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OPTIMAL SMOOTHING IN SINGLE-INDEX MODELS

BY WoLFGANG HARDLE, PETER HALL AND HIDEHIKO ICHIMURA!

Université Catholique de Louvain, Australian National University and
University of Minnesota

Single-index models generalize linear regression. They have applica-
tions to a variety of fields, such as discrete choice analysis in econometrics
and dose response models in biometrics, where high-dimensional regression
models are often employed. Single-index models are similar to the first step
of projection pursuit regression, a dimension-reduction method. In both
cases the orientation vector can be estimated root-n consistently, even if
the unknown univariate function (or nonparametric link function) is as-
sumed to come from a large smoothness class. However, as we show in the
present paper, the similarities end there. In particular, the amount of
smoothing necessary for root-n consistent orientation estimation is very
different in the two cases. We suggest a simple, empirical rule for selecting
the bandwidth appropriate to single-index models. This rule is studied in a
small simulation study and an application in binary response models.

1. Introduction. A linear regression model for the dependence of a scalar
variable Y and a p-vector x has the form Y = B%x + ¢, where B is a p-vector
of unknown parameters and ¢ is a random variable with zero mean conditional
on x. More generally, we might define Y = g(%x) + ¢, where g is an un-
known univariate function. This is a single-index model, and is recognized as
a particularly useful variation of the linear regression formulation [e.g.,
Brillinger (1983) and McCullagh and Nelder (1983)]. Of course, the scale of
BTx in g(BTx) may be determined arbitrarily, and so we may replace 8 by the
unit vector § = BIIBII_l, where || - || denotes the Euclidean metric. The aim is to
estimate both 6 and g in the equivalent model

(1.1) Y=g(6") +e.

In the form (1.1), a single-index model is similar to the first step of
projection pursuit regression. There, the model generating the data is usually
taken to be

Y=g1(x) + €,

where g, is a p-variate function. The ‘“first projective approximation” to g,(x)
is a function g(87x), where g is a univariate function, 6 is a unit vector and
(g, 6) are chosen to minimize E{g,(x) — g(67x)}?> when x has the distribution
of the design variable x. Hall (1989) showed that in the context of this
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problem, 6 can be estimated root-n consistently. Ichimura (1987) studied the
case of single-index models, and also showed that 6 can be estimated root-n
consistently.

Estimation of either g or 6 requires a degree of statistical smoothing.
Perhaps the simplest approach is to use kernel methods to construct an
approximation g of g; thus substitute 2 into an empirical version S(8) of the
mean squared error S(6) = E{Y — g(67x)}?; and finally, choose § to minimize
S. However, performance of this method could depend significantly on the
bandwidth chosen for g. Furthermore, having estimated 8 we still need a
bandwidth for computing a good estimator for g.

It is not clear, a priori, whether the same bandwidth can be used to
construct good estimators of both # and g. Evidence in Hall [(1989), page 583]
suggests that two quite different bandwidths may be necessary—the first to
construct a preliminary estimator of g so that 6 may be estimated, and the
second to construct a final estimator of g. For example, in the projection
pursuit version of this problem, a bandwidth of the order which optimizes g as
an estimator of g will not produce a root-n consistent estimator of 6.
Moreover, although Ichimura’s (1987) study of single-index models gives a
range of bandwidth which enables one to construct a root-n consistent 6, that
range excludes the size of bandwidth which is optimal for estimating g. Our
aim in the present paper is to resolve this problem, and to suggest a practical,
empirical way of selecting bandwidth(s) for optimal estimation of both 6 and g.

We shall show that, contrary to the projection pursuit case, the same
bandwidth % can be used for estimating 6 and g. We suggest a version of S
which is a function of both 6 and h, and propose that S be minimized
simultaneously with respect to these variables. An attractive feature of our
definition of S(6, ) is that it can be expanded in the form S, h) =S6) +
T(h) + remainder terms, where S(8) is an accurate approximation to S(6)
and does not depend on h, and T'(h) is the usual cross-validation criterion for
choosing h when estimating g(08%x) for known 6,. Therefore, minimizing
S(6,h) simultaneously with respect to both 6 and h is very much like
separately minimizing S(#) with respect to # and T'(h) with respect to h. It
produces a root-n consistent estimator of # and an asymptotically optimal
estimator of A.

We shall address the heteroscedastic case, where the variance of the error
term ¢ can depend on the design variable x. In this context, minimum
variance lower bounds for estimating 6 require appropriate weights to be
introduced into the definition of S. Those weights might, for example, be
proportional to error variances. When that is done, the bandwidth estimator A
obtained by minimizing $(6, ) will be asymptotically optimal with respect to
a certain weighted version of mean integrated squared error. The particular
term of the weight function in the latter may not always be that which one
derives—bear in mind that the weights are specially chosen for optimal
estimation of 6, not of A—but this difficulty may be remedied by using a
two-stage approach.
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Our techniques extend to the case of multiple-index models, of the form
Y=g(6lx,...,65%) +¢,

where again, bandwidth and orientation can be selected by simultaneous
minimization of a criterion analogous to S.

Section 2 describes the methodology behind our approach and states the
main theorem. Numerical examples are discussed in Section 3, and Section 4
presents the proof of the main theorem.

