The Annals of Statistics
1992, Vol. 20, No. 4, 2087-2099

DOMINANCE OF LIKELIHOOD RATIO TESTS
UNDER CONE CONSTRAINTS!

By J. A. MENENDEZ, C. RUEDA AND B. SALVADOR
Universidad de Valladolid

It is well known that anomalies are sometimes observed when using
the likelihood ratio test (LRT) for testing restricted hypotheses in a normal
model. This paper considers a general framework for these anomalies to
occur. We provide a condition, that relates the null and the alternative
hypotheses, under which the dominance of the LRT is obtained. Conditions
are also given which guarantee the equivalence between the LRT and a
simpler test. The situations of known and unknown variances are consid-
ered and examples are given to illustrate the results.

-

1. Introduction. In this paper we consider a testing problem where both
the null and the alternative hypotheses impose restrictions on the mean of a
normal population. A number of papers have considered this problem, dealing
among others with restrictions such as homogeneity, monotonicity, symmetry
or unimodality. The book by Robertson, Wright and Dykstra (1988) should be
mentioned as perhaps the most complete reference for these and other topics
on restricted inference.

In a general sense, the hypotheses under consideration can be considered as
cones of the parameter set. Before we present the aim and scope of the present
paper, let us describe briefly a few simple geometrical facts associated with
closed convex cones, which we will use throughout the paper. A reference book
for the corresponding theory is Stoer and Witzgall (1970). Consider R* with
an inner product { -, - ) and associated norm || - ||. Given a closed and convex
cone C of R*, the orthogonal projection p(-|C) onto C exists, is unique and
verifies ||x|®> = || p(x|C)II* + llx — p(x|C)||% for all x in R*. With a cone C is
associated the so-called polar cone C?, C? = {y € R*[{x,y) <0,V x € C}. If
C = L is a linear subspace of R*, then C? = L* is the orthogonal complement
of L. When C is a closed convex cone, x — p(x|C) = p(x|C?) and then p(x|C?)
is orthogonal to p(x|C). The closure of a cone C, that is the smallest closed
and convex set containing C, will be denoted by cl(C). In applications, C is
often a polyhedral cone, defined by a finite number of linear inequalities,
C=A-= {d;x > 0,i=1,...,r}. Some results such as Lemmas 2.2 and 3.2 in
Raubertas, Nordheim and Lee (1986), used frequently throughout this paper,
are usually presented for polyhedral cones, but they can be generalized to
closed convex cones.
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Throughout this paper, we consider a k-dimensional random normal vector
Y ~ N,(6,T), with mean 6 restricted to belong to a closed convex cone C of
R*, and address the problem of testing H,: 6 € C N L, where L is a linear
subspace, against H, — H,, with H,: 0 € C.

The corresponding likelihood ratio test (LRT) is defined by the statistic

(1.1) T(Y) =||Y - p(YIC n L)|* =Y - p(YIC)|%,

where |yl|> = ¥'T~'y. The projections p(Y|C N L) and p(Y|C) define the
MLE'’s for 8 under H, and H,, respectively.

When testing H, against H, — H, one needs to find the null hypothesis
distribution of T in order to determine a critical value for the test. However,
in this situation H, is a composite hypothesis, so that one needs to find
supyccnz PA(T(Y) > t) and determine the distribution of T'(Y) at the value
of 6 where the supremum occurs.

Two cases may arise. In the first case the null hypothesis is a linear
subspace, L c C. The most characteristic example of this situation is the
problem of testing homogeneity against monotonicity [Bartholomew (1961)]. In
such cases the LRT provides a satisfactory method. The supremum previously
mentioned typically occurs at § = 0 (homogeneity) and the null distribution of
T(Y) is a chi-bar-squared distribution. This condition is sometimes referred as
“homogeneity is the least favourable configuration under H,.” Some works
along this line are Raubertas, Nordheim and Lee (1986), Shapiro (1988) and
Robertson, Wright and Dykstra (1988).

A property of interest, present when L C C, is

(1.2) p(p(xlC)ICNL) =p(xICNL), VxecR"

and it is said that H, and H, are not oblique. The term ‘“oblique” was
introduced by Warrack and Robertson (1984).

