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A BAYESIAN BOOTSTRAP FOR CENSORED DATA!

By ALBERT Y. Lo
SUNY at Buffalo

A Bayesian bootstrap for a censored data model is introduced. Its small
sample distributional properties are discussed and found to be similar to
Efron’s bootstrap for censored data. In the absence of censoring, the
Bayesian bootstrap for censored data reduces to Rubin’s Bayesian boot-
strap for complete data. A first-order large-sample theory is developed. This
theory shows that both censored data bootstraps are consistent bootstraps
for approximating the sampling distribution of the Kaplan—-Meier estima-
tor. It also shows that both bootstraps are consistent bootstraps for approx-
imating a posterior distribution of the survival function with respect to
each member of the class of conjugate beta-neutral process priors.

1. Introduction. The bootstrap method for censored data (CDB) was
suggested by Efron (1981). The CDB is derived from a frequentist viewpoint
and, in the absence of censoring, the CDB reduces to Efron’s (1979) complete
data bootstrap. Akritas (1986) showed that Efron’s CDB is consistent in
the sense that the conditional limiting distribution of the bootstrapped
Kaplan-Meier function is identical to the limiting distribution of the
Kaplan-Meier estimator [Breslow and Crowley (1974) and Gill (1983)]. Reid
(1981) discussed another resampling method for censored data; Akritas (1986)
showed that Reid’s method and Efron’s CDB are not asymptotically equiva-
lent.

This paper introduces a Bayesian analogue of Efron’s CDB, called the
Bayesian bootstrap for censored data (CDBB). The CDBB is defined by replac-
ing the 1’s in the Kaplan-Meier estimator by standard i.i.d. exponential
random variables (Section 2). This definition of a CDBB is analogous to a
definition of Rubin’s (1981) Bayesian bootstrap, in which the 1’s in the
empirical distribution function are replaced by standard i.i.d. exponential
random variables [see, e.g., Weng (1989)]. Furthermore, in the absence of
censoring, the CDBB reduces to Rubin’s (1981) Bayesian bootstrap for com-
plete data. Section 3 discusses the small-sample similarities between the CDB
and the CDBB.

Section 4 is concerned with the case of categorical censored data. It is shown
that the CDBB distribution is a posterior distribution with respect to a “flat”
prior. It is also shown that the CDBB is a consistent bootstrap approximation
to posterior distributions with respect to smooth prior densities.
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Section 5 shows that the CDBB and Efron’s CDB are asymptotically equiva-
lent. In both cases, the limiting conditional distribution of the bootstrapped
survival function is identical to that of the Kaplan-Meier estimator obtained
by Breslow and Crowley (1974) and Gill (1983).

Section 6 shows that the CDBB is consistent in approximating a posterior
distribution of the survival function for Bayesian nonparametric problems. A
solution to this problem requires a Bayesian version of Breslow and Crowley’s
(1974) functional central limit theorem. A class of conjugate neutral process
priors [Doksum (1974) and Ferguson and Phadia (1979)], called the beta-neu-
tral process prior [Hjort (1990)], is discussed. A path-wise definition of a
beta-neutral process prior using two gamma processes is introduced. Posterior
distributions of a survival function with respect to beta-neutral survival
process priors are shown to obey the Breslow~Crowley limit (Corollary 6.1).

Section 7 discusses a Markov chain property of the survival function, the
censored data and the censoring distributions.

ReEMARK 1.1. A referee pointed out that recently Hjort (1991) discussed
results for the cumulative hazard similar to Lemma 5.1 and Corollary 6.2, as
well as other interesting nonparametric bootstrap methods for censored data.

2. Censored data and the bootstraps. Suppose T,,...,T, are ii.d.
survival times which are censored on the right by n follow-up times, C,,...,C,,.
The survival function of T, is S(¢) = 1 — F(¢). The C,’s are independent,
and C, has a distribution function G,(c). We say that the observations

(Yy,8)),...,(Y,,8,) are sample data from a random censoring model (with
parameters F and G,’s) if

Yvi = min{Ti’ Ci}’
(2.1)

8;=1 ifT;<C; and §,=0 if T, > C,.
Suppose we observe (Y,8,) = (y,,8,), i =1,...,n [denoted concisely by

(Y, 8) = (y, 8)] from a random censoring model. Let £, < ¢4 < - <t4, be
the distinct ordered values for times to death (uncensored data). For j =
1,...,k, D(j) ={i: y; = t(j), , = 1} and R(j) = {i: y, is “alive” just before
time #(j)}. The number of elements of the sets D(j) and R(j) are denoted by
d; and r;, respectively.

The Kaplan-Meier estimator of S(¢#) =1 — F(¢) based on the (y,8) is
defined by

(2.2) Sit)= T1 (1— D 1/q2 1).

Jit(H<t qeD(j) €R(j)

Suppose the sampling distributional quantities of (S, S), given S, is of
interest. Efron’s (1981) CDB algorithm produces an approximation to the
sampling distributional quantities of 8($, S) (given S), as follows: One puts
the censored data (y,,$6,),...,(y,,d,) in an urn, and then takes an i.i.d.
sample from the urn to obtain a bootstrap sample (Y7*,87),...,(Y*, 8%).
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Construct a Kaplan-Meier estimator K*(¢) based on (Y{¥, 6%),...,(Y*, %)
and evaluate §* = 6(K*, S). Repeat this process B times to get 0%, ...,0%,
and use the empirical distribution function of 6%,..., 0% to approximate the
(sampling) distribution _Z{6(S, S)|S}, the sample variance of 6%,...,6% to
approximate Var{6(S, $)|S} and so on.

We next turn to the Bayesian bootstrap. For uncensored data, Rubin (1981)
proposed the use of the (infinite) Bayesian bootstrap, and compared it with
Efron’s (1979) bootstrap. Lo (1987, 1988) suggested the use of the Bayesian
bootstraps to approximate posterior distributions; Weng (1989) [see also Weng
(1988)] showed that the Bayesian bootstrap approximation is superior to the
standard normal approximation to a posterior distribution of the unknown
population mean with respect to a Dirichlet prior. For the random censoring
model (2.1), the primary interest for a Bayesian is the posterior distribution of
6(S, S) given (y, 8), and the CDBB provides an approximation to the posterior
quantities of (S, S) given (y, 8).

