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EFFICIENCY-CONSTRAINED BIAS-ROBUST ESTIMATION
OF LOCATION!

By R. DoucLAs MARTIN AND RUBEN H. ZaMAR

University of Washington and University of British Columbia

In 1964, P. Huber established the following minimax bias robustness
result for estimating the location u in the e-contamination family F(x) =
(1 — &)®[(x — n)/s] + eH(x), where ® is the standard normal distribution
and H is an arbitrary distribution function: The median minimizes the
maximum asymptotic bias among all translation equivariant estimates of
location. However, the median efficiency of 2 /7 at the Gaussian model may
be unacceptably low in some applications. This motivates one to solve the
following problem for the above e-contamination family: Among all location
M-estimates, find the one which minimizes the maximum asymptotic bias
subject to a constraint on efficiency at the Gaussian model. This problem is
the dual form analog of Hampel’s optimality problem of minimizing the
asymptotic variance at the nominal model (e.g., the Gaussian model) sub-
ject to a bound on the gross-error sensitivity. We solve the global problem
completely for the case of a known scale parameter. The main conclusion is
that Hampel’s heuristic is essentially correct: The resulting M-estimate is
based on a ¢ function which is amazingly close, but not exactly equal, to
the Huber /Hampel optimal ¢. It turns out that one pays only a relatively
small price in terms of increase in maximal bias for increasing efficiency
from 64% to the range 90-95%. We also present a conjectured solution to
the problem, based on heuristic arguments and numerical calculations,
when the nuisance scale parameter is unknown.

1. Introduction. Consider the family of ¢-contaminated Gaussian distri-
bution functions

x = p

(1.1) F= {F: F(x)=(1 —e)@( ) +8H(x)},

where 0 < ¢ < 0.5 is fixed, ® is the standard normal distribution and H is an
arbitrary distribution. The main focus will be on estimation of the location
parameter u, with s being a nuisance scale parameter.

In this setup, where the contamination distribution may be asymmetric, all
the ‘“usual” robust estimates of u will be biased asymptotically as well as in
finite sample sizes for many F in the family .%. This problem was recognized
by Huber (1964) in a brief section of his seminal paper on robust M-estima-
tion. Huber’s primary focus was on the restricted symmetric form of %,
where H is constrained to be any symmetric distribution, and for this family
he obtained the asymptotic variance minimax M-estimate of u. However,

Received August 1990; revised November 1991.

!Research supported by Office of Naval Research Contracts N00014-88-K-0265 and N00014-
91-J-1074.

AMS 1991 subject classifications. 62F35, 62G35, 62G05.

Key words and phrases. Bias-robustness, minimax, efficiency.

338

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to 2

The Annals of Statistics. RINORY
www.jstor.org



EFFICIENCY-CONSTRAINED BIAS-ROBUST ESTIMATION 339

working with the full asymmetric family %, Huber (1964) also proved the
following result: Among all translation equivariant estimates of location, the
sample median minimizes the maximum asymptotic bias over the family (1.1)
with s = 1. His solution also holds with ® replaced by certain other symmetric
distributions, and for the class of all translation and scale equivariant esti-
mates of location with s unknown.

The minimax bias robustness problem can be stated formally for a class 7~
of location estimates and the family & given by (1.1) as follows. Assuming as
usual that 7 contains only translation and scale equivariant estimates, one
takes u = 0 and s = 1 without loss of generality. Let T(F) be the asymptotic
value of an estimate T' € 7, and let b, (e, F') be the asymptotic bias of T at F.
Since u = 0, we have

br(e, F) =T(F).
Then the maximum asymptotic bias of T over .% is

(1.2) Br(g) = sup by(e, F).
Fe %

A minimax estimate T.* is one which satisfies

(1.3) T* = argmin B, (&)
T

for each ¢ € (0, 0.5). In general, any estimate which minimizes the maximum
asymptotic bias with respect to specified classes of estimates and mixture
distributions will be called a bias-robust estimate.

