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ESTIMATING CONDITIONAL QUANTILES AT THE ROOT
OF A REGRESSION FUNCTION

By HARI MUKERJEE
Wichita State University

The Robbins—Monro process X, ,; = X,, — ¢, Y, is a standard stochas-
tic approximation method for estimating the root 6 of an unknown regres-
sion function. There is a vast literature on the convergence properties of
X,, to 6. In practice, one is also interested in the conditional distribution of
the system under the sequential control when the control is set at 6 or near
6. This problem appears to have received no attention in the literature. We
introduce an estimator using methods of nonparametric conditional quan-
tile estimation and derive its asymptotic properties.

1. Introduction. Suppose that F(-|x) is a distribution function (d.f.) for
each x € R with finite mean m(x) and that m(x) = 0 has a unique root 6. The
Robbins-Monro (RM) (1951) procedure for sequentially estimating 6 is as
follows: Let X; be an arbitrary random variable (r.v.). Observe Y; at X;, that
is, Y, is an unbiased sample from the (random) d.f. F(-|X,). For n > 1 define
recursively

(1) Xn+1=Xn_cnYn’

where {c,} is a sequence of nonnegative constants and the conditional distribu-
tion of Y, given {X,,,..., X }is F(:|X,).

This procedure and its many variations have been studied extensively. The
convergence almost everywhere, in mean square and in probability of X, to 6
have been studied as has the asymptotic distribution of X, ; see, for example,
Robbins and Monro (1951), Chung (1954), Blum (1954), Sacks (1958), Venter
(1967), Fabian (1968), Goodsell and Hanson (1977), Kersting (1977) and
Ruppert (1982). However, m(6) = 0 is just a one-point summary of the
“performance” F(-|0) of the system under the sequential control when the
control is set at the desirable value 6. In practice, one is also interested in
various quantiles of F(-|x) for x near 6. For example, if F(:|x) represents
the chemical content of a product at the control setting x, one might desire to
obtain an average of m(0), but it may also be of interest to know what the 95
percentile, say, of the chemical content of the product is without stopping the
recursive control process. These quantiles could be approximated by the
estimated quantiles of F(-|@) if F(:|x) varies smoothly in x near 6.

Nonparametric conditional quantile estimation using the nearest neighbor
and kernel methods has been treated by Stone (1977) and Bhattacharya and
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Gangopadhyay (1990), among others. The basic idea is to estimate a condi-
tional quantile at 6 by the corresponding sample quantile of the ‘“observations”
at the “observation points” in a small neighborhood of 6 assuming sufficient
smoothness of the conditional quantile function. A Bahadur-type representa-
tion of the resulting estimator and its asymptotic normality with a norming by
n®/® have been obtained for optimum bandwidths. However, these are based
on independent identically distributed (i.i.d.) bivariate observations with the
conditioning variable having a smooth positive density at 6. Nevertheless, a
similar nonparametric estimator could be used for our problem. The analysis
will differ from the usual nonparametric procedures for the following reasons:

1. The point 6 is unknown.

2. The distribution of {X,, — 6} is not known nearly as.precisely as in the i.i.d.
case.

3. The observations {Y,} are not independent because of the strong depen-
dence structure in the observation points {X,,}.

However, we enjoy the following compensating features in our problem:
(i) X, — 6 almost surely, and “fast”; (ii) the key sequence, {I(Y; <y,;) —
P(Y; < y;1X,)}, forms a martingale difference sequence.

For a fixed 0 <p <1 let ¢p = ¢ denote the p-quantile of F(:|9). Let
1 <k, <n be a positive integer sequence and let I, ={n — %k, + 1,...,n}.
We write £ for k£, and let X(-);, without the range of summation, indicate
X;e1(*);. Define the empirical d.f. of {Y;: i € I} by

Bty = 7 TI(Y, < 1)
and define the estimator of ¢ after n observations by
£, = the [ kp]th order statistic of {Y;: i € I}
= inf{t: F,(t) > [kp]/k}.

Our main result is a Bahadur-type almost sure representation of £, — ¢ as an
average of an i.i.d. sequence with a remainder term. The strong consistency of

¢, its asymptotic normality and a law of the iterated logarithm follow easily
from this representation.

2. Main results and proofs. Consider the following assumptions for the
RM procedure (1) with ¢, = ¢/n for some ¢ > 0:

Cl. m(x)=alx—0)+o(x—60)asx—6,a>0.
C2. m(x)x —6)>0forall x + 6.