2. Methodology.

2.1. Summary. Section 2.2 introduces notation and definitions for data
generated by a single-index model. Our estimators are proposed in Section 2.3,
and their asymptotic behavior is outlined in Section 2.4. The results described
there are made rigorous in Section 2.5, which states the main theorem.
Finally, Section 2.6 treats the case of weighted least squares, appropriate when
the errors are heteroscedastic.

2.2. Model. We assume that the recorded data (x;,Y;), 1 <i <n, are
generated by the model

where g is a smooth univariate function, 6, is a p-variate unit vector,
Xy,...,%, represent observed values of a random sequence of p-vectors
X,...,X,,and ¢,...,¢, are independent random variables with zero mean
and bounded variance. It is supposed that the (p + 1)-tuples (X, ¢;) are
independent and identically distributed. Writing x; for X; serves to indicate
that, in the spirit of regression problems, the X,’s are regarded as fixed. Under
this conditioning, the distribution of ¢; (in particular, the variance) may
depend on x;. However, we shall not explicitly consider the impact of this
dependence until Section 2.6.

2.3. Estimators. Let A C R” be a set chosen so that the denominator in
the formulas for kernel estimators does not get too close to 0; details will be
given in Section 2.5. Assume that the kernel function K (typically a symmetric
probability density) has support (—1, 1), and define A%* = {x € R?: |x — y|l <
2h for some y € A}.

Let (X, Y) have the distribution of a generic pair (X, Y;) and define

g(ulo) = E(Y10"X, = u),

where X, has the distribution of X conditional on X € A. Here and below, 6
is always a unit p-vector. The function g is particularly easy to estimate, with
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one estimator being

Jj=1 Jj=1
where h is a bandwidth, K,(-) = K(- /h), and K is a fixed kernel function
(typically a symmetric probability density function). If the pair (X;,Y)) is
omitted from this calculation, then we obtain the estimator

8:(uld) = { Y YK, (u— Oij)} { Y Ky(u - Oij)}.

J#i j*i

Since g(-|6,) = g we may estimate 6 by selecting that orientation 8 which
minimizes a measure of the distance g(-16) — g. To this end, define

S(e,h)—E{Y 8.(07x |0)}

where ¥; denotes summation over indices ¢ such that x; € A.

Our aim is to choose 6 close to 6,, and & close to the value k, which
minimizes the average of E{g(e x10,) — g(O x)}2 over x € A. We clalm that
minimizing 8(6, k) over both variables, simultaneously, achieves this goal.
Indeed, we shall prove that

(2.1) S(6,h) = S(6) + T(h) + negligible terms,
where
(2.2) $(0) = T{Y; - g(6™xl0))’

i

is the distance measure we would employ instead of § if we knew g(-|6), and
(2.3) T(h) = {g (67%,10,) — g(6%x,)}"

is the usual cross-validation estimate of the mean squared distance between
8(-16,) and g. Thus, minimizing S, h) simultaneously with respect to both 6
and h is very much like separately minimizing S(8) with respect to 6 and
T(h) with respect to A.

A comment on the “negligible terms” in (2.1) is in order. We shall prove
that

S(6,h) = S(8) + T(h) + {terms of smaller order than T'(h)
(2.4) and not depending on 6}
+ {terms of smaller order than either S or T'( h)}.

Now, T'(h) is of larger size than S(6), and there are remainder terms on the
right-hand side which are larger than S(8) but smaller than T'(k). However,
as indicated in (2.4), those terms do not depend on 6, and so do not upset the
argument recounted in the previous paragraph.



OPTIMAL SMOOTHING IN SINGLE-INDEX MODELS 161

2.4. Asymptotic behavior of 6,h. Let (8, k) denote the pair which mini-
mizes S(6, h). As suggested by the discussion in Section 2.3, 6 is (essentially)
the minimizer of S(6), and h is (essentially) the minimizer of T(h); arguing
thus we may show that 8 is root-n consistent for 0y, and that h /h0 — 1in
probability, where & is the theoretically optimal bandwidth which minimizes

(2.5) J(h) = fAE{g(oowao) ~ g(6%x)}* f(x) dx,

and f denotes the design density. In fact, in the case of homoscedastic error
with E(e?) = o2 and for any unit vector w # +0,, n'/%0T(6 — 0,) is asymptot-
ically normal N(0, o%0” W w), where W,, is a p X p matrix defined by

26) W, = [A{x ~ E(XAl07X, = 03x)}{x — E(X,101X, = 65x)}"

x g'(6%x)" f(x) dx,

X, has the distribution of X conditional on X € A, and W; denotes a
generalized inverse of W,. Note particularly that the ﬁrst order asymptotic
behavior of § involves neither the kernel nor the bandwidth. The next section
will describe the theory behind these claims.

2.5. Main theorem. We impose the following regularity conditions. As-
sume that A ¢ R? is the union of a finite number of open convex sets. Given
8 > 0, let A® denote the set of all points in R? distant no further than & from
A. Put = {0%x: x € A%}, and let y denote the density of 67X. Assume that
for some & > 0,

f is bounded away from 0 on A® and has two bounded

(2.7) derivatives there;

(2.8) g and y have two bounded, continuous derivatives on %;

K is supported on the interval (—1,1) and is a symmetric
probability density, with a bounded derivative;

E(g;lx;) = 0, E(e?lx;) = 0*(x;) for all i, where the function
(2.10) o? is bounded and continuous and sup; El¢;|™ = M,, < » for
all m.