Curiously enough, the global problem of constructing bias-robust estimates
was ignored for many years following Huber (1964). Only quite recently do we
find a number of results along these lines for problems such as minimum
distance estimation [Donoho and Liu (1988a, b)]; estimation of scale [Martin
and Zamar (1989) and Martin and Zamar (1990)], regression [Martin, Yohai
and Zamar (1989) and Yohai (1990)] and covariance matrices [Maronna and
Yohai (1990)]. While Huber (1981) found that the bias robustness problem
produced ‘“‘a rather uneventful theory” in the case of estimating location, the
results cited above indicate that this is not the case for other kinds of
parameter estimation problems.

Of course, one criticism of bias robustness is that this kind of robustness
might be achieved at the expense of a severe loss of efficiency at the central
model, for example, at ® in (1.1). Indeed this is the case to some extent for the
median as a bias-robust estimate of location, and to a much more serious
extent in the case of regression: Martin, Yohai and Zamar (1989) show that
among all M-estimates of regression based on bounded p functions, the
bias-robust estimate minimizes a quantile of the absolute residuals. This bias
robust estimate has the same slow rate of convergence as the least median of
squared residuals [Rousseeuw (1984)], which turns out to be a quite good
approximation to the bias-robust M-estimate of regression [Martin, Yohai and
Zamar (1989)].
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The slow rate of convergence of the bias-robust estimate could be avoided by
imposing an efficiency constraint at the central model, and this approach could
lead to a useful tradeoff between Gaussian-case efficiency and bias control.
Because of the relative simplicity of the location problem, we initiated our
efforts to construct efficiency-constrained bias-robust estimates on the location
problem for the e-contamination model (1.1). Thus our problem is to solve
(1.4) T* = argmin B, (¢)

Te I
subject to EFF(T, ®) > e, where EFF(T, ®) is the asymptotic efficiency of T' at
the standard normal distribution ®, with T in the class % of M-estimates of
location, and e € (0, 1) a prescribed efficiency.

We remark that this problem could equally well be stated in the dual form
(1.5) T = argmin VAR(T, @)

Te I

subject to B, (e) < b, where VAR(T, ®) is the asymptotic variance of T' at ®
and b > 0 is a prescribed bound on the maximum bias. Stated in this form, it
is clear that our problem of interest is a global form of Hampel’s well-known
local optimality problem [see Hampel (1968), (1974) and Hampel, Ronchetti,
Rousseeuw and Stahel (1986)]: Minimize the variance at the central model,
subject to a bound on the gross-error sensitivity (GES). The latter provides,
under regularity, a local linear approximation to the maximum bias of an
estimate for small & (see Section 2.3). Fortuitously, the technique of proof
originally used by Hampel for his local optimality problem turned out to be a
key ingredient in establishing our global result.

2. Maximum asymptotic bias with nuisance scale.

2.1. The maximum bias functional. A location M-estimate T, is a solu-
tion of

(2.1) }n:.p(Y"_T”) - 0.

Sn

We work with the following assumptions.
(A1) ¢ is continuous, monotone, odd and bounded.

(A2) s, is an estimate of scale whose almost sure limit lim , _,, s, defines a
scale functional S(F) for all F € & with the boundedness property: 0 <
S(F)<S(F*) =5 <wforall Fe ¥, where F*=(1 — ¢)F, + ¢§, and §,, is
a point-mass at infinity.

It is easy to check, using (2.2), that under the contamination model (1.1) the
maximum asymptotic bias is unbounded for unbounded . Thus the bounded-
ness part of (Al) entails no loss of generality. Formulas for computing s for
the case of M-estimates of scale can be found in Martin and Zamar (1990).
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Huber [(1981), Section 3.2, Corollary 2.2] shows that under (A1) and (A2) T,
converges almost surely to a functional T(F) = T(y, F) provided this func-
tional is uniquely defined by the asymptotic estimating equation

(2.2) Jul(y = T(F))/S(F)] dF(y) = 0.

It is not difficult to see that for our setup T'(F) is uniquely defined for all
F € &. First, let

(23)  g(t,s) =g, (ts) = — [ wl(y -0 /sle() dy, s> 0,

where ¢(y) is the standard normal density, and note that for ¢ > 0, we have

(2.4) g(t,s) =5 W) le(sy — t) — e(sy +t)] dy.
For all F € &, (2.2) with T(F) replaced by ¢, can be written as
(25) - (1-e)glt, S(F)] +¢[vl(y - £)/S(F)] dH(y) = 0.