Rubin’s infinite Bayesian bootstrap is based on simulation rather than
resampling [see, however, Lo (1988)]; the CDBB is also based on simulation.
Let Z,,...,Z, be ii.d. standard exponential random variables. Replace the
“1’s” in the Kaplan—-Meier estimator (2.2) by “Z_’s” to obtain

(2.3) s 1y = TI (1 - yz/¥% zq).
Jirt(j<t qeD()) g<R(j)

Given (y, ), S*(¢) is a random survival function. For a Bayesian, S* plays
the role of Efron’s bootstrapped Kaplan—-Meier estimator. We call S*(¢) the
CDBB survival function. In the absence of censoring, S*(¢) reduces to 1 —
D*(¢) where
(2.4) D*(ty= Y [Z/(Z,+ +Zn)]I{y,St)'

l<i<n
Note that Z,/(Z; + --- +Z,) is distributed as the gaps of » — 1i.i.d. U(0,1)
random variables. The simulation of these gaps in D*(¢) is the basis of Rubin’s
(1981) Bayesian bootstrap. Likewise, the simulation of S*(¢) is the backbone
of the CDBB method. Next is the CDBB algorithm:

Simulation step: Simulate n i.i.d. standard exponential
random variables Z,,...,Z,.

(2.5) Construction step: Replace the ‘1’s’ in the
Kaplan-Meier estimator (2.2) by “Z_’s”’ to obtain S*(¢).

Evaluation step: Evaluate 6* = 6(S*, S).

Repeat the previous three steps a large number of times, say B times, to
obtain 6% = (S, 8),..., 0% = 05(S%, S), and use the empirical distribution
of 6%,...,0% to approximate the posterior distributions -Z{6(S*, §)I(y, 8)}
with respect to smooth priors.
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Consequently one can use the sample median, the sample average and the

sample variance of 6%, ..., 6% to approximate the posterior median of 6(S*, S),
the posterior mean of 6(S*, $) and the posterior variance of 8(S*, §), respec-
tively.

The following example illustrates the CDBB algorithm.

ExampLE 2.1. The following are times (weeks) of remission (i.e., freedom
from symptoms) of leukemia patients [Gehan (1965)]. Some patients are
treated with the drug 6-mercaptopurine, the others serving as a control.
Treatment allocation was randomized.

The treatment group data is

6,6,6,6+ ,7,9+,10,10+ ,11+ ,13,16,17+ ,19+ ,20+ ,22,23,25+ ,
32+ ,32+ ,34+ ,35+ .
(Times in “+”’ are censored data.)

To construct a (1 — a)-CDBB band for the survival function S(¢) based on
these data, we choose the functional

(2.6) 0* = 0(S*,S) =n'/? max )IS*(t)/§(t) - 1|3(t),

O<t<y(n

where

#(1) = C(T)?[[6(T) + E(1)],
Cy=n % dj/[("j - d;)r;]

J (=<t
and y(n) = max(y,}. The (1 — a)-CDBB (uniform) band is given by
NOET OV O] L

where z,_ is the (1 — a)-percentile point of the functional 6* = 6(S*, ).

The CDBB band obtained will only be uniform between two adjacent
uncensored data. Note that this functional (2.6) is an asymptotic pivotal
quantity if the ‘“true” survival function is continuous (see Corollary 5.1 in
Section 5). That is, the limiting distribution of 6* is independent of the *true”
survival function. The CDBB algorithm (2.5) is executed for the above func-
tional (2.6) based on Gehan’s (1965) data. Percentile points of the (finite
sample) conditional distribution for the functional (2.6) are given in Table 1
(B = 1000).

TABLE 1
50% 80% 90% 95% 98% 99% 99.5%
CDBB 0.535 0.77 0.932 1.07 1.21 1.34 1.39
CDB 0.558 0.81 0.98 1.09 1.23 1.339 1.51

G4; 1) 0.53 0.80 0.955 1.08 1.22 1.36 1.52
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In the third row, percentile points of Efron’s CDB distribution are dis-
played. The CDB results in a slightly wider band.

In the fourth row, we give results when gamma (4;1) Z,’s are used instead
of the standard exponential Z;’s in the CDBB algorithm. In this case the
correct functional is p X 6%, where p = E(Z,)/0(Z,). (See Remark 2.1.) The
band based on the gamma (4;1) CDBB appears to be a compromise between
the CDBB and CDB.

It is also noted that the histograms for the CDBB distributions are smoother
than that for the CDB; this point was also noted by Rubin (1981) in the
complete data case.

The construction of a CDBB-approximate HPD (highest posterior density)
region for the survival function is similar. The posterior distribution of the
survival function is an infinite dimensional distribution, and there are techni-
cal difficulties in evaluating and in defining the mode of an infinite dimensional
distribution. Here, the CDBB approximation is again useful. Note that S*
[conditional on (y, §)] is a finite dimensional vector. The mode of S* is
S [see Ferguson and Phadia (1979), page 180]. A CDBB approximate HPD
region for the survival function can be obtained by simulating 6* =
maxg ;< S (@) — S@)I.

REMARK 2.1. It is natural to ask whether we can use nonexponential
random variables Z; to play the role of the standard exponential Z;. In the
complete data situation, this method, called Bayesian bootstrap clones, has
been developed in Lo (1991). This theory is supported by a study of Weng
(1989) [see also Weng (1988)], Remark 2.3, who suggests the use of gamma
(4,1) Z;s instead. A corresponding theory for the censored data model (2.1)
based on simulating other independent Z,’s will be developed elsewhere.

REMARK 2.2. This section is concluded with a discussion of a Bayesian
bootstrap which has the ability to incorporate prior information. This has been
discussed by Lo (1988), Remark 3.1, for a simple random sampling model [Lo
(1986)]. In the present case, suppose the prior information is summarized by a
set of p prior censored data {(x;,d,),...,(x,,5,)}. Combine these prior data
with the current data {(y,, §,), i = 1,...,n} to get an updated data urn. Carry
out the Bayesian bootstrap algorithm using this updated urn instead of
{(9;,8,),i=1,...,n}). Here it is necessary to simulate n + p i.i.d. exponential
random variables Z; in each execution of the Bayesian bootstrap algorithm. It
is also preferable to simulate gamma («a;; 1) Z; corresponding to the prior data
x; (a; could be any nonnegative positive number). [The Z,’s corresponding to
the current data (y,, §,)’s continue to be standard exponential random vari-
ables.] These gamma random variables reflect one’s prior belief of the prior
data. The limiting case of this construction takes us into the domain of
Bayesian nonparametric inference; see Section 6. In a typical Bayesian ap-
proach, the posterior distribution is the distribution of a stochastic survival
process with infinitely many random jumps, which is another reason why a
Bayesian bootstrap approximation is useful.
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3. Small sample distributional properties of the CDBB. The CDBB
survival function S*(¢) is a cumulative product of independent beta (r; —
d;;d;) random variables. This property follows from Theorem 1.2.3 in Bickel
and Doksum (1977). As a consequence, the conditional mean of S*(¢) is

(3.1 E[S*(1)I(,8)] = 8(2),
which is defined on [0, max{y;}].