The emphasis on two derivatives in (2.7) and (2.8) is because we are using a
second-order kernel; see (2.9). This means that the “optimal”’ bandwidth %,
in the sense of minimizing the mean integrated squared error J(&) defined at
(2.5), is asymptotic to a constant multiple of n~1/5. All our results have
analogues for an rth-order kernel [see Hiardle (1990), page 135, for a defini-
tion], but there we would demand r derivatives of f, g and vy. In (2.7), the
restriction that f be bounded away from 0 on A° ensures that the denomina-
tors in the definitions of g(u|8) and 2,(u|6) are, with high probability,
bounded away from 0 for z = 87x, x € A and 0 near 6,. The requirement in
(2.9) that K be compactly supported can be removed at the expense of a longer

(2.9)
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argument; for example, the standard normal kernel is permissible. Finally, the
condition that all moments of the ¢,’s be bounded [see (2.10)] can be relaxed, to
one of boundedness of moments of sufficiently high order. However, our proof
at this point, given in step (ii) of Section 4, does not provide a particularly
efficient estimate of the ‘“minimum’” moment condition, and so we shall not
pursue this matter any further.

Let ® denote the set of all unit p-vectors. Given C > 0and 0 < C; < C, < o,
0,={0c0: 10 -0yl<Cn'?, # ={h: Cin"'5 <h <Cyn /5. These
definitions are motivated by the fact that, since we anticipate that 6 is root-n
consistent, and we expect h to be close to hy ~ const n~1/% we should look for
a minimum of S(6, k) which involves 6 distant from 6, by order n~/2 and A
approximately equal to a constant multiple of n~1/5. Define

w(xl0) = B(X,l07X, = 0"x), K, = [2%K(2) dz,
(2.11) K, = [K%(2) dz,
V= Z’{xi — n(x,100)}g’(65%;);,

(2.12) A, = KzfAy(egx)‘la(x)zf(x) dx, A,= 5K12ng"(e§x)2 f(x) dx.
In this notation, J(h) ~ A~ + Aynh* and hy ~ {A,/(4nA,)}/5 as n — .

THEOREM. Under the preceding conditions we may write
(2.13) S(0,h) = S(0) + T(h) + Ry(6,h) + Ry(h),

where S(6) and T(h) are given by (2.2) and (2.3), R,(h) does not depend on 6,
and

(2.14) sup  |Ry(6,h)|=o0,(n'?), hsugf |Ry(R)| =0,(1).
€ n

0€0,, heH,
Furthermore,
(215 SO = (W70 = 00) = n"V02)" (Wi/30 ~ 0,) ~ 0" 02)
+ Ry + Ry(6),
(2.16) T(h) = Ash™" + Aynh* + Ry(h),

where Wy, A, and A, are given by (2.6) and (2.12), Z is an asymptotically
normal N(0,I) random p-vector such that V = n'/?0Wy/?Z, R4 depends on
neither 8 nor h, and

(217)  sup [Ry(6)|=0,(1),  sup |Ry(h)| =0, (n"%).
0€0, heH,

Formulas (2.13) and (2.14) together provide a rigorous description of (2.4).
It follows from (2.15)-(2.17) that with probability tending to 1 as n — =, the
minimum of S(6, k) within a radius O(n~'/2) of 6, for the first variable, and
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on a scale of n~!/® for the second variable, satisfies for any unit vector
o #* 10,,

wT(6 = 8,) = &"{n~20(W5)?Z} + 0,(n"Y?) and h =ho+o0,(n"'?),

where W denotes a generalized inverse of W,. The limit theorems claimed in
Section 2.4 for § and A, that is, A/h, — 1 in probability and [in the case
where o(x)? is constant] nl/? T(O —8,) > N(0, 0’0" Wy w) in distribution,
are immediate consequences.

2.6. Heteroscedastic errors. It is clear from the theorem that the estima-
tor 6 is root-n consistent for 6,, even when the errors ¢, are heteroscedastic.
However, in the heteroscedastic case the efficiency of the estimator 6 can be
improved by introducing an appropriate weight function, w, when defining the
distance criterion §. Ichimura (1990) studies this case using a deterministic
smoothing parameter. In this section we shall outline the optimal smoothing
when w is incorporated and investigate the case where w must be estimated
empirically.

We assume throughout that the error variance o%(x) is actually a function
of 81x, in which case it is appropriate to take w to be also a function of 67x.
Using a weight function can have its disadvantages, as well as its advantages.
Aside from the additional computational complexity (particularly if the weights
are determined empirically), the weight function alters the definition of J(A)
at (2.5), in a way which is not necessarily desirable. However, this problem can
be overcome using a multistage approach, as we shall show.

Redefine S, S, T and V by

S(9, h)—Z{Y 2.(67x10)  w(x;),  S§(0) = LY, — g(67x,10)} w(x,),

i
Y 2
T(h) = Z {gi(egxileo) - g(egxi)} w(x;),
1
V= Z/{xi - M(xiwo)}g'(egxi)w(xi)si-
Let W,, A, and A, be as defined at (2.6) and (2.12), respectively, except that f
is replaced by fw throughout. Provided only that w is a bounded, continuous,

positive function, the theorem continues to hold, with an identical proof. Now,
the variance of n~ 2V is

n! Z{x — u(x,180) o, — n(x; |00)} (ngi)zw(xi)zo‘(xi)z
- W, = fA{x ~ E(X4100X, = 6%x)}{x — E(X4l05X, = 65x)}"
x g'(0%x) w(x)’0(x)® da.