The function g(¢, s) is strictly increasing and continuous in ¢, with
lim, _,, g(¢, s) = y(») and lim, , _, g(¢,s) = —y(). Therefore, for all £ < 0.5,
the left-hand side is positive for sufficiently large positive ¢, and negative for
sufficiently small negative ¢. It follows that the solution (in #) of this equation
defines a unique functional T'(F).

Furthermore g(¢,s) is strictly decreasing in s for s € (0,5) with
lim, _,, g(¢ s) = [20(¢) — 1](). From this and the previous observations it is
easy to verify that under (A1) and (A2) the maximum asymptotic bias B, (¢) is
achieved when H is the point mass §, at infinity. Thus Bw(e) satisfies the
equation

(2.6) — (1 -¢)g[B,(¢),5] + (=) = 0.

We summarize this result as a lemma.
LemMa 1. If (Al) and (A2) hold, then
E
(27 By(e) = &) 1 .

where g;'(+) is the inverse of g(+,5) and § = S(F®) is the maximum asymp-
totic bias of the scale estimate.

2.2. Relation with the gross-error sensitivity. The influence function of a
location M-estimate of T'(F') with function ¢ at F, and x [see Hampel (1968),
(1974)] is given by

¥(x)

0
IC,p(x) = a*g—T[(l —8)F0+83x]g=0= P
10
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[ X e

Fic. 1. Maximum bias curves and linear GES approximation. The dashed lines correspond to the
maximum bias curve and GES approximation for the efficient Huber estimate (¢ = 1.5). The Solid
curves correspond to the median.

where §, is a point-mass at x,
8.5(t,8) = (8%/dt*) (8% /0sP)g(t,s), a,B=12,...,
and g, = 8,5(0, 1). The gross-error sensitivity of T' at F,, also introduced by
Hampel (1968), is given by
sup, ¢ (x)
GES(y) = suplICl,,(x)l = ——
x 810

One expects that under sufficient regularity conditions the GES will provide a
local linear approximation to B,(¢) for ¢ near zero, that is, that the GES will
be equal to the derivative Bj(0) of the maximal bias function B,(¢) at the
origin. The following lemma shows that in fact (A1) and (A2) provide sufficient
regularity.

LEmMA 2. Under (Al) and (A2) B,(0) = GES(¢).
Proor. Follows from (2.6) by differentiation. O
Figure 1 gives the maximum bias curves, along with the local linear

approximations based on the GES, for the following two location estimators:
(1) the median and (2) Huber M-estimate with ¢ = 1.5 using the shorth as
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scale (see comments at the end of Section 4). Notice that the linear approxima-
tion is better for the median than for the efficient Huber estimate.

2.3. The unconstrained bias-robust M-estimate. For the moment assume
that () = 1, which entails no loss of generality. From (2.4) and (2.6) and the
monotonicity of g(z,5) in ¢, it follows that if ¢, and ¢, satisfy g,(¢,3) >
8y(¢,3) for all t, then B,(e) < B,(¢e). Thus B,(e) can be minimized by
maximizing the function g,(¢,5) for each ¢ > 0. Noting that [¢(3x — ¢) —
o(Sx + )] >0 for all x>0 and ¢ > 0, one sees that the ‘“‘sign” function
¥(x) = sgn(x) maximizes g,(¢, 5) with respect to . Thus the sample median is
the bias-robust M-estimate of location with minimax bias

Byep(e) = ®_1[0-5/(1 - 5)]

This is a particular case, for M-estimates, of the more general result obtained
by Huber (1964) for the class of all translation equivariant estimates of
location.

3. Efficiency constrained solution with scale known. In this section
we find the efficiency constrained bias-robust M-estimate of location for the
case where scale is known, taking s = 1 without loss of generality.

3.1. Candidate solutions via calculus of variation. First, we use calculus
of variation to give a heuristic derivation of the optimal y-function *. In the
next subsection we give a direct proof based on projection methods.

By definition, an efficiency constrained bias-robust M-estimate of location
solves the following constrained minimization problem:

infB (&
o w(€)

subject to

i (e(x)de
[fow'(x)e(x) dx]® ~

where V(y, ®) is the M-estimate asymptotic variance and e is the desired
efficiency.

