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BIAS ROBUST ESTIMATION IN ORTHOGONAL
REGRESSION!

By RUBEN H. ZaMAR

University of British Columbia

Orthogonal regression M-estimates are considered from a bias robust
point of view. Their maximum bias over epsilon-contamination neighbor-
hoods is characterized, and maximum bias curves are computed. The most
bias robust orthogonal regression M-estimate is derived and shown to be a
“mode type” estimate; for instance, in the two-dimensional case this
estimate can be computed by locating a strip of fixed width covering the
maximum number of data points.

It will be shown that, although orthogonal regression M-estimates with
bounded loss function have unbounded influence function, the derivative of
their maximum bias curve at zero is finite.

Finally, an implicit formula for an upper bound for the breakdown point
of all orthogonal regression M-estimates is found. The upper bound, which
depends on the signal-to-noise ratio, is sharp and attained by the most bias
robust estimate.

1. Introduction. In this paper we consider the problem of estimation in
the structural relationship model when outliers are present in the data. Under
the classical Gaussian model the (p + 1)-dimensional data points Z; satisfy

(1) Zl =Zi +8i’ ﬁ’ozi=a0,

where [|B,ll = 1, 2; and ¢, are independent Gaussian vectors with E(z;) = u,
E(g;) = 0, Cov(z;) = 3, and Cov(e;) = o?I. Notice that these assumptions im-
ply that the ratio of the error variances is known. The eigenvalues of 3 (in
increasing order) and corresponding eigenvectors are denoted A, and S,,
k=0,...,p, respectively. We assume that A; > 0 and notice that, by (1),
Ay = 0. The so-called signal-to-noise ratio,

(2) A= ,

plays an important role in the minimax bias theory of Sections 2 and 3.

The distribution of Z, under the Gaussian model is F, = N(u, 3, + o2I).
We will assume that the actual common distribution F of the Z; belongs to
the epsilon-contamination neighborhood

(3) F={F:F=(1-¢€)F,+eH}.
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Epsilon-contamination neighborhoods were first introduced by Huber (1964)
in the location model setup and provide a simple way for modeling data
contaminated by outliers. F,,, called the central distribution, is a classical
parametric model which fits well the bulk of the data; H, called the contami-
nating distribution, is an unspecified distribution which generates the outliers;
€, the fraction of contamination is a fixed number between 0 and 0.5.

In general, robust estimates offer some degree of bias control by limiting the
maximum effect that any individual data point can have on the overall fit.
However, even though robust estimates can drastically reduce the bias caused
by outliers, they cannot completely eliminate this bias, even when arbitrarily
large data sets are available, as shown by the asymptotic theory.

Following Zamar (1989), the asymptotic bias at F of an estimate Bn (of By)
is defined as

(4) B(F) =1-|B(F)B,

where B(F) is the asymptotic value of 3, under F. Notice that B(F) is
orthogonal invariant and that 0 < B(F) < 1.

The maximum asymptotic bias of 8, over % and its breakdown point are
defined as

2

(5) B(€) = sup B(F) and BP = sup{e: B(e) < 1},
Fe &

respectively.

Huber (1964) showed that, in the simple location model, the median mini-
mizes the maximum asymptotic bias among all translation equivariant location
estimates. The minimax bias of the median depends on the fraction e of
outliers and is given by the formula

— _ 1 €

B(e) = F, [———~——-2(1 ~ o ]

An estimate which like the median minimizes the maximum asymptotic bias
over a certain class will be called bias robust. Martin and Zamar (1989a, b) and
Martin, Yohai and Zamar (1989) derived a bias robust M-estimate of scale and
bias robust M-, S- and GM-estimates of regression.