Efron’s bootstrapped Kaplan—-Meier function is a cumulative random prod-
uct of rescaled binomial random variables. Using the conditional arguments as
in Kaplan and Meier (1958), one sees that

(3.2) E[K*(1)I(y,8)] = 8(t)
defined on [0, max{y}}]. It is possible that max{y}} is less than max{y;}.
Next, we turn to the conditional variance of S*(#). Since given (y, §), S*(#)

is a product of independent beta (r; — d; d ;) random variables, the conditional
variance of S*(¢) is given by

ar{S*(¢)|(y,9)} =E[(S*(t))2|(y,5)] — E[S*(8)I(y,8)]
(29) ~ (8] x /[(r —dj)(r,+ 1)),

J: t(J)St

which is approximately equal to Greenwood’s formula [Kaplan and Meier
(1958)]

(3.4) [$()]* % /[(r d;)r;]
J: t(J)<t

[We retain the r; + 1 instead of an r; in the denominator of (3.3) to show the
effect of the posterior variance of a beta random variable.]

Note that Efron (1981) also showed that the variance of his bootstrapped
Kaplan-Meier function, given (y, 8), is approximately given by Greenwood’s
formula (3.4). Since both S*(¢) and K*(¢) have Greenwood’s formula as their
asymptotic (conditional) variance, it is to be expected that the two are first-order
large-sample equivalent. This theory will be developed in the next two sections.

There is an alternative description of the CDBB, employing the gaps of
n — 1 iid. uniform random variables; this is perhaps more in the spirit of
Rubin’s (1981) description of the Bayesian bootstrap. Suppose

0=U0)<U1)<U2)< - <Urn-1)<U(n)=1
are the order statistics of n — 1 ii.d. U(0,1) random variables with gaps
A;=U,—U;_, for j=1,...,n. Define U*(¢) based on the data {(y;,5,):
i=1,...,n} by

U*(¢) IT{1-Aa/[A+A;+ - +An]}6l

ity <t

[T {[1-U®l/[1-UG- 1],

: UG <t

(3.5)



106 A Y. 1O

where the last equality is in distribution (given the data) equality. Note that
Z{S*(-)|data} = Z{U*(-)|data}. In the case of no censoring (5, = 1 for all i),
the numerator of a term in the product cancels with the denominator of the
next term, and if U(j) < ¢ < U(j + 1), U*(¢) reduces to the numerator of the
last term, which is 1 — U(j).

REMARK 3.1. The CDBB survival function S*(¢#) can be represented alter-
natively via the CDBB cumulative hazard A*(¢) as follows:

(3.6) S*(t) = TT[L - AX“(s)],
s<t

where A*(s) is a cumulative sum of independent beta (d;,r, — d;) random
variables. Hjort (1991) suggested simulating these independent betas as the
basis of CDBB. Note that replacing the 1’s by i.i.d. exponential Z s in (2.3)
automatically produces these independent betas. It must also be pointed out
that simulating independent betas directly may not be as efficient as simulat-
ing i.i.d. exponentials.

4. CDBB in categorical models with smooth priors. Suppose both F
and the G,’s are concentrated on a finite set {a,,..., a,.,}, where a¢; < a, <

- <@y, and p;j=P{T =a;}, j=1,...,b + 1 are the cell probabilities; the
p;’s arein (0,1) with X, _ ; _, ., p; = 1. For censored data on the line that has
an intrinsic ordered structure, it is convenient to reparametrize this p =
(py1,..., Pp.1) by the discrete hazard rates

(4.1) Aj=P{T =a;}/P(T > a,}.

The likelihood function based on the data (y,?d), that is, Lik(A|data), is
proportional to

(4.2) TT (A)™(1—a)""%,
1<j<b

which is essentially a likelihood function of & independent binomial (r;;A;)
random variables. (Recall that d; equals the number of deaths at a; and r;
equals the number of units at risk just before time a;.) Assuming an indepen-
dent beta prior for the A;’s results in independent beta posteriors; see Cox and
Oakes (1984) and Hjort (1990). In particular, if one assigns a Dirichlet prior on
the cell probabilities p;, the map p = A = (A,,..., A,) induces an independent
beta prior on the A’s.

Assume a “flat” prior density 7;(A) (with respect to Lebesgue measure) for
the A;’s, that is, 7((A) = 1/TT,_; .,A;(1 — A;). [Note that m(dA) is o finite.]
Then the corresponding posterior distribution of the A;’s is given by the
following:

(@ A;’sl(y, &) are independent.
@) 2AI(y, 8), 70} = beta (d,;r, — d,), j=1,...,b.
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If the distribution of A ’s is specified by (i) and (i), I'T,. , ;)< {1 — A;) has the
same distribution as the CDBB survival function S*(#). In this sense, the
CDBB is a Bayesian method based on a “flat” prior. Note that if the A;’s are
independent, S(¢) =TT, ,,,<A1 —A,) is a “beta-neutral process” in time ¢
[Doksum (1974)]. This point will be generalized to a nonparametric setting in
Section 6. Meeden, Ghosh, Srinivasan and Vardeman (1989) also provide an
interesting discussion of the prior and posterior analysis for this model from a
decision theoretic viewpoint.

The next result states that for categorical models, the CDBB has the same
limiting distribution as the posterior distribution of the survival functions
with respect to smooth and fixed priors. In this sense, the CDBB is consistent
in approximating the posterior distribution for categorical models. In the
following, (y, &) is the initial segment of the sequence (y,, 8,), (35, 85), ... . Let
Ao = Ngpr-nsAgy)-

THEOREM 4.1. Suppose the following:

(i) Foreachj=1,...,b, )tj =d;/r; > 1, €0,Dandn"'r;—>1-H
(0, 1).

(ii) The (o finite) prior density w'(\) satisfies (a) 7'(A) is continuous and
positive in a neighborhood of Ay and (b) w'(A) X T1; _; .4A;(1 — A;) is bounded.

Then
AV [S(a,)/8(a,) = 1]:j=1,...,bl(5,8), 7} = AZ;: j=1,...,b},

where Z; =V, + -+ +V, and V’s are independent N(0,A,;/[(1 — H,;)
(1 -2 j)]) random variables.

REMARK 4.1. (i) Theorem 4.1 is formulated in a way that can be applied to
other sampling plans. Suppose the model (2.1) is actually incorrect (say the
T;’s are not actually i.i.d.), and a Bayesian computes the posterior distribution
based on the incorrect model (2.1). Theorem 4.1 still gives a limit theory for
this incorrect modelling as long as A; =d;/r; > Ay; €(0,1) and n~'r, -
1-H,,€(0,1.

(i) Suppose A;=d;/r; = Ay; €(0,1) and n~'r; > 1—H,; €(0,1) for
almost all (y;, 8,), (¥5,085),...,(¥,,8,),... . Then the conclusion of Theorem
4.1 holds for almost all (y;, 8,), (¥3,82); -+, ¥y 8,)5 - -« -

Theorem 4.1 is the consequence of the following two lemmas. In particular,
the first lemma, Lemma 4.1, already identifies the limiting distribution of the

CDBB.