Property (1.2) may also hold in the second case, namely, when the null
hypothesis H,: 6 € C N L is not a linear subspace. When H, and H, are not
oblique, the null distribution of T(Y) is also a chi-bar-squared distribution
and the supremum of the power function over H, is attained at 6 =0
[Menéndez, Rueda and Salvador (1991)]. A particular instance of this situation
occurs when H, is a face of a right polyhedral cone C, with C the cone
specified in H,.

Difficulties arise when H, and H, are oblique. Then the preceding sup-
remum is often not attained at 6 = 0 and supsccng P(T(Y) > t) =
P(T*(Y) > ¢t), where T*(Y) is the likelihood ratio statistic for testing a
reduced problem H against H} — H§, with H, c Hf and H, C H;.

The first reference to a problem of this type is Warrack and Robertson
(1984). See also Menéndez and Salvador (1990), where the domination of the
LRT for testing a face of an acute cone against the cone is proved. A different
example is given by Robertson (1986). For testing the symmetry and unimodal-
ity of £ means against unimodality, the LRT was shown to be dominated by
another “‘reduced test.”
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This paper provides a general framework in which the results in the
preceding three papers are viewed as particular cases. In Section 2, for the case
I' known, a general condition on C and L is given under which the LRT is
dominated by some other test, in the sense that this test has the same size and
at least the same power on the alternative hypothesis. This dominating test
becomes the LRT for testing a reduced problem, which is specified. Also, a
necessary and sufficient condition is given for the equivalence of the LRT to a
simpler test.

The same questions are considered in Section 3 in the case where variances
are known up to a constant o2. In Section 4 several applications are given that
illustrate the previous results.

Two related references are Berger (1989) and Tang (1991) where the
significance level of LRT’s, for other restricted problems, is attained at an
infinite point of the null hypothesis and LRT’s also become dominated.

It is of interest to note that projections are preserved by linear transforma-
tions of the entire statistical problem. Hence without loss of generality we
assume I' = I and use the unit metric on R*.

2. Dominance and equivalence of the LRT. Lemma 2.1 provides
three equivalent conditions which are important in determining when the LRT
is dominated by, or equivalent to, another test.

Lemma 2.1.  Let C and L, respectively, be a closed convex cone and a linear
subspace. Then the following conditions are equivalent:

G p(p(x|L)IC) € L,V x € R*.
(i) p(p(x|C)IL) € C,V x € R*.
(iii) p(x|L) = p(x|C N L),V x € C.

Proor. (i) = (ii) First note that ||p(y|C)II* = (y, p(y|C)) for any closed
convex cone C [see (8.2.6) in Robertson, Wright and Dykstra (1988)]. For any
point x of R*, let z = p(p(x|C)|L). Then,

Iz — p(2IC)II* = lip(2ICP)II?* = {z, p(zICP))
= (2 — p(xIC), p(2IC?)) + {p(xIC), p(zICP)).
But z — p(x|C) = —p(p(x|C)IL*+) € L+ and p(z|CP) =z — p(z|C) € L be-
cause z €L and p(z|C) = p(p(p(x|C)|L)|C) € L by assumption. Hence
llz — p(zIC)II? = 0, implying z = p(z|C) € C. We are in debt to a referee for
this part of the proof.

(ii) = (i) Let us denote u = p(p(x|L)|C) for any x € R*. Since p(x|L) —
p(ulL) €L and u — p(ulL) € L+, we can decompose ||z — p(x|L)|I® = lu —
p(ulI? + || p(ulL) — p(x|L)||%. But u is the projection of p(x|L) onto C and
p(u|L) € C by assumption, hence |lu — p(x|L)||® < ||p(u|L) — p(x|L)||? so that
lu — p(ulL)|I* = 0. Therefore u = p(UIL) € L.

The equivalence between (ii) and (iii) is proved by observing that they are

both equivalent to the equality p(p(x|C)IL) = p(p(x|C)IC N L), V x € R*.
O
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Theorem 2.1 establishes the dominance of the LRT when any of the
conditions in Lemma 2.1 is met. Although the case T = T* a.s. for every
6 € H, is included in Theorem 2.1, Theorem 2.2 provides a necessary and
sufficient condition for such a situation, where the dominance of the LRT
becomes an equivalence to a simpler test.