The maximum likelihood estimate under the Gaussian model (1) is called
the method of orthogonal regression and consists of minimizing the sum of the
squares of the orthogonal residuals, Yr?(8, a), where r(B,a)=p8Z, — a.
Orthogonal regression (OR) M-estimates defined by Zamar (1989) minimize
instead the sum Yp[r(B, @)/§,], where p is an even and bounded function
designed to downweight the effect of outliers and §, is a robust estimate of the
scale of the orthogonal regression residuals, for instance, the orthogonal
regression S-estimate of scale defined in Zamar (1989). It will be shown in
Section 3 that a particularly important case emerges when p(¢) is a jump
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function, that is,

0, ifl¢ < ¢*
6 t)y =42 ’
(6) p(t) { 1, otherwise.
In fact, the OR M bias robust estimate has a p of this kind. In this case,

ri(B7a)

2o MBS - i | > ).

n

The bias robust fit has then a simple geometric interpretation. It is the
“center” of a strip of width 2¢*§, located in such a position that it includes
the maximum possible number of data points. This estimate can be approxi-
mated by using a resampling scheme, along the lines proposed by Rousseeuw
and Leroy [(1988), Chapter 5] for classical regression.

In Section 2 the maximum asymptotic bias of orthogonal regression
M-estimates is characterized and the maximum bias curve of these estimates is
calculated. A simple linear approximation to the maximum bias curve using its
derivative at zero is briefly discussed. In Section 3 the bias robust orthogonal
regression M-estimate is derived and shown to have a loss function p of the
jump type. A sharp upper bound for the breakdown point of orthogonal
regression estimates is found. In Section 4 some possible extensions are briefly
discussed.

2. Bias robust orthogonal regression M-estimates. Assume that o
is known, that the “slope” B, is the parameter of interest and that the
“intercept” a, is a nuisance parameter. The unknown o case is briefly
discussed in Section 4. For F € 7, let (B(F ), &(F")) be the asymptotic values
of the OR M-estimates (8,, &,), that i is, B(F) and &(F) solve the minimiza-
tion problem

(7) min_ Epp[r(B, a)].
1Bll=1, a€R

Zamar (1989) shows that OR M-estimates are Fisher consistent at the Gauss-
ian model (1), that is, &(F,)) = a, and B(F,) = B,.

Let B ,(€) be the maximum asymptotic bias of the OR M-estimate with loss
functlon p. It can be shown that if p is unbounded then B ,(€) =1 for all
€ > 0, that is, BP(p) = 0. Therefore we can assume without loss of generality
(from the minimax-bias theory point of view) that p is bounded and that
p(o) = 1.

Notice that B;, being the eigenvector of 3 associated with the second
smallest eigenvalue A, [see the paragraph below (1)] is the eigenvector that
could most easily be mistaken for B, in the presence of strategically located
outliers. Thus B; can be considered the ‘“most vulnerable direction” for the
given covariance structure. Not surprisingly then, it will be shown that B (€)
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is completely determined in terms of the function

B B =1-VBo+[1- 1= B  aly)=uB(r).

Observe that B(y) moves away from B, toward B, as y goes from 0 to 1.
The function

g,(v) = Epfp[B(v) Z — a(v)]} — Exfp(BoZ — ao)}
~ E{plr(n)Y]} - E(p(o¥)}, Y ~N(0,1),

where r?(y) = 02 + A,[1 — (1 — y)?], plays an important role in the minimax
theory. It gives the increase in the expected value of the loss function under
the central model when B(y) and a(y) are used instead of B, and «,. If p is
almost everywhere continuous, then g,(y) is continuous; since #(y) is strictly
increasing, if p is even and nondecreasing on [0,«), then g, (y) is strictly
increasing. Finally, let

(9)

Z={p: p is even, monotone on [0,») and
has a finite number of discontinuities}.

Theorem 1, characterizing B ,(€), is proved in the Appendix.

THEOREM 1. Let 0 < e < 0.5 be fixed. Suppose that p € . and assume,
without loss of generality, that p(0) = 0 and p() = 1.

