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THE METRICALLY TRIMMED MEAN AS A ROBUST
ESTIMATOR OF LOCATION
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Sung Kyun Kwan University and University of California, Berkeley

The metrically trimmed mean is defined as the average of observations
remaining after a fixed number of outlying observations have been re-
moved. A metric, the distance from the median, is used to determine which
points are outlying. The influence curve and the asymptotic normality of
the metrically trimmed mean are derived using von Mises expansions. The
relative merits of the median, the trimmed mean and the metrically
trimmed mean are discussed in neighborhoods of nonparametric models
with natural parameters. It is observed that the metrically trimmed mean
works well for the center of symmetry of a symmetric distribution function
with asymmetric contamination. A multivariate extension of the metrically
trimmed mean is discussed.

1. Introduction. Let X,,..., X, be a random sample from a population
with distribution function F. We will evaluate the performance of various
estimates of the model F = (1 — ¢)G + ¢H, where G is an unknown symmet-
ric distribution function, H is an unknown contaminating distribution func-
tion and ¢ is a contamination proportion. This model was briefly discussed by
Bickel and Lehmann (1975) as neighborhoods of nonparametric models with
natural parameters. In this model we are interested in estimating the center of
symmetry of G when our data are contaminated by 100¢% observations from
H. As an alternative to the trimmed mean by Tukey, we will consider the
metrically trimmed mean which seems capable of extension to the multivariate
case.

In Section 2 the metrically trimmed mean is defined as the average of
observations remaining after a fixed number of outlying observations have
been removed. A metric, the distance from the median, is used to determine
which points are outlying. The influence curve and the asymptotic normality of
the metrically trimmed mean are derived using von Mises expansions in
Section 3.

In Section 4 the influence curve and the breakdown point of the metrically
trimmed mean are discussed. The metrically trimmed mean is compared with
the median and the trimmed mean in terms of the asymptotic bias, variance
and mean square error (MSE) in neighborhoods of nonparametric models with
natural parameters. Monte Carlo results are presented for the same distribu-
tion functions. In Section 5 the asymptotic relative efficiency (ARE) of the
metrically trimmed mean to the median and this same to the trimmed mean
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METRICALLY TRIMMED MEAN 1535

are discussed for symmetric distribution functions. Also the lower bounds are
derived for all symmetric unimodal distribution functions.

In Section 6 the metrically trimmed mean is extended to the multivariate
case preserving affine equivariance. To determine if a point is outlying, we use,
as our distance of the point from the generalized median, the average volume
of all p-dimensional simplexes formed by p — 1 of the sample points, the point
itself and the generalized median.

2. Definition of the metrically trimmed mean. Suppose we observe a
random sample X;,..., X, from a population with distribution function F.
We will denote the empirical distribution-function of X,,..., X, by F,, the
sample median by X and the empirical distribution function of X, —
X|,...,I1X, - X| by K,. The qth quantile of F is defined as F~(q) =
inf{x; F(x) > q}. Finally 1{-} denotes the indicator function and [-] denotes the
greatest integer function.

For 0 < a < 1, the a-metrically trimmed mean from the median is defined
as the average of the n — [an] observations remaining after the [an] observa-
tions with the largest distance from the median have been removed. We will
call it, for simplicity, the metrically trimmed mean and denote it by X,. That
is,

n
—— Y X1{|X, - X|<K;}(1 -
ey 25U X - X< K - )
(2.1) .
=—— Y XX -K;}(1-0a) <X, <X+ K;Y(1-a)l.
n—lan] /=7 { ( ( }
For an alternative functional representation of X, in terms of F,, K, is
expressed as

S| =

n
(2.2) K. (x)=-X X, -X|<x} =F(X+x)-F(X-x),
i=1
where F, denotes the left limit of F,. Now we will define two functionals
&(F) and A(F). The dependence on F will be suppressed for notational

convenience if it is clear in the context. Let £(F) be the median functional
defined as

(2.3) E&(F)=FY(1/2).
Let A(F) be the functional defined implicitly as the root of
(2.4) F(éE+A) —F((-2)=1-a.

It is noticed that K, (1 — @) in (2.1) is asymptotically equivalent to the
functional A(F,) from (2.2) and (2.4). Therefore the metrically trimmed mean
X, is asymptotically equivalent to the functional T'(F,), where

(2.5) T(F)=(1-a) " [*"xdF(x).

Y
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To understand the metrically trimmed mean, we will compare it with the
trimmed mean by Tukey when the same number of observations is removed.
We will denote it by X, when [an /2] observations are removed from each

side. Then X is asymptotically equivalent to the functional T*(F,), where

(2.6) T*(F) = (1—a) ' [ 4 /Prap(x),
F~Ya/2)

Comparing (2.5) with (2.6), it is noticed that T(F) = T*(F) for a symmetric
distribution function F. That is, X, and X, are estimating the same quantity,
namely the center of symmetry of a symmetric distribution function F.
However, T(F) # T*(F) for an asymmetric distribution function F.