It is necessary to note that, in general, C N L is not defined by only a linear
subspace L. Throughout this paper L is taken to be the subspace of smallest
dimension amongst those that contain C N L. Note that dim(L) = dim(C N L).

THEOREM 2.1. Assume Y ~ N,(0, I) and L and C satisfy any of the condi-
tions in Lemma 2.1. Then the LRT for testing Hy: 6 € C N L against H, — H,,
with H,: 0 € C, is dominated by the LRT for testing Hy: 6 € L against
HY — Hf, with H¥: § € C*, C* = cl(C + L).

PROOF. Similarly to T in (1.1), we denote by T*(Y) = ||Y — p(Y|L)||* —
Y — p(Y|C*)||* the LR statistic for testing H¥ against H* — H.
From (8.2.6) in Robertson, Wright and Dykstra (1988) we can write

(2.1) T(y) =llp(IC)I* ~lp(yIC N L)|* VyeR:

(2.2) T*(y) =|p(IC*) | = p(yIL) I VY yeR"

On the other hand, from Lemma 2.2 in Raubertas, Nordheim and Lee
(1986), we have, since L c C*

(2.3) p(p(YIC*)IL) =p(yIC), Vy,
and also
p(yICN L) =p(p(yIL)ICNL) =p(p(p(yIC*)IL)IC N L)
=p(p(yIC*)ICNL), Vy.
Now in a first step, we will prove that,
(25) T(y) < T(p(yIC*)) < T*(p(5IC*)) = T*(y), VyeR™
We have
(2.6) IpIC) I =lly = p(xICP)I” <l p(p(yIC*)IC) I,

since

(2.4)

Ip(p(yICH)IC)|* =l p(¥IC*) — p(p(yIC*)ICP) |

=lly = (v = p(IC*) + p(R(¥IC*)CP))|

and y — p(y|C*) + p(p(y|C*)|CP) € C* because y — p(y|C*) € C*P c CP,
From (2.1), (2.4) and (2.6),

T(y) <llp(p(yIC*)IC)I* ~Ilp(p(yIC*)IC N L) | = T(p(yIC*))
and the first inequality in (2.5) holds.
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In order to prove the second inequality in (2.5), consider the decomposition,

T(y) =lly = p(yIL)|* + 2(y — p(yIL), p(yIL) — p(yIC N L))

(2.7) . )
+|p(yIL) = p(yIC N L)|I" =y = p(yIC) I,

where the inner product is zero because y — p(Y|L) € L*.
From (2.19), p(y|C N L) can be considered as the point in C closest to
p(ylL). Therefore by condition (ii) in Lemma 2.1 we have

Ip(yIL) — p(yIC N L)|* <l p(yIL) — p(p(¥IC)IL) |

<|ly - pIC) |7,

the last inequality by the contractivity of a projection onto a subspace. This
inequality and the preceding decomposition prove

(2.9) T(y) <ly —p(yIL)I°, VyeR~

Since, for any y € C*, T*(y) = |ly — p(yIL)|?, the second inequality in (2.5)
follows from (2.9).

The last equality in (2.5) is obvious from (2.2) and (2.3).

The second step is devoted to proving that the tests with critical regions
{T = c} and {T'* > c} have the same significance level.

From (2.5), by any c, the test with critical region {T*(Y) > ¢} is more
powerful than that defined by {T'(Y) > ¢},

(2.10) P(T(Y)>c) <P(T*(Y)=c), V6,Ve,
so that in order to show that both tests reach the same significance level in H,,

by applying Lemma 3.2 in Raubertas, Nordheim and Lee (1986), we only need
to prove that

(2.11) sup Py(T(Y) =c) =Py(T*(Y) =c) =a.
9eCnL

(2.8)

Assume dim(C N L) =r and let z,,..., 2, be linearly independent vectors
in C N L. Since dim(L) = dim(C N L) implies that {z;, ..., 2,} is a basis for L,
then for any fixed z € L we may decompose z = A;2; + - +A,2,. Then for
=2 + - +z,, taking § = max,_; A/, we have z + 80 € C. Now if
yeC+ L,then y =x + z for some x € C and z € L so that we have

(2.12) for each y € C + L thereis 6 > 0 for which y + 66 € C.