When w(x) = o ~2(x) and o%(x) is only a function of 87x, result (2.15) implies
that n'/%(§ — 6,) is asymptotically normal N(0, W, ) where W, denotes a
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generalized inverse of W,. Furthermore, A/h, > 1 in probability, where
ho ~ {A,/(4nA,)}/5 denotes the bandwidth which minimizes

(2.18) J(h) = fAE{g(eowao) — g(6%x) ) w(x) f(x) dx

[identical to (2.5), except that the weight function has been included].

This particular limit distribution represents the minimum variance lower
bound in certain cases of practical importance. For example, in the model
Y, = g(6%x;) + ¢;, where o(x) is a function only of 6Jx, and the &,’s are
independent normal N(0, o(x;)?), the minimax-optimal estimator of 6, com-
puted from the sample of pairs {(x;,Y;): x; € A} has asymptotic variance
n~'W; [where W, is defined with w(x) = o(x)~2]. Cosslett (1987) treated the
case of binary choice models, where n~'W, is again a minimum variance
bound.

In practice, the variance function o(x)? would usually be unknown, and
would require estimation. We shall restrict our attention to the case where

o*(x)2 = TZG{g(ng)},

where G is a known, smooth function and 7 is a (possibly unknown) constant.
A two-stage procedure is suggested, as follows.

(I) Conduct inference as in Sections 2.3-2.5, taking the weight function w
to be identically 1. Let (8, A,) denote the resulting estimates, obtained by
minimizing the unweighted version of .

(I1) In the definition of $(6, &) in Section 2.3, replace w(x;) by

1

G{8(07x0,)}

in which formula ﬁl replaces h during the computation of . Recalculate
(6, k) = (85, h,) by minimizing the weighted form of S. For the two-stage
algorithm, minimization should not be taken over the weight function.

It may be shown that if G is a twice-differentiable function, bounded away
from 0, then the first-order asymptotics of this algorithm are identical to those
which would obtain if we were to take w(x) = G{g(8%x)}"! in a one-stage
weighted procedure. That is, n'/%(8 — 6,) — N(0, W;), where W, admits the
definition at (2.6) but with f(x) replaced by f(x)r~2G{g(6%x)}~%, and Ak, —
1 in probability, where H, minimizes the function J(%) defined at (2.18), with
w(x) replaced by G{g(62x)}~*. The bandwidth ﬁl from the first stage provides
asymptotic minimization of the integrated squared error formula at (2.5),
rather than that at (2.18).

3. The method in practice. We examined the practicability of our
method in several simulated situations and an application involving weighted
cross-validation. The simulations were performed with different size n and
with X, and X, independently uniformly distributed on [0, 1]2. The true
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Fic. 1. The function g(83X; 1) on the unit square.

parameter vector was 6, = (1,1)7/V2. The link function was g(u;C) =
—C(u — 1/Y2)? + C with C = 1, 4. An impression of the function g(u;1) can
be gained from Figure 1. We have chosen different ‘‘steepness parameters’ C
to study the performance with different signal-to-noise ratios.

The error distribution was selected to be standard normal with standard
deviation o = 0.2. All computations were done in GAUSSS 2.0 using the
random seed 1678321. The objective function S(6, ) was computed with a
quartic kernel K(u) = (1 — u?)?2I(Jul < 1) on the projected X-values X76.

In order to avoid problems with local minima a grid search was imple-
mented. The grid search was performed for ~ on the interval [0.05, 0.45] at 10
gridpoints. The projection vector 6 on the unit circle was parametrized by an
angle ¢ € [0, 7). The true parameter 6, corresponds to ¢, = 7 /4. Preliminary
computations showed that S(6, k) was very sensitive to ¢ & ¢, = [7/8, 37 /8]
in the sense that outside ¢, the objective function became very large. There-
fore we restricted our grid of 10 points for ¢ to the interval ¢,. In Table 1 we
report the results over 100 simulations. In this table the mean (and standard
errors) of A and ¢ [minimizing S(6, )] are given as a function of sample size
n and curve parameter C.

Table 1 confirms our theoretical results. As the sample size increases the
bandwidth % becomes smaller, the direction is more accurately estimated. The
shape parameter C has an influence on the selected (%, ¢). The direction and
the bandwidth are more accurately estimated for C = 4 with one exception in
the last row of Table 1. There the selected bandwidth for n = 200 was on the
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TABLE 1
Mean and standard deviations (in parentheses) of estimated direction and bandwidth as a
function of sample size n and curve parameter C

A

n C h 7]

25 1 0.244 (0.136) 0.752(0.117)
4 0.153 (0.079) 0.779 (0.098)

50 1 0.208 (0.133) 0.769 (0.110)
4 0.116 (0.064) 0.766 (0.103)

100 1 0.212 (0.116) 0.784 (0.105)
4 0.097 (0.045) 0.792 (0.084)

200 1 0.162 (0.046) 0.773(0.092)
4 0.156 (0.046) 0.782 (0.045)

average higher than for n = 100. The reported standard deriviations though
allow us to attribute this phenomenon to sample fluctuations.