LEI‘VIMA 4.1 ):j =d;/rj = A; €(0,1) and n”'r; > 1—-H,; €(0,1), for
eachj=1,...,b, imply

AV [S(ay)/8(a)) —1]:j=1,...,bl(3,8),m0) = £(Z;:j = 1,...,b).
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Proor. We first show that, as Xj - Agjand n7'r; > 1 — Hy;
(%= 4;)/61(3,8), 7m0} = N(0,1),
where 7 —(1—A)A ;/(r; + 1) for each j=1,...,b.
Suppressmg the subscrlpt J, let g, (&) = A+ to- Us1ng
P{(A—R)/6 <t} =P{N<r-1-dj,
where N is a binomial (r — 1;1 — g,(¢)) random variable with mean E(N)
and standard deviation o(N). Let h,(¢) =[r — 1 —d — E(N)]/o(N),
P{(A —R)/6 <t} = P{[N — E(N)]/o(N) < h,(t)}.
According to the Berry-Esseen theorem,

sup|P{[N — E(N)]/o(N) < h,(¢)} — ®(h,(¢))| = O(1/Vn).

It remains to show that
|@(h,(2)) = ()| < (2) AR, (2) — 8] - 0.

Note that |k ,(¢) — t| — 0 follows from ):j = Agjand n7'r; > 1 — Hy,.
The usual delta method can then be applied to conclude the proof. O

The following Lemma 4.2 states that for general Bayesian inference, a
posterior limiting distribution obtained for a prior i, implies that the limiting
posterior distribution is shared by other priors “close” to .

LeEMMA 4.2. Suppose a statistical model is defined by .#{datal6}, where
0 € R* is the parameter. Let m,(d0) be a o-finite prior for 0. The correspond-
ing posterior distribution of 6 is denoted by -#{0|data, ,}. Suppose, as n — o,
(@ § > 6, and (b) £{b,[6 — 6l|data, w,} — £{Z} for some increasing con-
stant b,,. Then for any o-finite prior m(d0) such that R(0) = [dw/dm,](0) (the
derivative of m with respect to ) is bounded, and is continuous and positive
in a neighborhood of 6,

(i) Z{b,[0 — §]data, 7} - £{Z}.
If 0R(0) is also bounded,
(ii) (b6 — 6, |\data, 7} - #(2},

where 97 is the posterior mean of 6 with respect to the prior .

Proor. Let g be any bounded and continuous function of 6. We have
E|g(b,[0 — 6])data, | = N,/D, (=0if D, = 0),

where N, = [g(b,¢)R(p + é)Qn((gqo), D, = [R(¢ + )Q(de) and Q, is a
posterior distribution of ¢ = [6 — 6] with respect to the prior .
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Note that (b) implies that @, converges weakly to a point mass at zero. Use
a multivariate extension of the analytic Lemma 4.1 in Doksum and Lo (1990)

to get

N, - R(0) [8(b,0)@.(d9)| 0

and
D~ R(5) [Q.(d9)| 0.
Note that
R(8) [2(b,¢)Qu(de) — R(6,)E[£(Z)]
and

R(0) [Q.(d¢) = R(6) — R(8,) > 0.

Hence N,/D, — E[g(Z)]. This completes the proof of (i); (ii) can be proved
similarly. O

Note that Lemma 4.2 does not require the existence of the likelihood
function for the statistical model _#{datal6}. In applications, we find the
posterior limit with respect to a convenient prior , (a conjugate prior, or a
o-finite “flat” prior), and then use Lemma 4.2 to obtain the posterior limit
with respect to other smooth priors. Theorem 4.1 is a case in point.

5. A large sample theory for the CDBB. The approximate conditional
moments of S*(¢) in Section 3 suggest that the (conditional) limiting distribu-
tion for S*(¢) should be identical to that of the Kaplan—Meier estimator
[Breslow and Crowley (1974)], and that of Efron’s (1981) bootstrap
Kaplan-Meier function [Akritas (1986)]. We discuss this phenomenon in this
section.

Next is the main central limit theorem. The key condition for (conditional)
central limit theorems to hold for Bayesians and bootstrappers is the conver-
gence of some averages of the sample. That is, some laws of large numbers for
the sample have to hold. In the case of a functional central limit theorem, the
condition is the convergence of some sample empirical functions. In the
following, we suppose the observation (y, §) is given, and is an initial segment
of the sequence (yy,8,), (y;,85),.... Let Y(¥) = L,_,_,8,[t,) denote the
number of observations (censored or not) in [#,«). For any (sub)distribution
function K on the line, let 75 = sup{s: K(¢) < 1} < .

AssumpTION 5.1. There exist (sub)distribution functions F, = 1 — S, and
H, on [0, ») such that for each b < 7,
(i) sup 1$(¢) — So(t) = 0,

0<t<b
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and

(ii) sup In 1Y () — (1 — Hy(¢7)) - 0.

0<t<d

These conditions are essentially functional forms for condition (i) in Theo-
rem 4.1. A typical situation is that Assumption 5.1 is valid for almost all
sample sequences (y;, 6,), (¥5, 85), . .. . In this case, (i) is the strong consistency
of the Kaplan—Meier estimator; (ii) is a strong law of large numbers.

The functions in (i) and (ii) are cadlag (right continuous with left limits)
functions. Let D[0, b] be the space of cadlag functions with uniform metric.
The convergence in (i) and (ii) is just convergence of random elements in
DI[0, b]. In this paper, convergence of distributions of random functions means
convergence in D[0, b] equipped with the uniform metric and the projection
o-field [see Chapter V in Pollard (1984)]. Let

Co(#) = [[{Sa(s)[1 = Ho(s)]) " So(ds).

Next is the main limit result. Let {W(s); s > 0} be a standard Brownian
motion, and {B(s); 0 < s < 1} be a Brownian bridge.

TuroreM 5.1.  Assumption 5.1 implies that
(0 2[8*(-)/8() = 1]I(3,8)} = AW(Co(+)))
or equivalently,
A(n2[8%(4) = 8()]i(y, 8)} = A{So() X W(Co())}.
(8*(6)/8(&) = 1if 8(t) = 0.)

REMARK 5.1. Suppose the conditions in Assumption 5.1 are valid with
P(-|S,, Hy)-probability 1, where P(-|S, H,) is the “true” joint distribution of
the sequence {(Y], §;)}. Then the conclusion of Theorem 5.1 is also valid with
P(-1S,, Hy)-probability 1. This implication is also valid in all the limit results
for the rest of the paper. Akritas (1986) obtained a functional central limit
theorem for the CDB in this P(-|S,, H,)-probability 1 setting.