Let E be a sphere centered at the origin with Py(Y € E) > 1 — ¢ and
P({T*(Y) > c} Nn{Y € E}) > a — ¢ for some fixed £ > 0.

From (2.12), p(y|L) =p(y|C "NL) V y € E + 56 for some 5. As a conse-
quence, from (2.1) and (2.2) we have

(2.13) T*(y) - T(y) =lpGICHI* -lp(IC)I?, VyeE+ 3.

We will first consider the case C + L closed. In this case C* = C + L and,
given 3, T, from (2.12) and the compactness of E N C*, there is N such that



2092 J. A. MENENDEZ, C. RUEDA AND B. SALVADOR

for any n >N, (E +5,0) nC*=(E + 5,0) N C. Therefore, from (2.13),
T*(y) = T(y) for any y in E + 5,6, n > N.
Now taking some § > §,, we have
Psp(T(Y) 2 ¢) 2 Pyy({T(Y) 2 ¢} N {E + 86})
= P3({T*(Y) 2 c} N {E + 56})
=P,({T*(Y)=2c} NE)>a—¢
and (2.11) follows.
Consider now the case in which C + L is not closed. Since C* is the closure
of C + L and from (2.12) we have, for §, 1,
lim (E+6,0)nC= lim(E+5,0) nC*= lim [(EnC*)+5,0].

n—o

Let us consider C,, = [(E + §,0) N C] — 8,0, a collection of bounded, closed
and convex sets, verifying C, 1 E N C*, so that p(y|C,) —, _. p(y|C*) for all
y € E uniformly, which implies that

Ve>03MsuchthatVn > M,
(2.14)
Ip(ic*) P =PI <e,  VyeE.
But p(y|C*) =p(y — §,0I1C*) +6,6 and p(y|C) =p(y —§,0IC,) + 5,9,
V yeE+5,0, so that, for any ¢ >0, n>M and y € E + 5,0, T*(y) -
T(y) < € follows from (2.13) and (2.14). By taking 6 > §,,,
Psp(T(Y) 2 ¢) 2 Pyy({T(Y) 2 ¢} N {E + 36})
> Ps,({T*(Y) =c +&} Nn{E + 66})
=Py({T*(Y)=c+e}NE)=>a—7—§,
where 11 [0 as € | 0. Then, taking ¢ | 0, (2.11) follows. O

The preceding proof shows that the size of the LRT with critical region
{T > c} is attained at values of the parameter of the form 60 for 0 € C N L
and 6 — «. Also note that, since C N L ¢ L c C*, the null distribution of T*
is a chi-bar-squared, as we pointed out in the introduction.

Lemma 2.2 relates each condition in Lemma 2.1 to the nonoblique condition
(1.2).

LEmMmA 2.2. Let C and L be a closed convex cone and a linear subspace,
respectively. For every x € R*, the relation

(2.15) p(p(xIC)IL) = p(p(xIL)IC)
holds if and only if x satisfies the three conditions
(2.16) p(p(#IL)IC) € L,

(2.17) p(p(xIC)IL) € C,

(2.18) p(p(xIC)IC N L) =p(xICNL).
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Proor. (2.16) and (2.17) are obviously implied by (2.15). The rest of the
proof is straightforward after taking the following two statements into ac-
count:

(2.17) implies that p(p(x|C)IL) = p(p(x|C)|C N L).

(2.16) and Lemma 2.2 in Raubertas, Nordheim and Lee (1986) imply
(2.19) p(p(xIL)IC) = p(p(xIL)IC NL) =p(xIC NL).

If L satisfies the equivalent conditions in Lemma 2.1, then, from Lemma

2.2, either (2.15) is satisfied V x € R* and C N L and C are not oblique, or
(2.18) fails for some x; that is, C N L and C are oblique. O

Lemma 2.3 will be used in the proof of Theorem 2.2.