A visual impression of what Table 1 means to the data can be obtained from
Figure 2. The kernel smoother g(«|6) was computed at the grid 0.1,0.2,...,1.3
for the optimum 8 and /. At each gridpoint we computed a 95% confidence
interval. The joined confidence intervals together with the true function
g(ul6,) and the mean of g‘(ulé) over the 200 simulations are shown.

As an application we have chosen the side impact example described in
Hardle and Stoker (1989), where also a table of the data is given. In this

A

1

1.0

0.8 0.9

0.5 0.6 0.7

! L L L { L L s L L L

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.3 0.4

FiG. 2. The true curve g(u; 1) (solid line), the mean of gr,;(ulé) over 200 simulations (long
dashes), the upper 95% confidence intervals (short dashes) and the lower 95% confidence
intervals (dotted line).
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example Y is binary; Y € {0,1} and the predictor variable is p = 3 dimen-
sional; there are n = 51 observations. The first variable corresponds to the age
of the subject, the second corresponds to the velocity of the automobile, and
the third corresponds to the maximal acceleration (upon impact) measured on
the subject’s 12th rib. The response variable corresponds to the severity of a
side impact accident. It is quite common for these kinds of data to postulate a
single-index model; see McCullagh and Nelder (1983).

We standardized the regressors; each variable is centered by its sample
mean and divided by its standard deviation. This enables a direct comparison
with the results by Hirdle and Stoker (1989).

Again we performed a grid search using the quartic kernel and found the
optimal parameters to be

6 =(0.3,0.3,0.9).

After normalizing the length of 6 vector to be 1, Hardle and Stoker (1989)
estimated 6, via the average derivative method to be (0.89, 0.34,0.30). The
advantage of our method is that the bandwidth choice is automatic. The
advantage of their method is that the estimator has a closed form once the
bandwidth is set in advance.

The dependence of S(§, k) on k can be seen from Figure 3 where we display
the objective function as a function of bandwidth. The parameter 6 is held

impact example

T T T T T L T T T Ly T T T T T

(@) —_— Il ] 1 L 1 | 1 —
— 1.0 1.4 1.8 22 26 3.0 34 3.8 4.2 4.6 5.0
h

Fic. 3. The objective function S(8, k) as a function of k.
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impact example

T T T ¥ T v T T T T

0 OOEDOGN O 000 Om a0 oo o =

g
0.35  0.55 0.75  0.95
T T T 17T T
AN
\
\
\
\
\
A\
\
\
Il 1

015
]

o 0 0m oo «Do oo o

-0 05

xxbeta, h=2, 3, 3.8

Fic. 4. The projected data {X; T8, Y)Y, and the optimal kernel regression estimate g(u|) with
6=1(03,0.3,09 and k = 2 (solzd line), h = 3 (dashed line), h = 2 (dotted line).

fixed at its respective optimum for that 4. One sees that the optimum & is
about 3.8 with a flat minimum of S(8, A). This optimal bandwidth leads to a
very smooth estimate of the link function g(u|8). The projected data though is
very similar to the indices published in Hardle and Stoker (1989).

Figure 4 shows the projected data X, T6 together with the estimated non-
parametric link function é;,(ulé)) For comparison we also display link func-
tions with smaller bandwidths.

As already noted in Hérdle and Stoker (1989), the nonparametric link
function shows an asymmetric shape. A bootstrap method for comparing this
model with a parametric one (e.g., with a logistic link function) is described in
Azzalini, Bowmann and Hardle (1989).

4. Proof of theorem. The proof is given only in outline and is divided
into nine steps, of which steps (iii)-(ix) control specific remainder terms. An
overview of the entire proof is given in step (i), which draws together the
various remainder term estimates from later steps.

If & denotes an event depending on the design sequence x,, x,,..., we say
that & occurs “with X-probability 1" if there exists a set E in the o-field
generated by #’= {X,, X,,...} such that P,(E) =1and E C &.
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Step (i): Preliminaries. Define S(0) = (Y, — g(8%x,10)}%,
D; = £,(65x,160) — 8(65x;), 8, = g(0"x,10) — g(67x;),
A; = 8,(07x,10) — g(67x;10) — {8:(03x,10,) — g(6%x;)}.
In this notation,

i i
whence

)s‘(e,h) — §(6) - D? + 2YDse,
i i

e gl g (pe))

+ 2’ Z’Diai) +2
i
We assume that |6 — 6,ll < Cn™1/% for a fixed constant C > 0. We may
write
1/2
(4.2) 0 =(1-m%)""0,+ nb4,

where 6, L 8,, and 6, is on the same plane as 6 and 6,,.
In outline, our argument from this point runs as follows. We show that with
X-probability 1, and for all ¢ > 0,

ZAZ 0 (n—2/5+§)
See steps (iii) and (iv). It is stralghtforward to prove that Y, E(D?) = O(n'/%),
whence T'(h) = T;D? = 0,(n'/®). By Taylor expansion from (4.2) it follows

that §, = O(n~Y 2) umformly in i (meaning, here and below, uniformly in i
such that X; € A). Therefore, ;62 = O(1), and so

et af ] (o) (] )

— Op{n—2/5+g + (n—2/5+g(n1/5))1/2} _ op(l),

on choosing 0 < ¢ < 1/5.