(@) If g,(1) > €/(1 — €) (regular case), then B €)= g e/(1 - o)l
(b) Ifgp(l) <e/(1 — ¢) and &(F) is bounded,  then B () =1.

REMARK 1. If the first condition of Theorem 1(b) holds then the breakdown
point of the corresponding OR M-estimate is smaller than or equal to €. In
fact, if @, does not break down for the given e, that is, if supp ¢ & |G(F)| < o,
then the second condition also holds and consequently j, breaks down

[B,(e) = 11.

REMARK 2. Observe that Theorem 1 and the other results in this paper do
not depend on the dimension p.

Linear approximation for B (€) for € near zero. A linear approximation for
B ,(€) for € near zero can be obtained using B’ »(0), the sensitivity of the
estlmate It can be shown that in many cases 1nclud1ng M-estimates of
location and M- and S-estimates of scale, the sensitivity and Hampel’s gross-
error-sensitivity [see Hampel, Ronchetti, Rousseeuw and Stahel (1986)] are the
same. So, one might expect that in our case

I(e) =] sup —B(F w)|,

weR®P+D de

]e, F ,=(1-¢€)F, + €d,,
=0

where §,, is a point-mass distribution at w € RP*! will provide a good linear
approximation for B (e), for € near zero. However, the order in which the
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supremum and the derivative are taken has an important effect in the present
setup.

For simplicity, consider the case when p = 1 and a, = 0 is known and use
the notation B(b) = (1 +b*)~V*(1, —bY, B, =p(b,) and Z = (Y, X). The
asymptotic value of the OR M-estimate of b,, b(F), solves the minimization
problem

Y - bX
?ggEF{P[B(b) z]} = ?QEEF{P(‘/I—T—I)?)}-
Assume, without loss of generality, that b, = 0 and so 8, = (1,0). It can be
easily verified that, for all w = (y, xY, the influence function of 6(F) is
¥(y)x

0 nEWEY) TN

IF(w,b, F,) = %B(F‘e,w)

and so

€=

-] )

bRy
[1+62(Fy)]*”

aB F.
Z p( e,w)

€=

IF(w,b, F,) = 0.

On the other hand, by Theorem 1(a), the maximum bias of the OR M-esti-
mate with bounded loss function p, B,(e), satisfies the equation

(1-€)g,[B,(e)] —p(=)e =0, VO0<e<BP,
Differentiating with respect to € at € = 0 gives
—5,(0) + £,(0) B,(0) — p() = 0.
If p'(x) = ¢(x) and A is given by (2), then
8,(0) = NE{y(sY)oY}, Y ~N(0,1), g, (0)=0;
S0,

p(=)
NE{¢(cY )oY}’

Bj(0) -

This formula does not hold when p(x) is not differentiable. In the important
case of the jump function (6), g,(y) = 2{¢(t/0) — ¢[t/r(y)]} and

p(®)
28¢(t/a)(t/a) "

Figure 1 gives the maximum bias curves and the corresponding linear approxi-
mations for the 95% efficient Tukey’s OR M-estimate (dashed line) with loss

B,(0) =
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Fic. 1. Maximum bias curves and sensitivity-based linear approximations for the 95% efficient
Tukey’s OR M-estimate (dashed lines) and for the bias robust OR M-estimate (solid lines).

function
3(, =t «° 12|
(10) p(x) = E|\¥ T TaaA) THEC
1, otherwise,

with ¢ = 4.7, and for the bias robust OR M-estimate with loss function (6),
with ¢ = 1.372 (solid line) when o = 1 and A = 3. Observe that for € < 0.10
the linear approximations are fairly good, especially in the case of the bias
robust estimate. As one would expect, the breakdown point of the bias robust
estimate (approximately 0.33) is larger than that of Tukey’s estimate (ap-
_ proximately 0.27). The corresponding sensitivities are 0.29 and 0.54.