The above Theorem 5.1, Theorem 2.1 in Akritas (1986) and the Breslow and
Crowley limit theorem (1974) [see also Gill (1983)] state that the sampling
distribution Z{n"/}S8(-)/S,(-) — 11IS,}, Efron’s (1981) CDB distribution
Z{nVAK*(-)/8() — 1ll(y, 8)} and Z{n*/HS*(-)/S(:) — 1]i(y, 8)} have the
same limiting distribution. Therefore, the CDB and the CDBB are first-order
asymptotically equivalent, and both CDB and CDBB are consistent bootstrap
methods in approximating the sampling distribution of the Kaplan-Meier
estimator.

The next corollary states a limit for an asymptotic pivotal quantity, and
results in a large-sample approximated band for the CDBB survival function.
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This type of large-sample band estimate was first studied by Hall and Wellner
(1980); see also Nair (1984) and Andersen and Borgan (1985). For ¢ < b < 7y,
let

C(1) =n[{8()¥(s)) " S(ds),
and

#(t) = C(0)*[[€(b) + C(1)].
It follows from Theorem 5.1 that:

CoroLLARY 5.1. Assumption 5.1 implies () if F, is continuous:

2 sup #(0)[n 2 $7(5)/8() ~ 1]|(r.0)) > #{ swp 1Bo)I};

0<t< 0<s<1/2

./{fobnl/z[S*(s) - §(s)] dsl(y,6)}
(i)
= [1T8o(s) x W(Cx())] ds).

The passage from Theorem 5.1 to Corollary 6.1 suggests that if the
functional of interest 6(S*, 8) can be written as a functional of S* — S,
say g(S* — 8) where g may depend on S, then the CDBB distribution
2{[6(S* — 8)]|(y, §)} approximates the posterior distribution

2{[o(5 - 9]z, )},
provided that Z{n'/4S(:) — S(II(y, 8)} also converges to Z{S,(-) X
W(C,(-)}. It follows from Theorem 4.1 that the CDBB is consistent for
categorical models with respect to smooth priors. For nonparametric models,

Corollary 6.1 in the next section states that the CDBB is consistent if the prior
of S(-) is a member of the beta-neutral process priors.

REMARK 5.2. If the functional of interest 6(S*, S) can be written as
6(S*,8) = 6(S*) - 6(9),

where 6(-) is a “differentiable” function of its argument [Chapter 6 in Serfling
(1980), Filippova (1961) and Gill (1989)]. Recent work of Arcones and Giné
(1991) [see also Babu (1984)] on (frequentist) bootstrapping U- and V-statis-
tics, and Theorem 5.1 suggest that, quite often #{n*/2g,(S; S* — S)|(y, &)}
and Z{n*/46(S*) — 6(S)] — lejsk_lgj(g; S* — 8)I(y, 8)} have the same
limiting distribution, where .Z{n’// 2gj(S; S* — 8)|(y, 8)} has a degenerate (at
zero) limiting distribution for j = 1,..., k& — 1. Usually

ni’?g(8;8* = 8) = [+ [h;(s) TI n'/*(S*~8)(ds;)

1<i<j
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for a suitable function A ;(s) (depending on $), j =1,...k. In view of Corol-
lary 6.1 in Section 6, these arguments are also valid with S replacing S*, and
the posterior distributions

j{nk/Z[O(S)—0(§)] - X gj(ﬁ;s—ﬁ)'(y"s)} and

l<j=<k-1
Z(n*%g,(8; 8 — 9)I(x, )}

have the same limiting distribution.
We next turn to the proof of Theorem 5.1. We will first prove a central limit

theorem for the CDBB cumulative hazard

(5.1) AM@)y= X Y Z, Y Z,.

Jrt(j)<t qeD(j) q€R())

Since A* is a cumulative sum of independent beta (d;,r; — d;) random
variables,

E[N()(y,8)] = X d;/r
Jit(j)<t
(5.2)
— [Y(s) ' N,(ds),
0
where N, (¢) = Zuﬁyu[O, t]. Furthermore, since

S@) = s]:[t[1 — AN,(s)/Y(s)] = s]:[t[1 - AA(s)],
AA(s) =AS(s)/S(s7)

and
A(t) =/:s‘(ds)/s7(s-).
Also,
Var[A*(£)I(y, 8)] = j.t(%q(rj +1)7 (1~ d;/ry)d;/r;
- fO‘{Y(s) + 1) [1 - AA(s)]A(ds).
Let

An#) = [{U = Ho(s )} (1 = AAo(5)]Ag(ds).

The next Lemma 5.1 gives a functional central limit theorem for the CDBB
cumulative hazard process A*, and prepares for the proof of Theorem 5.1.
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LeEmMma 5.1.  Assumption 5.1 implies that,
(5.3) A2 () = RO)]Iw, 8)) = A W(Aw()))}-

Proor. Suppose the uncensored data y,’s in the sequence (y,,d,),
(yg, 89), ... are all distinct, and S, is continuous. We first show convergence in
DI0, b] equipped with Skorohod metric. The convergence of finite-dimensional
distributions follows from Assumption 5.1 and Lindeberg’s theorem. To show
tightness, we let

Xx(t) = n'2[ A (2) — A(1)].
Note that for ¢; < ¢,,
P{X¥(t,) — X3 (8] = el(y,8)} < e 2E[IX3 (t,) — X3 (8)I%1(5,8)]

< 8‘2n/tt2{?(s) + 1}~1[1 - Af\(s)]f\(ds)

_ g—znf:z{y*'(s) +1) 7 [8(s)/8%(s7)] S (ds).

Therefore

lim sup P{IX7 (¢,) — X (¢,)] = el(y, 8))}
< &2 limsup n[ttz{?(s) + 1) [8(s)/8%(s7)] S (ds)

¢ _
= &7 [*{1 — Ho(s7)} [ So(s)/88(s7)] Solds)

1
by Assumption 5.1. According to the limiting form of the fluctuation inequality
of Billingsley (1968; Theorem 15.6, extended to DI[0, b)), the sequence X*(-) is
tight. Hence, -Z{X()I(y, 8)} > L {W(Agz(-))} in D[O, b] equipped with the
Skorohod metric. Since W(A(+)) has continuous paths, the convergence is
also valid in D[0, b] equipped with the uniform metric.

Next, according to Skorohod’s a.s. representation, there are D[0, bl-valued

random functions X,(-) and W(-) such that

XN, 8)} = A{X:()I(y, 8)},
AW(An())} = L{W(An())

sup |X'n(s) - W(AHO(S))I — 0 almost surely P(-ly,d).

0<s<b
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By Assumption 5.1,

sup IW(AHO(S)) — W(A(s))l — 0 almost surely P(-|y,d).

0<s<b

Therefore, for any subset of the y,’s, say #(1) < --- < ¢(k), we have
max [ X,(¢())) = W(A(#()))]

(5.4) %

< sup |Xn(s)— (f\(s))l—>0 almost surely P(-|y,d).