Steps (v) and (vi) show that |Z;D,s,| = O (n‘3/ 10+£)  and step (viii) that
IZ;A,6,l = 0,(n~175%¢), for all £ > 0. Therefore the right-hand side of (4.1)
equals o (1) We prove in step (vii) that the term Y D,¢;, which does not
depend on 6, is O,(n'/1°*¢). Hence, by (4.1),

8(6,h) = S(6) + T(h) + {term not depending on 6, of size 0,(n'/%)}
+0,(1).
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This formula, with the stated orders of the remainder terms, is available
uniformly in 0 € 0, and h € /%, thereby establishing (2.13) and (2.14).

Standard techniques for cross-validation in nonparametric regression [e.g.,
Hiirdle, Hall and Marron (1988)] may be used to show that T(h) = E{T(h)} +
op(n1/5) and E(T(h)} = J(h) + O(n'/?) [with J(h) defined at (2.5)] =
A h™' + Aynh* + O(n'/®), uniformly in h € #,. We show in step (ix) that
S(6) may be approximated by a quadratic form. Together, these results give
(2.15)-(2.17).

Step (ii). For the sake of brevity and clarity our estimation of remainder
terms in steps (iii)—(ix) is developed only for (arbitrary) single values 0 € O,
and h € #,. Uniformity is readily established by straightforward modifica-
tion of those arguments, as we show in the present step.

Let ¢,(6, h) be a (possibly random) quantity for which we show in steps
(iii)—(ix) that

(43) ¢n(0, h) = 0,(n%)

for arbitrary sequences 6 € ®, and h € H,. Examples include ¢, = I;A?
[from steps (iii) and (iv); call this Example 1] and ¢, = ¥ D;¢; [from step (viii);
call this Example 2]. We wish to strengthen (4.3) to

(44) sup e, (0,h)]=0,(n").
0€0,, he X,

The method of proving (4.3) is, in all cases, based on moment bounds. In the
case of Example 1 we show that E(¢,) = O(n®), and in the case of Example 2,
E(¢?%) = O(n?®), where b <a. The proofs given in steps (iii)—(ix) in fact
establish the moment bounds uniformly on 8 € ®, and h € #,. We claim
that the bounds may be strengthened to

(4.5) sup  E(g,/nt)" = 0(1)
0€0,, heH,

for all integers [ > 1. Accepting this for the time being, observe that if
@), c 0, and H, c H, are discrete sets each containing at most n° elements,
then for any a > 0,

P{ sup  |e,(0,h)] > an"}
0€0®,, he ¥

<2n°  sup  P{e,(6,h)]| > an?}
0€0@,,heH,

< 2n"(nb/an“)21 sup  E{p,(6, h)/nb}zl = 0(1),
0€0,, heH,

provided only that [ is chosen so large that ¢ < 2I(a — b). Therefore,
(4.6) sup ’|(p,,(0,h)| = 0,(n%),

0€0,,heH,
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for all sets O, c ©,, H, c H, whose cardinality increases no faster than a
polynomial function of n. By making use of the smoothness conditions im-
posed on f, g and K, we may readily prove that for any given a, if ¢ = c(a) is
sufficiently large, if @] denote regularly spaced sets of n° points within 0,
and &%, respectively, and if for each (8, h) € ®, X #,, 8’ and k' denote the
values in O, and &%, nearest to § and h, respectively, then

(4.7) sup  |o,(0,h) — @, (0, )| =0,(n%).
0€0,,heH,

Results (4.6) and (4.7) together imply (4.4).

It remains to prove (4.5), which may be done using Rosenthal’s inequality
[e.g., Hall and Heyde (1980), page 23]. We outline the method below in the case
of Example 1; other cases are similar. Write

¢, = LA = Y(EA,)" + 2Y(EA,) (A, — EA)) + Y (A; - EA,)?,
i i i i
and further decompose the last series as

YA, - EAi)z = Z,Ci{giz - O'(xi)z} + Y Y e, + Yeio(x;)?,

i j#i
for constants c; and c,;. Thus ¢, = ¢,; + ¢,2 + ¢,3, where

om = L(EA)” + Yeo(x,)?

12

is purely deterministic,
¢na = 2L (EA)(A; — EA)) + Yefe? — ()7}
i i
is a sum of independent random variables with zero means, and

(Pn3 = Z’ Z’cijgij = Z’(clj + c]l)glgj

i j#i Jj<i
i-1
’ ’
=YX (c;j +cji)ee;
i j=1

n i—1 n
! ! ’

= Y& ) (c;j+cj)e = Y. Z,,
i=2 j=1 i=2

where
i—1
!
Z;,=¢, Y. (c;; +cj)e;
j=1

Thus ¢,; is a martingale with differences Z;,. Arguing thus, and applying
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Rosenthal’s inequality for moments of martingales and sums of independent
random variables, we may prove that

B(e) = (o + B(et)"" + B(e2) ") = 0(n).

Of course, we need only a finite, sufficiently large value of /, and so not all
moments of ¢ need be assumed finite and bounded. However, our approach to
the proof does not produce a moderately conservative upper bound to the
number of moments required, and so we have asked in the statement of the
theorem that all moments be finite.