In view of (2.4), (2.6) and the strict monotonicity of g(z, s), it suffices to
find, for each ¢ > 0, a score function ¢, which maximizes the functional

(3.1) V(,®) =05

’

(3.2) J,(¥) A W(x)[o(x — t) — o(x +1)] dx

1
¥ ()
subject to the given side constraint. Then, assuming that J,(i,) is continuous
and monotone increasing in ¢, the solution to the constraint optimization
problem will be y* = y* where oJ, (42) = ¢/(1 — ¢). Since the constraint in
(8.1) is not an integral constraint and since the objective function oJ,(¢) is not
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an integral on a finite interval, it is convenient to consider instead the
following family of standard optimization problems:
Maximize oJ,(i/) subject to the constraints:

(B1) (0) =0, y(c) =M.
(B2) [d%(x)p(x)dx + 2[1 — P(c)IM? <e™ .

(B3) 2V?(¢y'(x)p(x)dx = 1, where ¢ and M are constants such that
(B1)-(B3) can be simultaneously satisfied for at least one .

The functional J,(¢) is linear, and hence convex, and the set of y-functions
satisfying (B1)-(B3) is convex. Thus we have a convex optimization problem
for each fixed (¢, M). At first sight, a natural approach is to solve the convex
optimization problem for each allowable pair (¢, M) and then optimize over all
allowable (¢, M). The Lagrangian for the problem with (¢, M) fixed is

G(x,0,¢") = —¢(x)[e(x —t) — o(x + t)] + 22%(x)e(x) + A¥'(x) (%)

and, by convexity, a sufficient condition for optimality is that the
Euler-Lagrange equation be satisfied:

Gy — 5, G =e(x 1) —o(x + 1) + 20y (x)p(x) + A5¢'(x) = 0.

Thus for fixed (¢, M), the optimal ¢ function is of the form
p(x —t) — (x + 1)

e(x)
M: Ix|>c.

ax + ay , lx| <ec,

Notice that «; =1 and a, = 0 gives Huber’s ¢ function and «; = 0 and
a, = 1 gives a ¢ function which is proportional to a truncated hyperbolic sine
function.

Unfortunately, as ¢ and M vary we no longer have a convex optimization
problem and we were unable to make this variational argument rigorous. In
the remainder of this section we give a direct proof that a solution to the
optimization problem actually exists and is of this form.

3.2. The dual problem. Let B be an achievable maximum bias, that is,
B = B,(¢) in (2.7) for some ¢ satisfying (A1) and (A2). Notice that if Bygp =
Bygp(e) is the maximum bias of the median then B > Bygp. Let ¥y be the
set of ¢ functions satisfying (A1), (A2) and

(CD) 2[5y (x)xp(x)dx = 1.

(€2) (1 - £)g,(B, 1) = e(=).
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Since the asymptotic variance VAR(y, ¢) and bias B,(¢) are invariant under
multiplication of by a constant, the condition (C1) is just a convenient
standardization. Observe that given (C1), /(«) is the gross-error sensitivity of
the corresponding M-estimate, so we will write GES(¢) = (). Also notice
that (C1) implies

(3.3) GES(y) > (27)"? = GES(Median).

The dual optimization problem can now be stated.
Fix B > Bygp and find ¢* € ¥5 which minimizes

(3.4) Jw) = [ “W2(x)e(x) dx.

We need the following lemma, which states that for any fixed B > Bygp
and any nice unbounded, odd function 6(x), there exists a rescaled truncated
version of 6(x) which is in V5. We will denote by 6,(x) the truncation of 6(x)
at c, that is,

0(x), lx| <e,

6.(%) = {O(C)sgn(c), lx| > c.

LEMMA 3. Let 6(x) be differentiable, odd and monotone, with
lim 6(x) = and Eg6(X)l < .

x—®

For each B > By, there exist ¢, and k, such that k0, (x) € Vg.