C3. [2.[y — m(x)PF(dy|x) = 0%(x) > c2(0) =062 >0 as x — 6 and
EX? < .
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C4. m%(x) + o%(x) < K11 + x2) for some K > 0.
C5. supy,_g <5/ ly — m(x)I**°F(dylx) < = for some 8 and &' > 0.

THEOREM 1 [Gaposhkin and Krasulina (1974)]. If ca > 1/2 then, under
C1-Cs5,
nt/ 2( - 0) co

(2log, n)”  (2ca —1)2

lim sup

The condition ca > 1/2 can be satisfied in practice by choosing ¢ large
enough. For estimating the p-quantile of F(-|§) we make the further assump-
tions:

C6. k=o(n)and 1/k = o(y/log, n/n).

C7. Assume that there exists ¢ > 0 such that (i) f(ylx) = F,(y|x) exists for
lx — 0] <& (i) f(£16) > 0, where F(£|0) = p, and f,(£]6) ex1sts, and (iii) for
|lx — 6l <& and |y — £| < ¢, the partial derivatives F(ylx) and f,(ylx) exist
and their absolute values are uniformly bounded in y.

Note that condition C7 implies the uniqueness of ¢ as the solution of
F(ylo) =

THEOREM 2. Under the condition C1-C7,

o 1

where {Z} is an i.i.d. sequence with the d.f. F(:|0) and
R, = 0(\/log2 n/n) +O0(k™%*logn) a.s.

The estimator £, of ¢ is the p-quantile of the empirical d.f. F. of {Y;:
i € I}, where the conditional distribution of Y, given the past is F(:|X,). Let

F(-) =F(-l6), f()=1f(lo),

F() =F(1X;), () =f(1X;)
and

F,() =k PLF().

:Then it is natural to think of £, as an estimator of the p-quantile £, of the
random d.f. F Note that if |X; — 6| <, i € I, then

(2) F (&) =p=F(¢) and ¢, is the unique p-quantile of F, by C7.
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The discrepancy between &, and ¢ gives rise to a bias in addition to the
random error in estimating ¢, by ¢,. Let

b, = coy/2log, n/n(2co —1) and S,, ={|X, - 0| <pb,},p>0;

3
3) by Theorem 1, P(S;,i.0.)=0 forall p> 1.

We will frequently have occasion to prove that P(A, i.0.) = 0 for some
sequence {A,} by showing that P(A, N S,, i.0) = 0 and then invoking (3),
and utilizing the fact that 2b, < ¢ for all large ¢ so that C7 holds. To avoid
repetitive arguments, we assume throughout the remainder that |X; — 6| <
2b, <gforalli>n—k.

We adopt the convention that all equalities (inequalities) between r.v.’s are
a.s. equalities (inequalities) and all convergences of r.v.’s are a.s. convergences
unless stated otherwise.

We now prove the following lemmas.

Lemma 1. (1/k)Ey/log, j/j = O(/logy n/n).

Proor. The Llhs. < y/log, n/(n — k) = O(/log, n/n). O

LemMa 2. |F(ylx) — F(yl®)| = O(x — 6] uniformly in y for |y — él <€ as
x — 0, F(yl) — F(£10) = f(£10)y — &) + Oy — €)®) as y = ¢ and f(£lx) >
f(£160)/2 > 0 for all x in a neighborhood of 6.

Proor. Follows immediately from C7. O

LEMMA 3. Suppose that |y — &l < & and |z — £| < &. Then F(y) — F(y) =
O({/log, n/n) uniformly in y and F(y) — F(2) = O(/logy n/n) +
f(EXy —2) + Oy — )2 + Oz — £)?) uniformly in y and z.

Proor. By Lemmas 1 and 2, we have
— 1 1
F.(y) - F(y) = 2 L[F() - F(»] = 7 LO(X; - 6))

= 0(‘/log2 n/n ) uniformly in y

and
F(y) - F(2) = % YA[F(y) = F)] + [F(y) - F(9)]
~[F(2) - F(¢)] ~ [Fi(2) - F(2)])
= O(ylog n/n ) + f(£)(y = 2) + O((y — €)*) + O((z - £)°)

uniformly in y and z. O
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LEmMMA 4. ¢, — ¢ = 0(y/logyn/n) a.s.

Proor. By (2) it is sufficient to show the existence of a D > 0 such that
F(¢-Db,) <F(¢) <F,(¢+ Db,) foralllarge n.