O0<s<b

In the general case (the y,’s may have ties, and S, may be discontinuous),
let (1) < --- < t(k) be the distinct values of the y,’s. The corresponding
X*(-) is constant between adjacent #(j)’s, and at #(j), X*(-) is equal to the
value of an X3(:) corresponding to a sequence (y,, 1) (9, 85), ... with
distinct y,’s. The behaviour of A(+) is similar. By (5.4), a version of X *( ), also
denoted by X,(s), also obeys

sup ’Xn(s) - (/AX(s))| — 0 almost surely P(-|y, 8).

O0<s<b

Therefore, .#{ Xn(-)l(y, 8)} and -Z{W(A(-))} have the same limit. It remains to
note that _Z{W(A(-))} - Z{W(A HO(-))} under Assumption 5.1. O

REMARK 5.3. The preceding method of proof avoids the explicit construc-
tion of quantile transforms [Akritas (1986) and Lo (1988)]. This method is
essentially an example of a technique mentioned by Le Cam [(1986), page 531].

PrOOF OF THEOREM 5.1. Put A* = A, and A = B in Proposition A.4.1. in
Gill [(1980), page 153]. Then, Z* = n'/2[S*(-)/8(-) — 1] can be represented as

(5.5) Z5(t) = —fOtM*(s)\/rT{A*(ds) — A(ds))},
where
M*(s) = [8*(s7)/8(s7)] x [1 - AA(s)] T = 8*(s7) /8(s).

Define a map h from D;[0,b] X D[0,b] to D[0,b] by A(u(-),uv(-)) = 2(-),
where

(5.6) 2(t) = fO‘u(s)u(ds),

and D,[0, b] is the space of caglad (left continuous with right limits) functions
equipped with uniform metric. Convergence of order pairs is defined to be
coordinatewise convergence. The map A(-, - ) is continuous.
Let U*(s) = 8*(s7)/S(s™) = M*(s)§(s)/§(s ), and V*(¢) =
US8(s7)/8(s)]1X*(ds). Then h(U*,V*) = Z*,
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Since [I1;a; — I1;6; < Xjla; — b;| for a’s and b’s with norm 1,

(5.7 suplS*(¢) —S(t) < X W —d,/rl,

t<b Jjit(j)<b

where A;’s are independent beta (d sr—d ;) random variables. Hence,

P{sup|S*(t) NI el(y,ﬁ)}
t<b

(5.:8) < e-zf”{?(s) + 1) [1 - AA(s)]A(ds)
0
=0(n™1)
by Assumption 5.1. Therefore,
(5.9) sup|U*(¢) — 1| > 0 in P(|y, §)-probability.

t<b

Furthermore, Lemma 5.1 implies that
(5.10) AV, 8)} > AW(Co(-))}-

An application of the continuous mapping theorem [Pollard (1984), page 70]
concludes the proof. O

REMARK 5.4. In a previous version, a direct proof of a probability 1 version
of Theorem 5.1 is given based on an application of Rebolledo’s (1980) central
limit theorem for martingale process, and the fact that Z* in (5.5) is a
martingale process with compensator

(25, 22)() = n [ [M*(9)] (X5, X3)(ds) = Var(XE(1)|(5,9))
(5.11) - nfo’[M*(s)]z{Y(s) +1)7'[1 - aA(s)]A(ds)

= nj;t[S*(S_)/g(s_)]z{g(S)[YA'(S) + 1]>_1,§(d3)

This martingale-method proof is parallel to the work of Gill (1980) on weak
convergence of the Kaplan—Meier estimator, and the work of Akritas (1986) on
the frequentist bootstrap version of it.

6. A limiting posterior distribution for a survival function. Sup-
pose the survival function may not be categorical, and m(dS(-)) is a prior on
the space of survival functions. Will the posterior distribution with respect to
this prior , that is, .£Z{n*/4S(-)/S(-) — 1l|(y, §), 7}, and its CDBB analogue
Z{nYS*(-)/S — 11|(y, 8)} have the same limiting distribution? An affirma-
tive answer to this question will indicate that the CDBB is a consistent
bootstrap method for a Bayesian equipped with the prior 7. Bayesians had
been remarkably silent on this topic: The limiting posterior distribution of
Z{n?8(-)/8(-) — 1](y, 8), w} had not yet been found for any nonparamet-
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ric prior 7(dS(-)). The following Corollary 6.1 is a result in this direction (see
also Corollary 6.2 and Remark 1.1).

The lack of such a Bayesian version of the Breslow—-Crowley limit theorem
stemmed from the complexities in the description of the posterior distribution
of the survival function. Furthermore, different researchers seem to favor
different model assumptions. For example, Susarla and Van Ryzin (1976)
assume that the G;’s are known and identical, whereas Ferguson and Phadia
(1979) assume that G; is a point mass distribution (a deterministic model). It
is not clear that whether the results obtained for one model of (2.1) also apply
to another model of (2.1). This point was also mentioned by Ferguson and
Phadia [(1979), page 178]. Lemma 7.1 in Section 7 clarifies this situation.
Essentially it states that, if F' and the G,’s are independent according to the
prior, once the censored data are given, one can operate as if one is working
with a deterministic model (with the G,’s being point mass at the incomplete
data). That is, with such an independent prior, knowing G,’s or not does not
affect the statistical inference of S(-).

Next, we turn to discuss the posterior distributions. The first approach
[Susarla and Van Ryzin (1976)] assumes a Dirichlet prior [Ferguson (1973)] for
the survival function S(¢). However, Blum and Susarla (1977) identified the
posterior distribution as a mixture of Dirichlet processes [Antoniak (1974)],
which is difficult to handle. In a far-reaching study, Ferguson and Phadia
(1979) showed that neutral processes priors [Doksum (1974)] on S(¢) are
conjugate priors, and that the posterior moment generating function of S(¢)
can be evaluated. In view of Lemma 7.1, Ferguson and Phadia’s result implies
that the mixture of Dirichlet processes encountered by Susarla and Van Ryzin
(1976) is a neutral process. An important technical point for the Doksum-
Ferguson-Phadia approach is that they reparametrized the model by the
cumulative hazard Y(¢) = —log(S(#)), and the prior to posterior analysis is
essentially carried out for the independent increment process Y(2).

When this paper was written, Hjort (1990) appeared. This section is rewrit-
ten to relate to his approach. Hjort (1990) reparametrized the survival func-
tion by the so-called ‘““infinitesimal” cumulative hazard A(¢). He gave a full
description of a posterior distribution of A(¢) with respect to an independent
increment process prior for A(¢). An independent increment cumulative haz-
ard rate A(#) gives rise to a neutral process survival function S(¢), and
Ferguson and Phadia’s (1979) results on the posterior distribution of a neutral
survival process can be applied to obtain Hjort’s theory. This was also noted by
Hjort [(1990), page 1274]. On the other hand, Hjort’s (1990) method produces
a class of beta cumulative hazard processes which is a conjugate family of
priors for the cumulative hazard [see Corollary 4.1 in Hjort (1990)], and the
following Corollary 6.1 states that the posterior distribution of the correspond-
ing beta-neutral survival process has a Breslow—Crowley limit.