Proor. For fixed ¢ > 0, the function

I

1 o
(6 = 505 [ 6:(x)[o(x = ) — o(x +1)] da

1 )

o J 6(x — t)e(x) dx

is continuous and monotone increasing in ¢. By the dominated convergence
theorem lim, _, , y(¢,¢) = 0 and lim, _,, y(¢, ¢) = 1. Thus, given 0 < ¢ < » there
exists B(c) such that y[B(c),c]l =¢/(1 — ). Since B(c) is continuous and
nondecreasing with lim, _,, B(¢) = » and lim, _, ; B(¢) = Bygp there exists c*
such that B(c*) = B. The lemma follows now with ¢, =c* and £k, =
[2/8°60'(x)p(x)dx]~ 1. O

3.3. Solution of the dual problem. The dual problem we wish to solve is
similar to Hampel’s optimality problem of minimizing the variance at the
central model subject to a bound on the gross-error sensitivity. See Hampel
(1968) and Hampel, Ronchetti, Rousseeuw and Stahel (1986). The difference of
course is that we are replacing the bound on infinitesimal bias with a bound on
the actual maximum bias. Nonetheless, Hampel’s technique for obtaining a
key inequality still provides an essential step in the solution given here.
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For each b > GES(Median) = b,, let ¥ , be the subset of all the ¢ € ¥y
with gross-error sensitivity equal to b. Then, clearly ¥p = U, ¥ ;- Also,
let ,(x) and ,(x) be the truncated and scaled y-functions given by Lemma 3
corresponding to the identity function I(x) = x and to the function
¢(x —B) —¢(x+B)

¢(x)
which is proportional to the hyperbolic sine. The gross-error sensitivities are
GES; = GES(¢;) = #i(¢;), 1=1,2,
where ¢, and c, are the corresponding trunction constants.

The following theorem shows that, in terms of J(¢), ¢; dominates all ¢ in
Wy , with by < b < GES, and ¢, dominates all ¢ in ¥, with b > GES,.

e—B2/2(eBx _ e—Bx),

A(x) =

THEOREM 1. Suppose that y € ¥y satisfies GES(¢) < GES, or GES(y) >
GES,. Then J() > min{J (), J(¢,)}.

PrROOF. Assume first that b, < b = GES(¢) < GES,. Since GES(I,) =
0.5¢[®(c) — 0.5]"! is continuous in ¢, tends to by = (7/2)*/? as ¢ — 0 and
tends to © as ¢ — «, there exists 0 <c¢ <¢; such that GES(I,) = b. The
inequality J(¢) > VAR(I,, ®) now directly follows from Hampel’s result of
optimality of I, among all functions which satisfy (A1)-(A2) and have GES
bounded above by b. [See, e.g., Hampel, Ronchetti, Rousseeuw and Stahel
(1986), Theorem 1, Section 2.4, page 117; see also Theorem 5, Section 2.5d,
page 135.] Then, since VAR(I,, ®) is a decreasing function of ¢, one follows
that

J(#) = VAR(I,, ®) > VAR(L,, ®) = J(t).

We now turn to the optimality of ¥, over Uy, ggs Vs - Assume that b =
GES(¢) > GES, = b, and let

O O
— A(x) _ €
A = K@) B= e -9"

Observe that b = (=) and so, using (C2), one obtains Jow(2)A(x)e(x) dx = B.
A similar argument shows that [S,(x)A(x)¢(x)dx = B. Using the last two
equations and the fact that A(x) = ¢,(x) for 0 < x < ¢y, A(x) > 1 for x > c,
and ¢(x) < 1 for x > 0 one follows that

[ P(x)e(x) dx + d = A [#(x) - B(2)] () dx
> ["a(x) - B(x)] (=) da

-/ P(x)e(x) dx + d,
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where d = —2B + [J A%(x)¢(x) dx is a constant which does not depend on .
Therefore,

J() = [ w*(x)e(2) dx = (b/by)’ [ F3(x)e(x) dx = I (4),
completing the proof. O
The following theorem is our main result.

THEOREM 2. For each ¢ € Vg there exist ¢ € [cy,¢5], @; > 0 and ay >0
such that
aI(x) + ay A(x), lx| <e,
[a;I(e) + az A(c)]sgn(x), lx| > ¢,

belongs to Vg and J(¢) = J(,).

b(x) =

Proor. Let ¢y € ¥ be such that
GES(¢,) < GES(¢) < GES(¢,).