Step (iii). Here we show that with X-probability 1, and for all ¢ > 0,

(4.8) L/(EA;)* = O(n™%/°%).

Define u(x|6) = E(X,167X, = 6Tx). Observe that E(A;) = d,(6) — d,(6,),
where d(0) = E{8,(07x,|0)} — g(07x;10). In view of the representation (4.2) we
may write, for bounded x,

(4.9) g(0%x) = £(67x) — n(0%yx)g'(03x) + O(n ™),
(410)  g(07%10) = g(6%x) — n{6ou(10)}g’(63x) + O(n ™).
Therefore,

d,(6) = [ Y {g(6%x;) — g(67x,10) K, {67 (x; - xj)}]

j#i
-1
X[ Y Kh{()T(xi - xj)}]
j#i
=a,(0) + neg'o{“(xile)g,(agxi) - Vz(a)} +0(n™Y),
where a,(0) = b,(0)/c,(0),

b,(8) = (rh) ™' ¥ {g(67x;) — 8(67x,) K467 (=, — x,)},

ci(6) = (nh) ™" L K07 (x; — %)},
J#*i
V(o) = [(nh)‘l ¥ 5,6 (60, Kffo (x, - xj)}]ciw)‘l.

Observe next that w(x|8) — u(x|8,) = O(n"'/2) and Vi(0) — V(8,) =
O(n~12h 1) uniformly in i. Therefore,

(411)  E(A;) = di(0) — di(8,) = ai(8) —a,(6,) + O(n™'h™).
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Furthermore, b,(8) = O(h®n%) for all ¢ >0, c,(6,) is asymptotic to the
density of 67X evaluated at 61x;, and c,(8) — ¢,(6,) = O(n~'/?h~1). Hence,

a,(8) — a,(8o) = {b;(8) — b;(85)}e,(80) "
(4.12) +5,(0){e;(80) — c;(8)Hei(0)ci(80)}
= {b,(8) — b(80)}ci(6o) " + O(n~1/2¥¢h)

uniformly in i, for all ¢ > 0.
To develop an approximation to b,(8) — b;(8,), note that b,(6) represents
the observed value of B,(6, x;), where

By(0,x) = (nh) " ¥ {g(67X,) — (6™x) }K, {67 (x ~ x;)}-

J#i
Now,
(1 — n"Y)hE(B;(6,x) — B;(8,,%)}/P(X € A)
= E[{g(07X,4) — 2(05X,) — 8(6™x) + g(03x)} K67 (x — X,)}]
+ E({g(67X,) — g(67x)}[ K4{67 (x — X,)} — K467 (x — X,)}])
= hnohE[{X,g'(03X,) — xg'(02%) }K {00 (x — X4)}]
+ 105 E[{g(07X,) — g(63%)}(x — X)) K'{h 107 (x — X,)}]
+0(n71h)
= hng'(03x) E({030( X4 — x)} [ K{h 167 (x — X4)}
+{h=10%(x — X,)}K'{h 7107 (x — X,)}]) + O(n™'/?h?)
= 0(n~V%h?).
Therefore, E{B(0, x) — B,(8y, x)} = O(n"'/2h). More simply,
Var(B,(6,x) — By(85, %)} = O{(nh) *n(n~*2h"1)*h}
= 0(n"%h7%) = O{(n"h)},
and so
B;(8,x) — B(6,,x) = O,(n"?h).

An argument based on the Borel-Cantelli lemma may now be used to prove
that with X-probability 1, for all £ > 0,

b;(0) — b,(8,) = O(n~Y2%¢h) = O(n~7/10+8),
Substituting into (4.12), we deduce that a;(8) — a;(8,) = O(n~"/1°"¢), whence
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by (4.11), E(A,) = O(n~"/19%¢)_Since these estimates are available uniformly
in i, we obtain (4.8).
Step (iv). We prove that with X-probability 1,

(4.13) Y Var(4,;) = O(n~%).

Let ¢,(6) be as in the previous step and observe that

Var(4,) = (nk) 7 ¥ [ K407 (x; = x,)}e,(8)

J#i
_Kh{eoT(xi - xj)}ci(ao)—1]20_(xj)2
< 2(nh) * ¥ [ K407 (5 — x,)} — K65 (5, — x)}] c.(60) P (x;)?
+2(nk) ™ L K08 (x; — 1)) {ei(8) — ci(8,))
J#i
X {ei(0) = ci(80)} "o (x,)?
= 0{(nh) *n(n"V?h"Y’h} = O(n"2h"%),

uniformly in i. The desired result is immediate.
Step (v). We show that with X-probability 1 and for all ¢ > 0,

(4.14) = O(n~3/10+¢),

Y E(D;)s;

We may deduce from (4.9), (4.10) and the fact that wu(x|6) — u(xl8,) =
O(n~'?), that

8, = —nboo{x; — u(x,100)}8’ (65x;) + O(n™1)
uniformly in i. Let 5,(6), ¢;(6) be as in step (iii) of the proof and write y for the
density of 87X,. Then for all ¢ >0, c,(6,) — y(8%x,) = O(h®n%), b,(6,) =
O(h*nf), and
E(D,) = b,(60)ci(80) " = b,(60)7(68x,) " + O(htnt) = O(h2nf),

uniformly in i. Hence,

(4.15) Y'E(D;)8, = —nt + O(n~@/10+¢)

where

t= Z'()go{xi - M(xileo)}bi(ao)g'(egxi)Y(agxi)_1~
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Now, ¢ denotes the observed value of