We first discuss a simple beta-neutral survival process which does not
require an ‘‘infinitesimal’’ definition. An advantage of the simple beta-neutral
process is that it can be understood without infinitesimal calculus. For any
measure v on [0, ), let »(¢) be the corresponding cumulative function »(¢) =
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v{[0, t]}. Let a be a finite measure on [0, »), let B be another finite measure
with atoms at the ¢ s,

07=cy<c; <+ <e, <Cpyq = .

Let u,(t) be a gamma process with shape measure « [i.e., (a) u (¢) is a gamma
(a(t); 1) random variable for each ¢, and (b) u(+) is an independent increment
process]; independently let u4(#) be a gamma process with shape measure B.
Define a neutral process as follows: for ¢ € (¢, ¢, 1],

< Kolcjs®) + pg(cj_y,)
S.p(t) = T1
j<k #a(cj_1,°°) + /-Lﬁ(cj—l’oo)

(6.1) wo(£,%) + g(cpr )

PalChr®) + pg(cr, )

Note that .S~'a, p relativized to the interval (c,, ¢, ,] eliminates the effect of B,
and is a Dirichlet process on (¢, ¢, ;] with shape measure «a.

It is tempting to let the step function 8 tend to a limit, also denoted by B,
and the resulting beta-neutral process will be a natural extension to (6.1).
Indeed, this limiting procedure has been carried out by Hjort (1990) in the
context of the beta cumulative hazard model, which requires perhaps unneces-
sary restrictions on « and B (see Remark 6.1). A direct approach, pioneered by
Ferguson (1973) and Doksum (1974), is more desirable. This leads to the
following path-wise definition of a beta-neutral process for general @ and B.

To do this, note that for any collection of a;’s such that {a;} contains {c;},
S., g(t) in (6.1) can be rewritten as a finer cumulative product with the a,’s
playing the same role as the c,’s. This ‘““self-consistency’’ property suggests the
following construction of a beta-neutral survival process. This construction is
analogous to Ferguson’s (1973) second definition of a Dirichlet process based
on a gamma process. Thinking as a Bayesian, one sees that Ferguson (1973)
uses one gamma process to summarize the information conveyed by prior
complete data. It is therefore natural to expect that another gamma process is
required to summarize the prior information carried by the incomplete data.
Let a and B be finite measures that summarize the prior information carried
by prior complete and incomplete data, respectively. Let u, and u, be inde-
pendent gamma processes with shape measures a and B, respectively. Note
that u, and uz have discrete paths (see Remark 6.2). Therefore we can define,
path-wise, a Bayesian copy of the Kaplan—-Meier function

Koy, ) + mgly,®)

Sa’ﬁ(t) - y:y<t 'u,a[y,oo) + l*’“ﬁ[y7°°)
(6.2) -l Ap(y)
yiy<t 'u,a[y,oo) + “B[y’w) '

The product is overall (random) y such that Au (y) = u,({y}) > 0.



118 A Y.LO

DEFINITION 6.1. S, 4(2) is called a beta-neutral process with parameters o
and B. Notation: S, 4(-) ~ BN(a; B).

If B is atomic, then (6.2) reduces to (6.1) (note that (07, ¢,] is [0, ¢,]. If
B =0, (6.2) reduces to u(¢)/u,l0,*), which is Ferguson’s (1973) second
definition of a Dirichlet process.

Recall {y,} is the subset of uncensored data, and let {y} be the subset of
incomplete data. Note that {y,} U{y) ={y;: i = 1,...,n}. We will study the
limiting distribution of a BN(a + 2,8, ;B8 + L.5,) process conditional on
(y, 8). Note that Hjort (1990), Corollary 4.1, can be used to deduce that a
BN(a + X,8, ;B + L3, ) distribution is the posterior distribution of a sur-
vival function if the prior is a BN(«; 8) survival process. Hjort’s result requires
both a(¢) and B(¢) to be piece-wise continuous, and that « has at most finitely
many jumps (see Remark 6.1). These conditions are perhaps unnecessary.
Hjort’s result (extended to an arbitrary and finite ) also implies that if one
assumes a simple beta-neutral process prior (6.1), the posterior survival func-
tion is a BN(e + £,8, ;8 + L.8,) process. Since a BN(«, 0) process is a
Dirichlet process, the mixture of Dirichlet processes encountered by Susarla
and Van Ryzin (1976) is in fact a BN(a + X,8, ; 8 + X.8,) process. While
these results can also be deduced from Ferguson and Phadia’s (1979) work on
neutral processes with censored data, it is expected that a careful execution of
Doksum’s (1974) method of proof will yield the result for arbitrary (finite) «
and B. [Both Ferguson and Phadia (1979) and Hjort (1990) use the Lévy
representation for an independent increment process as their main technique.]
We now turn to the asymptotic theory.

The path-wise definition (6.2) for a beta-neutral process also paves the way
for an easy proof of a large-sample theory for the posterior distribution of the
survival function. This method, however, requires that we ‘tailor-make” a
posterior BN(a + X,8, ;8 + L.8, ) process. Let u, and uz be two indepen-
dent gamma processes and let Z,, Z,, ... bei.i.d. standard exponential random
variables; the u’s and the Z’s are assumed to be independent. Given the data
(5,8), let u, (&) =p () +L,Z,6,(t)and ug () = pg(t) + X.Z.8,(t). Routine
computation shows that ,U«a,,(t) and pg(¢) are gamma processes with shape
measures a, =a +X,0, and B, =p + L., , respectively. Following the
path-wise definition of a ““prior”’ beta-neutral process given in (6.2), we define,
path-wise, a “‘posterior”’ beta-neutral process as follows:

B ~ Ap,(y)
(6.3) Se,.8.(t) = y:yng Mo Ly, 0) + g [y,0) |

Note that S, ,(¢) is a beta-neutral («,;B,) process. Letting @ - 0 and
B — O results in a BN(Z, 3, ; 2.8, ) distribution for a survival function. This is
the CDBB distribution of S*(-), as can be seen from (6.3) with « = 0 and
B = 0. In this sense, the CDBB distribution for S*(-) is a posterior distribu-
tion with respect to a ‘“flat’’ beta-neutral prior. The next result states that the

(uniform) distance between S, ,(#) and S*(¢) goes to zero as fast as n™".
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THEOREM 6.1. Assumption 5.1 implies that

suplS, 5 (t) —8*(t)l=0(n""), a.s.P(‘ly,8).
t<b

Proor. We shall apply the inequality |I1;a; — I1;b;l < X/la; — b,| for a’s
and b’s with norm 1. Let Y*(s) = ,;Z,5, [s,») and N (¢) = ZuZuﬁyu[O, t]:

i 14 yl
A AN*
1S,,,6.(8) = S*() = ¥ ED) _ AN (¥)
(6.4) o yiy<t Nan[y,w) +/.L3n[y,oo) Y*(y)
= Y {A,+B)},
y:y<t
where
A — Apq(y)
7 I‘Lan[y,oo) + /.LBn[y,Oo)
and

- AN:(y) /’La[y’oo) +l"(‘a[y’°°)
YOYRY) R [Y®) gy, o)
A,and ¥

It remains to bound L, , _, B,.Let y(n) = max{y;:i = 1,...,n},

and b, = min{b, y(n)}:
Z Ay =< ”La(t)//“‘l’an+ﬂn[t’°°)

y:y<t

y:y<t

(6:5) < 1a(bn) /b, 15, nr )

=0(1/n) a.s. P(|y,8) by Assumption 5.1.