LEmmMa 2.3. Let L and C verifying (2.15). Then:

(@ p(p(xILH)IC) = p(p(x|C)IL+) = p(x|L+ NC), V¥ x € R%,
(b) cC+ LY=L+ (Lt NnC).

Proor. (a) From Lemma 5.12 in Zarantonello (1971) it follows that
p(p(x|C)IL*) = p(x|L*+ NC). Applying Lemma 2.1, p(p(x|L+)|C) € L+ and
then p(p(x|LH)IC) = p(p(x|LH)|L+ NC). Now Lemma 2.2 in Raubertas,
Nordheim and Lee (1986) implies that p(p(x|L*)IL*- NC) = p(x|L* NC) and
the results follows.

(b) Obviously L + (L* NC) c ¢cl(C + L). In order to prove the converse, let
x=y+z2€C+L,yeC,zecL;x can be decomposed as

x =p(xlL) + p(xIL*) =2z + p(yIL) + p(yIL*)

=z +p(yIL) +p(p(yIC)L").
Then, from (a), x e L + (L*NC)and C + L c L + (L* NnC). Because L +
(L* NC) is closed, equality in (b) is proven. O

THEOREM 2.2. Consider Y ~ N,(0, I); let C and L, respectively, be a closed
convex cone and a linear subspace. Let T be the LR statistic for testing
H,: 0 € C N Lagainst H, — H,, with H,: 0 € C and let T* be the LR statistic
for testing Hy: 0 € L against H} — H¥, with H}: 6§ € C*, C* = cl(C + L).
Then T(y) = T*(y), YV y € R*, if and only if L and C satisfy the condition
(2.15) V y € R*,

Proor. Sufficiency: From (2.1) and (2.2), since C* = L + (L* nC), T*(y)
can be reduced to a simpler expression:

2 2
T*(y) =lpGIL) I + [ p(IL* nO) " = p(yIL) I” =] p(yIL* nC)I"
In a similar way, from Lemmas 2.2 and 2.3,

T(y) =|lpGIL* nC)|* +p(IL N C) | =l p(yIL A C) |
=llp(IL* nC)|”.
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Necessity: T'(y) = T*(y), V y € R*, implies all of the inequalities in (2.5)
become equalities since T'*(y) = T*(p(y|C*)) from (2.2) and (2.3). Also (2.6) is
now an equality and the argument proving (2.6) is useful to state that
pICP) =y — p(y|C*) + p(p(y|C*)|CP), V y, since the closest point to y in
the convex cone C? is unique. Equivalently,

(2.20) p(yIC) =p(p(yIC*)IC), VyeR"

For any y € C*, T(y) = T*(y) = |ly — p(y|L)|I* and from decomposition (2.7),

(221)  |p(IL) —pGyIC N L) =|y - p(YIC)?,  VyecCH,
which implies
(2.22) p(p(yIC)IL) € C, VyeC*,

because if not, for z € C* with p(p(z|C)|L) ¢ C (2.21) fails applied to p(z|C*).

Using (2.21) and (2.22) the first inequality in (2.8) becomes an equality for
any y € C*, which proves that the condition (2.15) is satisfied for any y € C*.
The following chain of equalities proves the result:

p(p(yIL)IC) = p(p(p(yIC*)IL)IC) = p(p(p(¥IC*)IC)IL)

=p(p(»IC)IL), VyeR*

the first equality from (2.3), the second one because p(y|C*) € C* satisfy the
condition (2.15) and the last equality from (2.20). O

Theorem 2.2 deals with a situation where cl(C + L) =L + (L* NC) and
the LRT’s are equivalent. Also some other particular cases are of special
interest.

Case A. Consider the same situation as in Theorem 2.1, but further
assume that L N ri(C) # &, where ri(C) is the relative interior of C. Let S;
be the subspace of R* of smallest dimension containing C.