T=13 Ya(X;, X)),

i j#i
where
a’(Xi’ Xj) = (nh)_lego{Xi - ,u(XiIBO)}<g(Bng) - g(BOTXi)}
X g'(egXi)Y(egXi)_lKh{eoT(Xi - X,)}-
Note that E{a(X;, X)I(X; € A)|6]X;, X;} = 0, whence E(T) = 0. Similarly,
Ela(X,, X;)a(X,, X)I(X;, X, €A)} =0

ifi#j,k#1,i+k,and (i, j) # (I, k). Therefore,

IO E{a(Xi,Xj)a(Xi,Xl)I(Xi EA)}‘

J ol oi#j,l

E(T?) = o[

+|X Y E{a(X,, X))a(X;, X,))I(X,, X, € A)}”
i%j
= O{(nh) *n(nh)’h* + (nh) *n?h%} = O(nh*).
An argument based on the Borel-Cantelli lemma may now be used to prove
that with X-probability 1, for all ¢> 0, T = O(n'/2*¢h?%). Hence, t =

O(n!/2+¢p?), Substituting into (4.15), we deduce (4.14).
Step (vi). Here we show that with X-probability 1 and for all ¢ > 0,

Var( Z’Di6i) = O(n_4/5+§).
Note that
Var( Z,Diai) = (nh)_z Z’u?o-(xj)z,
i J

where
u;= Y8,c,(00) K07 (x; —x;)}.
i#j

As in the previous step, we may Taylor-expand 8, and prove that with
X-probability 1, for all ¢> 0, and uniformly in 1<j<n, u;=—nu; +
O(n'/2*¢h3), where

v = L0%0{x; — w(xil00))e'(05x:) v(63x:) ~ Kif6] (x; - x,)).

L#j
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Therefore,
Var(Z'Diai) < 2(nh)'2 Zz'vza'(x ) + O(nth*).
i

Now, v; equals the observed value of V; = ¥}, ;6(X;, X;), where
b(X;, X;) = 05,{ X — n(X,10,)}g’ (egX )7(05X,) K67 (X, - X,)).

Methods similar to those in the previous step may be used to prove that
E(V;) = 0 and E(V?) = O(nh), whence £V? = O,(n’h). By an argument based

on the Borel- Cantelh lemma, Yv? = O(nz‘”fh) for all ¢ > 0, with X-probabil-
ity 1. Hence,

ar(E'OiSi) = O{(nh) *n®n®*¢h + nth*} = O(nh?),

as required.
Step (vii). We show that with X-probability 1 and for all ¢ > 0,

2
(4.16) E(Z’Diai) = O(n'/?+¢).
Note that E(D,) = O(h?n?) uniformly in i, for all £ > 0. Hence,
2
(417) B E’E(Di)si} = T(ED)o(x)° = O(nt*4h*) = 0(n/?*)

for all ¢ > 0. Define s,; = E{(D; — ED))e(D; — ED))¢;}. Then s; =
Var(D,)o(x,)?, and for i =#J,
—1

$ij = Kh{eg(xi - xj)}Kh{ooT(xj - xi)} L K05 (x; — x,)}

k+i

> Kh{ooT(xj - xk)}] "(xi)zo'(xj)z-

k+j

Therefore,
E{Z,(DZ_EDz)E} Zsu+ ZESU
(418) i i i#j
= O{nh* + n - nh(nh) "%} = O(n'/%).
The desired result (4.16) follows from (4.17) and (4.18).
Step (viii). We show that with X-probability 1 and for all £ > 0,

(4.19) E(Z’Aisi)z = O(n~2/5+¢),
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Note that E(A;) = O(n~"/1%*¢) uniformly in i; see step (iii). Therefore,
2
(4200 E[TEA)e) = DB 0(x)" = 0(n 2%%).
Furthermore, much as in the argument leading to (4.18),
2
E{ '(A; — EA, Ei} = 0{n(n"2h"3) + n - nh(nh) }(n"2p"1)
(421) Z ) {n( ) (nh)™*( )%}
= 0(n~%/5),

The claimed result (4.19) is a consequence of (4.20) and (4.21).
Step (ix). Define

W= Zl{xi — n(x;100)}Hox; — ﬂ(xi|00)}Tg'(00Txi)2~

We prove that
S()=Ye2-VIW-V
(4.22) J
+1(0 = 0, — n Wy 'V) Wy(0 — 8, — n W, V) + 0,(1).
By (4.9) and (4.10),
g(05%;) — 8(0™x;16) = n65o{n(x;10,) — x;}8'(65%;) + O(n™1),

whence
S = Z’{gi +g(0%x;) — g(GTinO)}z
- ngiz = 2065,V + n%05,W80 + 0,(1)
= Yef = nZ'Z + n(Wi/*180g — n” %0 2)" (Wi/*n8oe — n~202)

+ op(l),

where Z is an asymptotically normal N(0,I) random p-vector such that
V = n'2¢W}/?Z. The last line, which follows from the previous one on
“‘completing the squares,” implies (4.22).
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