3. Bias robust orthogonal regression M-estimates. In this section
we solve the following optimization problem.
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ProBLEM P. For a fixed 0 < € < 0.5, find p* such that B,.(e) < B,(e) for
all p € 7.

To solve Problem P, consider the following family of auxiliary problems, one
foreach 0 <y < 1.

ProBLeEM P,. Find p, such that gpy(y) > g,(y) for all p € 7.
The following theorem is the main result.

THEOREM 2. Under the assumptions of Theorem 1 the following hold:

(a) For each 0 <y <1, Problem P, has a solution denoted p,.

(b) The function G(y) = gpy(y) is continuous and strictly increasing in
(0, 1).

(c) Let 0 < e < 0.5 be given. If lim,,_,; G(y) > €/(1 — €) then there exists a
unique y* = y*(e) such that G(y*) = € /(1 — €) and the bias robust estimate
for the given € has loss function (6), with t = y*, If lim, _,, G(y) <e/(1 —¢),
then all orthogonal regression M-estimates, (B,,&,), break down, that is,
either &, breaks down (its maximum asymptotic bias is unbounded) or B,
breaks down (its maximum asymptotic bias is equal to 1) for the given € and
the given covariance structure.

Proor. Let 0 <y<1, b®=1-Q10 -y U,=(Z-u)B(y) and V=
(Z — uYB,. Then, under F,, U, ~ N[0,7%(y)], *(y) = 0® + 1;b® and U ~
N(0, 02). For p € .# and y € (0, 1),

8.) = Brfp(U,) = p(V)} = 2 p(1)3,(6)
where
8,(t) = 7(v) 'olt/r(v)] — o Wp(t/a),  (¢) = (2m) 'exp(—t2/2).

Restrict attention to nonnegative ¢. Notice that 8,(¢) <0 if ¢ is smaller than

1+ A%2 v
(11) t, =0 sz—— log(l + A2b2)

b% 2

and 6,(t) > 0 if ¢ is larger than ¢, . Since p € -2 takes values between 0 and 1,
it is clear that taking p.(¢#) = 1 when ¢ > ¢, and p (¢) = 0 otherwise maxi-
mizes g,(v), for the given v; this proves (a). To prove (b) notice that

1/2

(ﬂf’_ log(1 + A2b2)) - @[(log(l + A2b2))1/2]},

A%p?

(12) G(y) = 2{q>

where ®(¢) is the standard normal distribution function; thus, G(y) is contin-
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uous. Finally, for any 0 < y; <y, <1,
G(v1) =8, (v1) <&, (72) <&, (v2) = G(72).

The first inequality follows because, as noticed in the comments below (9),
g, (v) is an increasing function of y; the second inequality follows from the
optlmallty of p,, already proved in (a). To prove (c), let p € 2 be fixed. By the
optimality of p_«, if 8, = €/(1 — €), then y > y*. So,

6)—>*—-1(6)—§() o
—e) TYEY &1 ) T Bl

B,(e) =g;1( -

The bias robust estimate. By the proof of Theorem 2, the bias robust
orthogonal regression M-estimate has loss function (6) with ¢ = t* = ¢, . given
by (11). When o is unknown, it must be replaced by a robust estimate of the
scale of the orthogonal residyals, for example, the S-estimate defined by
Zamar (1989). Given the fraction of contamination e, the next step for
determining the value of #* is to find y* by solving the nonlinear equation
G(y) = €/(1 — €). Although the function G(y) (and, consequently, the bias
robust estimate) appears to depend on the signal to-noise ratio A%, the follow-
ing argument shows that, fortunately, this is not the case. In fact, (11) and
(12) only depend on y and A through the product A%b2. Furthermore, if G is
the function obtained by replacing A%262 by s in (12), then by Theorem 2(b)
(with A% = 1) G is continuous and strictly increasing. It can also be checked
that lim, . G(s) = 1. Given 0 < € < 0.5, let s* = s*(¢) be the unique solution
to the equation G(s) = €/(1 — €). Replacing A%b? by s* in (11) gives the
desired value of #* which clearly, then, does not depend on AZ Table 1 gives
the values of ¢* for several values of e. As shown in Figure 2, the choice
t = 1.37 (optimal for ¢ = 0.25) has maximum-bias curve (dashed line) almost
indistinguishable from the lower bound (lower solid line). The dotted line
corresponds to the bias robust estimate when e = 0.05. The remaining solid
line is the maximum bias curve of the 95% efficient Tukey’s estimate.