Note that by Theorem 1, we only need to consider this case because if
GES(¢,) < GES(y,), then the theorem trivially holds. To fix ideas, suppose
that ¢; > c,. The cases ¢; < ¢, and ¢; = ¢, can be handled in a similar way.
The function ¢,(x) = a(c)I(x) + ay(c) A (x) is in ¥y provided that a,(c) and
ay(c) are nonnegative and satisfy the equations

a;(c)Ay; +ay(c)Ap =0,
ay(c) Ay + ay(c) Ay, =1,

where

Ay = [T(2) A(x) g(x) dx — Be,
0

A = [8(x) A(x) ¢(=) dx ~ BA(e),
A, = 2[®(c) — 0.5],
Ay = 2[0°A'c(x) o(x) dx = 2B[®(c + B) + ®(c — B) — 1]
with B = ¢/(1 — ¢). Clearly, A,; > 0 and Ay, > 0. Also A;; > 0 because
f I(x) A(x) ¢(x) dx — Be, = 0
and ¢ < ¢, implies that I.(x)/c > I.(x)/c, for all x > 0 with strict inequality
for 0 <x <c. Analogously, using the fact that ¢ > c, implies A (x)/c <

A.(x)/cy, for all x > 0 with strict inequality for 0 <x <¢, together with
fo A%(x)A(x)(p(x) dx — B A(cy) = 0, one concludes that A;, < 0.
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Therefore, for all ¢, < ¢ < ¢; we have a,(c) = —A;;/[A;; Ay — A1pAy]1 >0
and ay(c) = —a(c)A;; /A, > 0. Moreover, since ¢,(x) = kI (x) and ¥ (x)
=ky A (x) and since GES(y,) is a continuous function of ¢, there exist
¢; < ¢* < ¢, such that GES(¢) = GES(¢,.). Let

0(x) = ay(c*)I(x) + ay(c*) A(x).

Notice that 6(x) is strictly increasing and that 6(x) > (x) for all x > c*
[because 6(c*) = a,(c*)I(c*) + ay(c*) A(c*) = GES(¢..) = GES(Y) = ¢()].
Thus

[ To(@) = 60 e(x) dx = [ [bee(x) = 0(x)] () d.

The theorem follows now because

Lw[¢(x) —0(x)]*0(x) dx = J(¢) +d

[ [dee(x) = 8(0)] 0(x) dx = I (42) +
with d = [$0%(x)e(x) dx + 2ac*) — a(c*)B GES()L. O

3.4. Numerical results. The numerical calculation of the optimal ¢* is
done as follows. For a given value of £ (¢ = 0.05, say) the constants ¢; and c,
are determined by solving the nonlinear equations

(1- g)foc‘xA(x) o(x) dx + (1 — e)es[®(cy + B) — ®(c; — B)] — e = 0
and
(1- 5){[002A2(x) @(x) dx + A(cy)[P(cy + B) — P(cy — B)]} — A(ey)e = 0.

Our numerical results show that in general c¢; > c,.

Next, using the fact that for all ¢, ¢(x) and k¢(x) determine the same
location estimate, it follows that the optimal ¢* is a truncation at c¢ of the
function ax + (1 — a) A(x), for some 0 <a < land ¢, <c <c;.

This ¢ function is denoted by ¢, (x) and for each ¢, the value of « is
determined using (C2), that is, solving the linear equation

(1- e)/:[ax + (1 - a) A(x)] A(x) o(x) dx

+[lac+ (1 —a) A(e)|{[®(c —B) — ®(c + B)](1 —¢) —¢} =0.

Finally, the asymptotic variance of ¢,, VAR(¢,, ®) can be computed. This is
done on a fine grid of values of ¢ in [cy, c,] {c™,c@,...,c™} and c* is
approximated by the grid point that minimizes VAR(#,, ®). In general, as
shown in Figure 2, the optimal *(x) is very well approximated by the Huber’s
function ¢,(x) having the same asymptotic bias B, even for values of ¢ near
the breakdown point one half.
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Fic. 2. Optimal y-functions and corresponding nearly optimal approximates.

Figure 3 shows the maximum bias curve of the optimal ¢* for several
efficiencies. Notice that a significant increase in efficiency can be obtained in
exchange for a fairly small increase in bias.