Note that, for any fixed point z € ri(C), for each x € S there is some
& > 0 such that x + 6z € C. This can be seen by considering an orthogonal
transformation of S onto the subspace L = {x|x;,,; = -+ = x, = 0}, where
d = dim(S.). Without loss of generality we can therefore suppose that S, =
R*. Since ri(C) is the interior of C, we apply Corollary 6.4.1 in Rockafellar
(1970) with 8 = 1/¢ > 0, which yields x + 6z € C.

Then, for each, x € S, taking z€ L Nri(C) we get x €L + C and
cl(C + L) turns out to be S,.

An example of this particular situation is a problem studied in Robertson
(1986) as we will show in Section 4, Example B.
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Case B. Now consider the problem of testing a face of a polyhedral cone
A g against the cone A. We have for this situation the expressions

A={ax>0,i=1,...,r},

B ={d;x>0,i € B},

5= {d;x=0,i € B},
Ag={d,x=0,ieB;a;x>0,i & B}, forany BC{1,...,r}.

It is straightforward to show that Ag=ANLgandclA + Ly) =A%

Further assume that A is an acute cone. As defined by Martin and Salvador
(1988), a cone A is said to be acute whether a’;p(x|A) = 0 for any x with
a’;x < 0. From the definition it is obvious that

(2.23) p(p(xILB)IA)eLB foranyx € R* and Bc({l,...,r}.

Then Theorem 2.2 in Menéndez and Salvador (1991) is a consequence of
Theorem 2.1.

In a similar form, when A is a right cone, that is, if o/, p(x|A) = 0 is only
verified by x with o;x < 0, Theorem 2.2 shows that the corresponding LR
tests are equivalent.

Note that (2.23) becomes not only a particular property of acute cones but
also a sufficient condition for a cone to be acute. In order to prove that, let x
verifying a’;x < 0 for some i € {1,...,r}; obviously a p(xlA) > 0, hence there
exists z € L with z=6x + (1 — B)p(xIA) for some 6 € [0, 1]. Such a z veri-
fies p(x|A) = p(zlA) = p(p(z|L; )IA), which in turn belongs to L; by (2.23).
Therefore a’;p(x|A) = 0 and A is acute.

3. Dominance in case of unknown variances. In this section we deal
with the case in which the covariance is given by 2T, where T is completely
known but the scalar o2 is unknown.

Consider Y,,...,Y, to be n independent vector observations from a
N,(8, 02T") population and let Y be the sample mean vector. Without loss of
generality I' =1 can be taken. In this framework, with H, and H, as in
Theorem 2.1, the LRT for testing H, against H, — H, has {S*(Y) > c} as a
critical region, where

SY) = T(Y)/(u? +|Y - p(YIC) ),

T(Y) defined by (1.1) and u? = (1/n)Z||Y; - Y%
In a similar way,

S*(Y) = T*(Y) /(u® +|Y - p(YIC*) )

allows testing the hypothesis H against H* — H¥, with H} and H* as in
Theorem 2.1.
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The statistic S**(Y) and related distributions under H} were considered in
Raubertas, Nordheim and Lee (1986), Robertson, Wright and Dykstra (1988)
and Shapiro (1988).

Now, we get a result similar to Theorem 2.1.

THEOREM 3.1. Consider L and C satisfying any of conditions in Lemma
2.1. The LRT for testing Hy: 0 € C N L against H, — H,, with H,: 6 € C, is
dominated by the LRT for testing H§: 6 € L against HY — Hf, with
HF:. 9 € C* C* =cl(C + L).

ProoF. Since C < C* implies |ly — p(y|C*)II? < lly — p(y|C)II* from (2.5)
we have that

(3.1) S%(y) < S*%(y), VyeR~

On the other hand, following the second part of the proof of Theorem 2.1, a
large sphere E + 86 can be selected in such a way that for every y in the
sphere above S2(y) is as close to S*2(y) as we want. This implies that for
some # € CNL,

(3.2) ;im Ps(S%(Y) > ¢) = Po(S**(Y) > c);
hence the theorem follows from (3.1) and (3.2). O

