to prove the two conditions of the theorem of de Jong
(1987). O
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