Finally we present some numerical results which allow a direct comparison
of our exact approach with that based on the GES linear approximation.
Suppose that, for a given value of &, we want to choose a robust location
estimate according to the following criterion: Among all the location estimates
T which have a bias-deficiency of up to 10%, that is, all T for which

Br(s) | Bi(e) o
Byep(€) d71/2(1 - ¢)] '

choose the 7T that minimizes the asymptotic variance under the Gaussian
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Fic. 3. Maximum bias curves of several bias-robust estimates. The lowest curve corresponds to
the median and the highest corresponds the 95% efficient bias robust estimate. The intermediate
ones correspond to the 75%, 80%, and 90% efficient bias-robust estimates.

model. Note from Figure 2 that a bias deficiency of 10% corresponds to an
efficiency constraint in the range 85%-90%.

According to the GES approach one would first approximate Br(e) by
e+ GES(T). By Hampel’s optimality result we can restrict attention to
M-estimates with Huber’s ¢ functions ¢,. Then we just need to choose the
tuning constant c¢ to achieve the 10% bias deficiency. Since GES(y,) =
¢/(2®(c) — 1) the constant ¢ is determined by the nonlinear equation

ce 1101 1
2d(c) -1 2(1-¢) |
On the other hand, following the exact global approach one would set the
maximum bias B equal to 1.1¢710.5/(1 — ¢)] and choose the optimal ¢
function given by Theorem 2 for such value of B. In view of Figure 2 a good
approximation for the optimal ¢ can be obtained by restricting attention to ¢
functions of the Huber type. In this case the tuning constant ¢ is determined

by solving the equation

B 1.1 L
o) = LI oq =5y |

Table 1 gives the values of the constant ¢ obtained by the GES and exact
approaches as well as the corresponding bias deficiencies. Notice that the
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TaABLE 1
Efficiency and bias deficiency of locally and globally optimal Huber

Tuning constant ¢ Bias deficiency
€ Global Local Global Local
0.05 0.76 0.97 10% 17%
0.10 0.76 1.15 10% 22%
0.15 0.76 1.34 10% 30%
0.30 0.76 1.98 10% 63%

values of ¢ given by the exact approach does not change much with ¢
(differences only occurred in the third decimal case) and that the resulting
estimate is fairly efficient (eff = 0.85). On the other hand, the values of ¢ given
by the GES approximation varies considerably and tends to be disturbingly
unconservative, particularly for moderate to large values of ¢. For example,
the actual bias deficiency of the estimates chosen according to the GES
approach are 17% for ¢ = 0.05, 22% for ¢ = 0.10, 30% for ¢ = 0.15 and 63%
for £ = 0.30, instead of the nominal 10%.

4. Efficiency constrained solution with scale unknown. When the
scale is unknown the side constraint (C2) must be replaced by (C3)

(1-2)g(B,5) =zy(x)

and consequently the function A(x) must be replaced by
o(5x — B) — ¢(5x + B)

o(x) '
Unfortunately, A(x) is no longer monotone [notice that lim , . A(x) = 0] and
so Lemma 3 cannot _be applied to ensure the existence of a scaled and
truncated version of A(x) which satisfies (C1) and (C3). However, numerical
calculations indicate that the result of Lemma 3 still holds in this case, that is,

that there exist constants %, ¢; and ¢} (which depend on &) such that the
function

A(x) =

kA(x), lx| <cgor x| > cj,

a(x) =
(%) kA(cs), cs < x| < cj,

satisfies (C1) and (C3). It can also be proved, using a similar argument as in
the proof of Theorem 1, that the function ¢; has the same property as the
function ¢, in that theorem:

GES(y) > GES(y;) implies VAR(y,®) > VAR(y;,, @)

for all € V. Thus, as in the known-scale case, attention can be restricted to
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Fic. 4. Non-monotone y-function.

¢ functions ¢ (x) which are truncated and rescaled versions of
d(x) =ax + (1 —a) A(x), 0<acxl

with truncation constant ¢ between c¢; and cz. Here ¢, is the value of the
tuning constant of the Huber’s -function satisfying (C1) and (C3), and its
existence follows from Lemma 3.

If 0 < a < 1is such that ¢(x) > ¢(c) for all x > ¢, then

#(x), x| <c,

x =
¢e(%) {¢(c), lx] > c.