Consider n large enough so that Db, <e. By Lemma 3, |F (¢ + Db,) —
F(¢ + Db,)l < Cb,, for some C > 0 and for all n large enough. Moreover,
F(¢ + Db,) = F(¢) + Db, f(£)/2 and F(¢ — Db,) < F(¢) — Db, f(¢)/2 for all
large n by C7. Thus

F, (¢ + Db,) = F(¢) + Db, f(£) — Cb,
and

F(¢-Db,) <F(¢) — iDb, f(£) + Cb," for all large n.
Now choose D > 2C/f(£) to complete the proof. O

The next two lemmas are generalizations to martingale differences of the
well-known lemmas due to Hoeffding (1963) and Bernstein. If U, U,, ... is
any sequence of r.v.’s and {#;} is an increasing sequence of sub-o-fields such
that U, is &-measurable, denote E(U,|%;_,) by E,(U,) and Var(U,|%;_,) by
V(U) for i = 2,3,..., and let E(U,) = E(U,) and V{(U;) = Var(U)).

- LEMMA 5. Suppose U, ..., U, are Bernoulli r.v.’s. Then
d
Proor. Since E;[U; — E,(U;)] = 0 and the range of U, — E,(U,) is 1 a.s. for

all ¢, the result follows from Hoeffding’s (1963) Theorem 2 and the argument
given at the end of Section 2 of that paper. O

% [0~ E )]

> ntn} < 2exp(—2nt}).

LEmMmA 6. Suppose U,,...,U, are r.v.’s with |U, — EU)| <1 for all i.
Then for any t, > 0 and v,, > 0,

i

For n large enough the probability bounds may be taken to be:

() 2exp(—nt2/4v,) ift, /v, = 0 and
(i) 2exp(—nt,/4) ifv,/t, = 0.

n

5 [0, - BE(U)]| = nt,, £ V(U < } < 2exp(~nt2/2(t, +v,).

i=1 i=1

Proor. This is just a special case of Freedman’s (1975) Theorem (1.6) [see
also Steiger (1969)]. The cases (i) and (ii) follow obviously from the lemma. O

LemMa 7. Suppose |y — ¢| < Clogn/ VE. Then for any v, there exists M
such that n"P{|[F(y) — F (] — [F(y) — F(Oll = Mk~3/* log n} is

summable.
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ProoF. Assume that 7 is large enough so that C log n/ V& < e.
Let E()=E(|X,,...,X), V() =Var("|X;,..., X)), U, =1, <y) -
I(Y; < &) and m; = F(y) — F(¢) = E(U)). Then

. _ _ 1
[.3) = B8] - [F0) - Fu(&)] = 2 (U, — ).
Using Lemma 3 and C6,
LV(U) = Tlml(1 —Iml) < Timl = k| F(y) - F,(¢)|

<VECf(¢)logn + O(log® n) + O(k\/log2 n/n) <vVkDlogn
for some D > 0 for all large n. Then Lemma 6(i) implies that for all large n,

. 1
n’P{Z|Z(Ul —m;)| = ME™3/*log n}

1
= n’P{ﬂZ(Ui —m)| = ME~**log n, Y, Vi(U;) < Vk D log n}
< 2n” exp(—(M?/4D)log n),
which is summable for M sufficiently large. O
Lemma 8. €, — ¢ = O(/log n/k).

Proor. Let d, = ylog n/k . It is sufficient to show that P{é, - ¢l= Cd,)

is summable for some C > 0. Assume that n is large enough so that Cd, < e.
Now ¢, < ¢ — Cd,, implies that

%2 [I(Y;<¢-Cd,) - F(¢§-Cd,)]
> [kp]/k — F (¢ - Cd,,)

zp- 5 —F(¢-Cd,) - [F(¢-Cd,) - F(¢ - Cd,)]
1
2 =2+ 5Cd, f(§) + O(ylog, n/n) =
for all large n by Lemma 3, C6 and C7. By Lemma 5,
1 1
P4 IS < - Ca,) = (e - Cay)]| = €, £(6)

< 2exp(—kC?d2 f*(£)/8) = 2exp(—C*f?*(¢)log n/8),
which is summable for C sufficiently large. The case £, > ¢ + Cd,, is similar.

Cd,f(£)

|

]
Let

r, = log n/‘ﬁ;’ Spn = [k1/4]’
G.(y) = [F(y) - F(&)] - [Fu(y) - F(6)]
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and
H,= sup |G, (y)

n
ly—¢&l<r,

For —s, <qg<s

S

let q, ,=&+qr,/s,,and for —s_ < g <s, ,let
q,n n n n q n—1

aq,n = n(nq+1,n) - Fn(nq,n) and Jq,n = [T,q,n’ nq+1,n]'
LEmMAa 9. H, =R, where R, = O(k~3/*log n) + O(y/log, n/n).