Breakdown-point considerations. Although the bias robust estimate itself
does not depend on the signal-to-noise ratio A%, the corresponding minimax
bias does. Consequently, the breakdown point of the bias robust estimate
depends on A% Let A? be given and fixed throughout this discussion. For each
0 < e < 0.5, there is a unique s = s(e) such that G(s) = €/(1 — ¢). Using (8)

TaBLE 1
Optimal values of the jump point t* for various choices of €

€ t*(e) € t*(e)
0.05 1.054 0.20 1.272
0.10 1.118 0.25 1.327

0.15 1.189 0.30 1.495
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Fic. 2. Lower bound for the maximum bias of all OR M-estimates (lower solid line) and
maximum bias curves for the 95% efficient Tukey’s OR M-estimate (upper solid line), for the bias
robust OR M-estimate when € = 0.05 (dotted line) and for the bias robust OR M-estimate when
e = 0.25 (dashed line).

and the identity A%2562 = s(e), one obtains that the maximum bias B*(e) of the
bias robust estimate (i.e., the minimax bias) is given by

s(€) ]1/2

E*(e)=1—[1— m

provided that s(e) < A% otherwise B*(¢) = 1. Thus, the breakdown point of
the bias robust estimate (and, consequently, the maximum breakdown-point
achievable by any orthogonal regression M-estimate) is given by the expres-
sion

€* = sup{e: s(e) > A?}.

Table 2 gives the values of €* for several values of A.
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TABLE 2
Upper bound for the breakdown point of all ORM-estimates

Signal-to-noise ratio (A) e*
1.0 0.14
1.5 0.22
2.0 0.27
3.0 0.33
10.0 0.44
100.0 0.49

4. Brief discussion of some extensions.

The unknown-o case. When o is unknown the orthogonal residuals r(a, a)
in (7) must be divided by a robust estimate of scale, &, to obtain a scale-equiv-
ariant and robust OR M-estimate. One can use, for instance, the auxiliary
orthogonal regression S-estimate of scale (OR S-estimate) described in Zamar
(1989). Notice that this scale estimate is calculated before computing the OR
M-estimate. It can be shown that the breakdown point of the OR S-estimate of
scale with loss function p satisfying the assumptions of Theorem 1 is equal to
min{E[p(Y)], 1 — E[p(Y)]}, where Y ~ N(0, 1). To achieve a breakdown point
of 1/2, one can use the loss function (10) and ¢ = 1.08.

Evidently, the contamination in the data will produce an increase in the
value of the scale estimate and this in turn will cause an increase in the value
of B ,(€). It can be shown, however, that the bias of the OR S-estimate of scale
is small for € moderately small, so the increase in B ,(€) due to the estimation
of o will also be small.

Let d(F) = 6(F)/o, where 6(F) is the scale estimate asymptotic func-
tional. Let

. .
d FS;II}CZ(F)’ d Flgggd(F)

'Z -« WZ — a,
80001 = 5ol SIS 22

Finally, let
Z() = mf g(rd) and g(y)=g(nd").

and

Under the assumptions of Theorem 1, and using arguments similar to those in
the proof of Theorem 1, it can be shown that replacing g, by g, gives an upper
bound for B (€), that is,

) <1— = Fp(e)sé,:l[lie].
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On the other hand, replacing g by g, gives a lower bound for B ,(€), that is,

Byo) 25 7|

In particular, when for each fixed y the function g (v, d) is decreasing in d, it
clearly follows that g(y) = g,(y) and B,(e) can be simply characterized in
terms of g (y). A simple condition for monotonicity of Z,(v,d) is that the
covariance between p'(Y)Y and Y2 is nonnegative, that is,

Epx{¢(Y)Y(Y?-1)}20, Y~N(0,1).