It is of interest to note that a result similar to Theorem 2.2 does not hold in
this case of unknown o2, because if M = {y|p(y|C*) & C}, then P, (M) > 0,
VY 0, and S%(y) < S**(y), V y € M, although T(y) may be the same as
T*(y). A result similar to Theorem 2.2 only holds asymptotically. In fact,
k(n — 1)S%Y) and T(Y) are asymptotically equivalent, since |ly — p(y|C)I?
— 0 ae. and (k(n — 1))"'o®u® — 1 a.e. because o®u® has a x?,,_,, distribu-
tion [cf. Robertson, Wright and Dykstra (1988)]. Similarly, 2(n — 1)S**(Y)
and T*(Y) are asymptotically equivalent. Therefore, S2 and S*? define
asymptotically equivalent tests under condition (2.15), because T and T*
coincide.

4, Applications. This section is devoted to illustrating and clarifying,
through several examples, the applicability of the preceding results. Examples
A, B, C and D are particular cases of problems involving polyhedral cones that
have appeared in the literature. Example E is included as a case of a nonpoly-
hedral cone for which C + L is not closed.

ExamPLE A. Assume Y to be a N,(8,T'), where the components of 6 are
totally ordered; that is, 6 € A = {§ € R*|9, < --- < 6,}. Let us consider I to
be.a diagonal matrix so that A becomes an acute cone [see Martin and
Salvador (1988)]. Then, from (2.23), A and the subspace L associated to any
face A of A are oblique, and verify any conditions (i)-(iii) in Lemma 2.1.
Theorem 2.1 shows the LRT based on T for testing § € A against § € A — A,
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to be dominated by 7T'. In this example T # T* unless L C A, as is the case
with the null hypothesis of homogeneity.

Note that A is not always an acute cone. There exist nondiagonal metrics,
defined by I'"!, under which Theorem 2.1 fails to show the domination above.

ExampLE B. Let Y be an N,(8, W™ 1), where W is a diagonal matrix with

positive diagonal elements w;, ..., w,, and consider the problem of testing the
symmetry S and unimodality U, in the components of 6, against the uni-
modality U.

Robertson (1986) deals with this problem and shows how the LRT is
dominated when w; = w,_, ., i = 1,...,(k — 1)/2. Theorem 2.1 shows that
the LRT is dominated whenever w,w,_;, = w; ,,w,_;,;, i = 1,...,(k — 3)/2,
since this condition on the diagonal metric is valid if and only if
p(p(ylU)IS) € U,V y € R*.

ExampLE C. An example is now presented in which a face of a partial order
is tested against the partial order. Let Y be a N,(0,W™1!), where W is a
definite positive diagonal matrix, and consider the cone C = {x; < x, < x; > x,}
and the subspace L = {x; =x,}, so that CNL ={x; =x, <x; >x,} and
C+L={xlﬁx2}.

Conditions in Lemma 2.1 are satisfied by C and L since

VW + Yo YWy t+ YW,

L = b b 3
p(yIL) v+ w, —— Y35 ¥4

for any y = (¥1,¥2,¥3,54) € C.

Then, Theorem 2.1 proves that the LRT for testing H,: 6 € C N L against
H,-H,, with H,: 6 € C, is dominated by the LRT for testing HF: 6 € L
against H: 6 € C + L.

This example shows that, in order to get the dominance of the LRT for
testing a face of a cone against the cone, the acuteness of the cone is not
necessary. We only need this acuteness between, it might be said, the face and
the rest of the cone.

ExamPLE D. An example illustrating Theorem 2.2 is provided by the
so-called star-shaped restrictions on the means of a normal model. Shaked
(1979) and Dykstra and Robertson (1983) studied the MLE under these
restrictions.

These star-shaped restrictions define a right cone C in the parameter set.

If L is the subspace associated to any face of C, then L and C satisfy the
condition (2.15), for every x in R*. Therefore, Theorem 2.2 can be used for
proving the equivalence between the LRT for testing C N L against C and the
LRT for testing L against C + L.
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ExampPLE E. We deal in this example with a situation in which the parame-
ter is constrained to verify restrictions defined by a nonpolyhedral cone.