Proor. From the monotonicity of ¥, and F, it follows that for y € Sy ns
Gn(nq,n) - aq,n < Gn(y) = Gn(nq+1,n) + aq,n’
Hence, H, < K, + B,,, where
K, = max{(Gn(nq,,,)|: -5,<q< sn}
and
Bn = max{aq,n: Sy =q= sn—l}‘

Assume that n is large enough so that r, < . Then the lemma follows from
the facts that B, = O(/log, n/n) + O(r,/s,) + O(r?) = R, by Lemma 3,
and P(K, > Mk~%*log n) < 2s, max{P(IG(n, )| > Mk=*/*log n): —s, <
q < s,)}, which is summable for M large enough by Lemma 7, implying that

P(K, > Mk 3*lognio.)=0 for M large. O

Proor oF THEOREM 2. From Lemmas 3, 8 and 9 and C6, we have
p—F(&) =F,(€,) +O0(1/k) - F (&)
=F,(£,) - F(&) + R, =f(&)(é, - ¢) + R,
and thus
R 1
(4) fn—§=mx[p—I(YiS§)]+Rn-

For any d.f. G let G~X(¢) = inf{x: G(x) > ¢}. From C7, F(-) is continuous
for |X; — 6| <& and thus Z;, = F~'o F(Y,) has the conditional d.f. F(-) for
i €I,. To show that {Z;: i € I} is independent, we first note that

P(Z;<z,i€l,)=E[E,[P(Z;<z,i€l,)]]
= F(2,)E[E,[P(Z; < 2,i €1, — (n})]]
= F(zn)P(Zz =< zi’i eIn - {n})
and then use an induction argument.

Now [Fi(¢) — p| = |F(¢) — F(&)| = 0(b,,_;,) = O(y/logy, n/n) and f(élx) =
f(£€)/2 for all x in some neighborhood of § by Lemma 2. Hence, F,"'(p) is the
unique solution of F(y) =p and Y, < F; (p) « F(Y) <p = Z, < F ' p) =
¢ 1 €1, for all large n, and |F'(p) — £| = O(/log, n/n). Thus, for n large
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enough, letting
U=I(Y;<§) - I(Z,<§) =1(Y, < ¢) - I[Y, < F7'(p)]
and
7, = E(U;) = Fi(¢) — b,
we have

1
7 Llp - I(Y; < 6)] %Z[F}(E) —I(Z; < €)] + O(k~**1og n)

1
= zZ[p—I(Zisg)] +R,

by Lemma 7 and the results above. Substitution in (4) of the first expression
by the last in the last set of equalities completes the proof of the theorem. O

Let 72 = p(1 — p)/f2(¢). The following theorem follows immediately from
Theorem 2 and well-known results for averages of i.i.d. random variables.

THEOREM 3. Under the conditions C1-C7:

6)) én - £ a.s.,;
(i) limsup, + (£'/2/(2log, n)V2X¢, — £) = 7 a.5.; and
(i) &Y2(¢, — £) > N0, 72) in distribution, if k = o(n /log, n).

3. Concluding remarks.

1. The remainder term R, in Theorem 2 has two components—R ,; =
O(k~%*log n), which is similar to the remainder term in Bahadur (1966)
for % observations, and R, = O(y/log, n/n), which is due to bias and is
independent of %2 for £ as in C6. The term R,,=0(R,) if k=
o(n*?log*? n /log%’® n); otherwise, R, = R,,,.

2. By C6 and Theorem 3(iii), 2 has to be chosen roughly between \/n /log, n
and n/log, n. When {(X;,Y;)} is an iid. sequence with 6 known, the
central limit theorem for the 2 — NN estimator uses the norming by n?/5
for optimal %. In our case we could use a norming that is almost the same
as if all the observations were at 6, but not quite. This happens because
X, — 0 at the “optimal” rate given by Theorem 1.

3. When ((X;,Y))} is iid. with a smooth marginal density for X, near 0,
Bhattacharya and Gangopadhyay (1990) show that the bias term £, — € is
zero in the first order, is deterministic and proportional to (% /n)? in the
second order and the remainder is O((%/n)?) a.s. using sufficient smooth-
ness assumptions. In the RM process, X, takes a step only of the order of
1/n, and thus the observation points tend to stay near the same place for a
long time, and we do not get cancellations of individual bias terms in the
first order as in the i.i.d. case. This is related to the phenomenon giving rise
to the famous arcsine law of Feller.
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4. On examination of the proofs we see that the only property of the RM
process we have used is the conclusion of Theorem 1. Since the quantile
estimation does not interfere with the parent RM process, any modification
of the RM procedure yielding the same conclusion could be used. This
includes the adaptive procedures of Venter (1967), Lai and Robbins (1979)
and Wei (1985).
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