Non-Gaussian F,. To deal with the non-Gaussian case, the function g (y)
in (9) must be replaced by
(13) g, (v) = inf Ep{p[BZ - al} - Exfp[BoZ — ]},

I1Bll=vy, a€R

and the minimax theory becomes more involved, particularly when p > 1.

Let G, denote the common distribution of the ¢; and let H, be the common
distribution of the z;. If we assume that G is spherically symmetric and that
there exists u € RP?*! such that for all unit vectors g8 in R?*! the distribu-
tion of B'z; is symmetric about B'w, then (13) takes the simpler form

(14) g,(v) = ”;ﬁlijpo{P[B’(Z — )]} — ErfolBoZ — al},

and a result similar to that in Theorem 1 can be obtained. If in addition p = 1,
then the infimum in (14) is no longer needed and g,(y) takes the simple form

&,(v) = Erfo[B(v)(Z — w)]} — Exfp[BoZ — a,]},

where B(y) is as in (8). Let f,(x) be the density of B(yY(Z — w) under the
central model. If for each 0 <y <1 there exists x, > 0 such that £ (x) —
fo(x) < 0 if and only if |x| < x,, then a result similar to Theorem 2 can be
obtained.

The functional errors-in-variables model. Suppose that, under the central
model, Z,, ..., Z, are independent multivariate normal random vectors with

E(Z)=m;, Cov(Z)=0% and Bm;=a, i=1,...,n.
To deal with this model, the function g,(y) in (9) must be replaced by

1 n
(15) g,(y) = inf  lim = ¥ {Er[p(BZ~@)] - En[p(BoZ; ~ a0)]}.
In general, since the Z; are no longer identically distributed, the results
obtained for the structural relationship model cannot easily be extended to the
functional errors-in-variables model. However, if one assumes that the empiri-
cal distribution function of the u;, G,(m), approaches a limiting distribution
G,(m) as n - =, then (15) becomes identical to (13); so, from the minimax
bias theory point of view, the functional and the structural setups can be
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treated in the same way. In particular, if G, is Gaussian, then Theorems 1
and 2 hold for the functional errors-in-variables model.

APPENDIX

Proof of Theorem 1. To prove Theorem 1, we need two auxiliary lem-
mas. Lemma 1 is itself of interest because it shows that in the case of OR
M-estimates, the breakdown point of the intercept & is larger than or equal to
the breakdown point of . Lemma 2 shows that, for computing B ,(€), atten-
tion can be restricted to unit vectors B(y) defined in (8).

LEMMA 1. Ifgp(l) > €/(1 — ¢), there exists K > 0 such that |& — ool < K
forall F € &.

Proor. Since g,(1) > /(1 — ¢), there exists 0 < < 1 such that
(1-6)(1—€)—€
1-¢ )

EFO{P(ﬁ'oZ —ag)} <
By the dominated convergence theorem
lim Ep{p(BZ —a)} =1, VIgl=1.

By this and the compactness of the set {8: ||8ll = 1}, there exists a constant
K > 0 such that

la — agl > K implies EFO{p(B’Z -a)} =1-35, VB8l =1.
Therefore, for all F € & and all ||Bll = 1 we have
EFO{P(36Z —ay)} < (1- G)EFO{P(BBZ —ag)} +te<(1-e)(1-9)
< (1- ) Er{n(BZ - )} < Ex{p(BZ - )).
LEMMA 2. Let €, be the set of unit vectors B satisfying 1 — |B'B,l = v.
Then,
Epfp[B(v)(Z - W)} < Ep{p(BZ-a)}, VBEE,VacR.