Let Y be a N4(6, I), where 6 € C, = {6 € R3|0, > 0, 6% + 02 — 10,6, < 0},
0 <A <1, and consider the linear subspace L ={6, =6;=0}. C, and L
satisfy any condition in Lemma 2.1; therefore, Theorem 2.1 proves that the
LRT for testing 6 € C, N L = {0, > 0, 6, = 65 = 0} against 6 € C, is domi-
nated by the LRT for testing 6 € L against § € C*, where C* = cl(C, + L) =
{65 > 0}.

Note that in this case C, + L is not closed, so that C* # C, + L. Also note
C, N L and C, N L are the same, for every A, 0 <A < 1.

On the other hand, C, | C; N L as A |0, which could be interpreted as C,
giving a more and more constrained information about 6, but the dominance
above makes this information absolutely useless.

The answer to this apparent contradiction is that the “information” about
6 contained in every cone C, is similar as we take 6 sufficiently far on C; N L.
It is only a matter of scale.

Acknowledgment. The authors are grateful to an Associate Editor and
the referees for their careful reading of the manuscript and for their valuable
comments and suggestions that resulted in a much improved version of the

paper.

REFERENCES

BarLow, R. E., BARTHOLOMEW, D. J., BREMNER, J. M. and Brunk, H. D. (1972). Statistical
Inference Under Order Restrictions. Wiley, New York.

BARTHOLOMEW, D. J. (1961). A test of homogeneity of means under restricted alternatives (with
discussion). J. Roy. Statist. Soc. Ser. B 23 239-281.

BERGER, R. L. (1989). Uniformly more powerful tests for hypotheses concerning linear inequalities
and normal means. J. Amer. Statist. Assoc. 84 192-199.

DyksTRrA, R. L. and RoBERTSON, T. (1983). On testing monotone tendencies. J. Amer. Statist.
Assoc. 78 342-350.

MarTiN, M. and SaLvaDor, B. (1988). Validity of the pool-adjacent-violator algorithm. Statist.
Probab. Lett. 6 143-145.

MENENDEZ, J. A. and SALVADOR, B. (1991). Anomalies of the likelihood ratio test for testing
restricted hypotheses. Ann. Statist. 19 889-898.

MENENDEZ, J. A., RUEDA, C. and SALVADOR, B. (1992). Testing non oblique hypotheses. Comm.
Statist. Theory Methods 21 471-484.

RAUBERTAS, R. F., NorDHEIM, E. V. and LEE, C. C. (1986). Hypothesis test for normal means
constrained by linear inequalities. Comm. Statist. Theory Methods 15 2809-2833.

ROBERTSON, T. (1986). On testing symmetry and unimodality. Advances in Order Restricted
Statistical Inference. Springer, New York.

ROBERTSON, T., WRIGHT, F. T. and DyksTra, R. L. (1988). Order Restricted Statistical Inference.
Wiley, New York.

ROCKAFELLAR, R. T. (1970). Convex Analysis. Princeton Univ. Press.

SHAKED, M. (1979). Estimation of starshaped sequences of Poisson and normal means. Ann.
Statist. 7 729-741.

SHAPIRO, A. (1988). Towards a unified theory of inequality constrained testing in multivariate
analysis. Internat. Statist. Rev. 56 49-62.



DOMINANCE OF LIKELIHOOD RATIO TESTS 2099

STOER, J. and WitzgaLL, C. (1970). Convexity and Optimization in Finite Dimensions. Springer,
New York.

TaNG, D.-I. (1991). Tests which are uniformly more powerful than the likelihood ratio tests for
one-sided problems in multivariate analysis. Unpublished manuscript.

WARRACK, G. and ROBERTSON, T. (1984). A likelihood ratio test regarding two nested but oblique
order-restricted hypotheses. J. Amer. Statist. Assoc. 79 881-886.

ZARANTONELLO, E. H. (1971). Projections on convex sets in Hilbert space and spectral theory. In
Contributions to Nonlinear Functional Analysis (E. H. Zarantonello, ed.) 237-424.
Academic, New York.

DEPARTAMENTO DE Estapistica E I. O.
FacuLTAD DE CIENCIAS

UNIVERSIDAD DE VALLADOLID

47071 VALLADOLID

SpaIN