On the other hand, if « is such that ¢(x) is not monotone, as in Figure 4, then

- |

Unfortunately, the lack of monotonicity of A(x) makes the optimality problem
much more involved and one must resort to a combination of analytical
derivations and numerical calculations to obtain the optimal *. The main
conclusion from our calculations is that, as in the known scale case, Huber’s
y-function ¢; with the tuning constant ¢* determined by the condition (C3) is
an excellent approximation to the optimal *.

o(x), x| <corec < x|l <c”,
¢(c), c<|x| <c'orlx| =c".
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Evidently, ¢* = c*(¢, 5), depends on the fraction of contamination ¢ and the
maximum value § of the asymptotic scale functional. In fact, it can be easily
verified using the identity ¢ (x/s) = (1/s),,(x) valid for Huber’s -functions
for all s > 0, that ¢* = ¢*(¢, 5) = c(e) /3, where c(¢) is the value of the tuning
constant for the nearly optimal Huber’s i-function in the scale-known case.
Thus, the tuning constant c¢* for the nearly optimal Huber’s  function is
larger when the maximum asymptotic functional § of the scale estimate s, is
smaller. Since for Huber’s functions ¢, the asymptotic variance VAR(y,, ®) is
a decreasing function of ¢, it becomes evident that the degree of unconstrained
bias-robustness of the scale estimate 5§ will have an impact on the optimal
bias-robust location estimate subject to an efficiency constraint. Therefore,
according to the results in Martin and Zamar (1990), an appropriate choice of
the scale estimate §, is given by the shorth [see Andrews et al. (1972)] which is
nearly optimal bias-robust among M-estimates of scale with breakdown-point
equal to one half.

5. Concluding remarks. It has been correctly pointed out by an anony-
mous referee that the results of this paper amount to a rigorous analysis of the
correctness of Hampel’s heuristic approach in the location setup. Still, one
might conjecture by analogy that, in the case of more complicated models,
maximizing the efficiency under a constraint on the gross-error sensitivity is
almost the same as putting a constraint on the bias. However, the extension of
our technique to more complicated models is by no means straightforward (if
at all possible) and this matter deserves further study.

Another interesting issue brought up by an anonymous referee is that if one
leaves the realm of M-estimates of location, there is not necessarily a payoff
between bias-robustness and efficiency at the central Gaussian model. This is
shown by the following example (also provided by the referee): Let h: R > R
be symmetric, differentiable and nonincreasing on [0,®) with A(x) =1 for
0<x<1 and h(x) =0 for x > 2. Denote the mean and the median of a
distribution F by T, (F) and Tygzp(F), respectively. For any 6 > 0 let

5 )

Ts(F) = Tyep(F) + [Ty (F) — Tump(F)] R

where 0.0 = 0 and T},(F) = » if F does not have a finite mean. If the scale
also has to be estimated, § can be replaced by § MAD(F).
Since
ITs(F) — Tyep(F)l < C8, C = supxh(x) < 2,
x=0
the maximum bias of T,(F) exceeds that of the median by at most 26. If F is
such that T\, (F) — Tygp(F) = 0 (e.g., F is symmetric, with finite mean) then

T5(F,) = Tu(F,), as.[F],

for n sufficiently large. Therefore, T(F,) has an asymptotic efficiency of 1
when F = N(0, 1) but an efficiency of 0 if F' has infinite variance.

The following argument shows that there are some merits in considering
the optimality problem on the class of M-estimates of location. It is well known



354 R.D. MARTIN AND R. H. ZAMAR

that bias-robust M-estimates of location, that is, M-estimates with a bounded
¢, are variance-robust: The supremum of their asymptotic variance over
symmetric e-contamination neighborhoods of the Gaussian model is finite.
This suggests that the efficient bias-robust M-estimate is not only relatively
efficient at the central Gaussian model but also over a symmetric neighbor-
hood of it. In fact, when the scale parameter is known one can easily verify
that

(1 - &) Eodp®(X) + ep®(x)
[(1 - &) Equ'(X)]”

Using this formula one can check that the supremum variance of the Huber’s
M-estimate of location with ¢ = 1.345 (for instance) is fairly small: AV= 1.053
when ¢ = 0, AV= 1.257 when ¢ = 0.05 and AV= 1.795 when ¢ = 0.15.

AV_(¢) = supAV(y, F) =
F
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