Proor. By the assumptions on p and the fact that, under F, for all
a € R, (B'Z — a)? is stochastically larger than [8'(Z — w)]?, we have

(16) Erfo[B(Z - )]} < Eg{p(BZ - a)}.
To prove the lemma, then, it suffices to show that
Exfo[B(vY(Z - W]} <Epfo[B(Z-w)]}, VBEeZT,.

But any vector B € €, can be expressed in the form

P P
B=(1_6)BO+25iBi, y<d6<1, (1—8)2+28i2=1.
1 1
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Thus, 2262 > 1 — (1 — y)? and
P p
Var(BZ) = o® + 82 2 0% + M, 162 > A,[1 - (1 - y)?| = Var[(v) Z].
1 1

So [B(Z — w)P? is stochastically larger than [a(yY(Z — w)]? and the lemma
follows.

Proor oF THEOREM 1. Suppose first that g,(1) > €/(1 — €). To prove (a) it
suffices to show that, for all 0 < y < 1, the following hold:

@ g,(y) > /(1 — €) implies Ep(e) <y
(ii) gp(y) < €/(1 — €) implies Ep(e) > .

To prove (i), let B € €, and a € R. By the given assumption and Lemma 2,

Er{p(BZ = )} = Erfp(BoZ = a0)} = 8,(7) > T—

= (1- G)EFO{P(ﬁ'Z —a)} > (1- f)EFO{P(BZ)Z - ao)} +e
= Ep{p(BZ - a)} > Ex{p(BoZ — a,)}, VFe &Z.

Hence, B(F) does not belong to ¢, for all F € &%, and the right-hand side of
(i) follows. To prove (ii) it suffices to show that there exists a sequence G, in
& such that

lim [1-]8B(G,) ] = .
Let 0 < 6 < 1 be such that g,(y) < (1 — 8)e/(1 — €) and let

By =[1- @ -] - 1 -8

Observe that {8(y), B(y), B, . . ., B,} is an_orthonormal basis of RP*!. Let 7’
be the p-dimensional space spanned by {8(y), B,, ..., B,}. Any unit vector
can be (uniquely) expressed as

1/2

14 14
(A7) B=0bB(y) + (1 =b*)""c, c=0bB(y) + Lb;B;, >+ LbI=1.
2 1

For 0 <t < 1,let 7, be the set of all the unit vectors with |b| > ¢. If B8 is not
in 7, then 1 — |B'By|l > y — ¢. In fact, for any unit vector B [see (17)]
1-1BBol = 1~ bl |B(v) Bo| = (1 = 2% ¢,
> 1-[bl =[c'Bo| =1 —|bs[(1 —y) —|b] =y — [bl.

Let 0 < ¢, < 1 be such that lim¢, = 0, let y, = u + k,B3(y), where the &, are
chosen so that p(B'y, —a)>1 -6 for all [0 — ayl <K and all B € 7, (see
Lemma 1 and notice that |8y, | > k¢, — llulD.

1/2
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Let G, = (1 — e)F, + €6, and notice that, by Lemma 1, [a(G,) — a,| < K.
Now, if Ia — ayl < K and B e W , then

Ec{p(BZ —a)} = (1 - €)Ep{p(BZ - a)} + ep(By, — @)
>(1- e)EFO{p(,BQ)Z —ay)} +€(1-9)
> (1 - €)Eg{p[B(v)Z - a(v)]}
=E; {p[B(¥)Z — a()]}.

Therefore, 3(G,) is not in 7, andsol - 1B,B(G,)| =y — t, = v, proving (ii)
and part (a) of the theorem. Finally, if the left-hand side of (b) holds, then the
left-hand side of (ii) follows for all y < 1. If & does not break down (remains
bounded), then the argument used to prove (ii) follows and since it is true for

all y < 1, we conclude that B (€) = 1. This proves part (b) and the theorem.
O
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