[This is a conditional big “O”, i.e., the constant in the big “O” is a finite
random variable.] Next,

Z By < {I'La+ﬁ[0’°°)/l’l‘an+ﬁn[t’°°)} X {N:(t)/Y*(t)}

y:y<t
(66) < {Barl0,%) /b, o5, [02s )} X (NEF(B) /Y*(B,)
=0(1/n) a.s.P('ly,d8) by Assumption 5.1. o

Theorem 5.1 and Theorem 6.1 imply the following Bayesian version of the
Breslow and Crowley limit theorem (see also Remark 6.3). Define

Z,(t) =S, 4(t)/8(t) - 1].

COROLLARY 6.1. Assumption 5.1 implies

@) Zn[8,.5()/8C) = 1]i(3.8)} > L(W(Co())),
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or equivalently
Ar S, 5() = SO, 8)) = ASo(+) X W(Co()};

(i) if F, is continuous,

./{ sup #(8)lnl2[ S, ,()/8(¢) - 1] |(y,6)>

0<t<bd

- /{ sup IB(s)I};

0<s<1/2

/{]{)”nlﬂ[samﬁn(s) - 8(s)] dsl(y, 5)}
(iii)
ﬂ/{fob[so(s) X W(Co(s))] ds}.

We conclude this study by a discussion of the large-sample behavior of
Hjort’s (1990) beta cumulative hazard which is not the emphasis in this paper.
An inspection of (6.2) suggests the following alternative path-wise definition of
a “prior”’ beta cumulative hazards

(6.7) A p() = [To<scnpa(ds)/(pals,©) + ugls, ).

A moment of reflection, using Theorem 1.2.3 in Bickel and Doksum (1977),
indicates that A, 4(¢) is an independent increment process. A “‘posterior” beta
cumulative hazard is given by A, p(¢). From the proof of Theorem 6.1, we
note that:

THEOREM 6.2. Assumption 5.1 implies that
suplA, g (t) — A*(¢)l =0(n™'), a.s. P(‘ly,d).
t<b

The following result then follows from Lemma 5.1.

COROLLARY 6.2. Assumption 5.1 implies that
A8, 60) = AO|2 )} > AW (An()}-

REMARK 6.1. Corollary 4.1 in Hjort (1990) requires that the prior parame-
ters for his ‘“infinitesimal” hazard rate model be (i) ¢(¢) is piecewise continu-
ous and (ii) Ay(¢) jumps only a finite number of times. Note that c(z) =
alt, ) + Blt,0) and Ay (¢) = [Hals,®) + B[s, )} 'a(ds). For the survival
function model considered here, these conditions become (i) both « and B are
piecewise continuous and (ii) a(#) jumps only a finite number of times.

REMARK 6.2. For this path-wise construction to be well defined, it is
required that u, (and /.LB), rather than the usual a ‘““version” of it, to have
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discrete paths. A simple proof of this phenomenon is given in Corollary 3.1 in
Lo and Weng (1989). See also Kingman (1975) which discusses the fine points
of the path properties of a random distribution, and that of the path property
of its ““ versions.”

ReEMARK 6.3. Several authors suggest the investigation of the sampling
distribution of the posterior mean [Susarla and Van Ryzin (1978) and Hjort
(1990)]. Inequalities (6.4), (6.5) and (6.6) yield that the uniform distance
between E[Sa,,, ﬁn(t)l(y, 8)] and S(#) (and between E[Aa,,, ﬁn(t)l(y, 8)] and A(2))
is O(n~1!). Hence, Susarla and Van Ryzin’s (1978) result on the limiting
sampling distribution of E[S, ,(#)|(y,8)] follows from that of S(#), which
was obtained by Breslow and Crowley (1974). However, the study of the
posterior distribution, rather than its mean, is of primary interest to Bayesians.

7. Conjugate independent priors for sampling from a random cen-
soring model. In this section, we discuss a conjugate prior property for
sampling from a random censoring model. This result states essentially that if
the model is defined by (2.1), and if the survival function F and the censoring
distributions G are independent under the prior distribution, F,(Y,$),G is a
three-term Markov chain. As an application, the posterior means of the
neutral survival process derived by Ferguson and Phadia (1979) under a
deterministic censoring model apply also to random censoring models.

Recall model (2.1): T = {T\,...,T,},C={C,,...,C,} and G = {G,,...,G,}.
For i=1,...,n, Y,=min{T,,C}; 6,=1if T, <C; and §,=0 if T,> C,.
Suppose (Y, 8) = (y, 8), then (y, §) carry the same amount of information as
{y,, ueU}U{y,: ceC})where U={i: 5, =1} and C = {i: §, = 0}.

Lemma 7.1. Suppose F and G are independent according to the prior
distribution, and given F and G, (Y, 8) is a sample from model (2.1). Then,

given (Y,8) =(y,8), () F and G remain to be independent, and (ii) the
posterior distribution of F is given by, for all (measurable) h > 0,

E[h(F)I(Y,5) = (1,9),G]
= [ [R(F)m(dfIT)P{d(T)IT, = y,,u € U; T, > y,, c € C},
provided that P{T, > y,,c € C|IT, =y,, u € U} > 0.
Proor. Note that

w(dF|Y,5,G) = fw(dFlT, Y,8,G)P(dT|Y,s,G)

- fw(dF|T)P{dTIY,8,G}

since F,T,(Y, 8, G) is a three-term Markov chain.
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It remains to identify P(dT|Y, s, G).

(i) Suppose 6 = 1, then Y =T, and P{dT|Y, 1, G} is a point mass at T'.
(ii) Suppose 6 = 0, then Y = C, and P{dT|Y,0,G} = P{dT|C, 0} is the con-
ditional distribution of T given T > C, defined for almost all C.

To complete the proof of the Lemma, we first use (i) to update the prior
based on the complete data to get m(dF|y,, u € U), and then use (ii) to update
this posterior based on the incomplete data {y., ¢ € C} to conclude the proof of
Lemma 7.1. O
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