As an example, suppose a = 0.1 and F = 0.9N(0,1) + 0.1N(4,9), where
N(u, 0?) denotes the normal distribution function with mean w and variance
o 2. Here we are estimating 0, which is the center of symmetry of N(0, 1). The
trimmed mean functional T*(F) chooses two trimming points F~(0.05) =
—1.624 and F~%(0.95) = 4.002 so that T*(F) = 0.21. The metrically trimmed
mean functional T'(F') finds the interval with midpoint equal to the median,
defined by (2.4), such that 90% of the total mass of distribution function F is
contained in this interval. We evaluate & = 0.112, A = 2.192 so that T(F) =
0.04. In this example, the metrically trimmed mean functional T'(F) is closer
to the center of symmetry than the trimmed mean functional 7*(F') as well as
the median functional &(F) in (2.3).

Of course, if F was known to be 0.9N(0, 1) + 0.1N(4,9), then an asymmet-
rically trimmed mean should be used instead of the trimmed mean. What is
important is that the metrically trimmed mean works well for the center of
symmetry of a symmetric distribution function with symmetric contamination
as well as asymmetric contamination.

If we replace K, (1 — @) in (2.1) by some constant, then the metrically
trimmed mean defined by (2.1) is an estimator proposed by Bickel (1965). It
was a difficult problem in the 1960s to study the properties of the metrically
trimmed mean without the results on von Mises expansions. There are some
good reasons for using K, (1 — a) instead of some constant. From the theo-
retical point of view, we can get affine equivariance. This fact should not be
passed over lightly if we recall how many complications arise for Huber’s
estimator [Huber (1964)] to be affine equivariant when the scale is unknown.
All the more, we can exploit results ‘on the empirical distribution function.
From the practical point of view, to decide how many observations are to be
removed has more intuitive interpretation than to choose some constant.

3. Influence curve and asymptotic normality. We will derive the
influence curve and the asymptotic normality of the metrically trimmed mean.

ProprosiTION 3.1. Let F possess a density f which is absolutely continuous
and positive on its support. Then the influence curve of the metrically trimmed
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mean, T(F,), is

CF,a) = Cy(F,a) = C4(F, a),
ifx <&—A,
x —Cyo(F,a) — C4(F,a),
ifé€ — A <x <§,
x+ Cy(F,a) — C4(F,a),
iféE<x <&+,
C(F,a) + Co(F,a) — C4(F,a),
: ifx > &+ A,

(3.1) IC(x;F,T)=(1-a) !

where C(F, a), C,(F, a) and C5(F, a) are defined in (3.9), (3.10) and (3.11)
respectively. Moreover,

Vn (T(F,) — T(F)) - N(0,52) in distribution,
where

(3.2) 572 = E(IC(X; F,T))®.

Proor. (i) Influence curve. Let F, = F + ¢(5, — F), where §, denotes point
mass 1 at x. From (2.5), we have

(3.3) (1 - a)T(F) =fxdF+tfxd(8x—F),

where the integrations are taken from &(F,) — A(F,) to é&(F,) + A(F)),
(3:4) &(F) = F,1(1/2)

and A(F,) satisfies

(3.5) F(£(F) + ME)) - F(¢(F) ~ A(F)) =1 - a.
Since

)
t=0

d
1C(x; F,T) = —T(F,)

we have from (3.3)
(1 - a)IC(x; F,T) = (£+A) f(£+ 1) (& +X)
(3.6) S(E=NFE=NE =) + [Txd(s, - F),

where ¢ and X denote (d/dt)¢(F)|;—o and (d /dt)A(F,)|;—o respectively. Simi-
larly, we have from (3.4) and (3.5)

(3.7) &= (Hx>¢& - 1/2)/f(§)
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and

C(Lma) —E(fEHN) (- N) ~ LA <x <£+ A
(38) X-= FE—X) + f(E+A) '

Substituting (3.7) and (3.8) in (3.6), the proof is complete by defining C(F, @),
Co(F, a) and C4(F, @) as follows:

fE+2) —f(E-4A)
fE+A) +f(£-2)°

f(E+2) - 2f(£-1)

(3.9 C(F,a) =¢+ A

3.10 Co(F,a) =2
(310 oA ) f(&)  FE+N) +F(E- 1)
and
E+A
(3.11) Cy(F,a) = aCy(F,a) + [* "xdF.
£\
(ii) Asymptotic normality. Since X;,..., X, are iid random variables from a

distribution function F, then F(X),),..., F(X,) are iid random variables from
the uniform distribution function U on [0, 1]. If we denote by U, the empirical
distribution function corresponding to F(X)),..., F(X,), it follows that F, =
U, - F. Here ““©” is used to denote a composition of two functions.

Let ) denote the space of right-continuous functions with left limits on

[0, 1]. Then the metrically trimmed mean functional T induces a functional 7
on () by

(U,) =T(U,~F) =T(F,)
and
T(U)=T(U-F)=T(F).

To prove asymptotic normality of T'(F,), we will show that the functional
defined by

(D) =T(D-F) forDeQ

is Hadamard differentiable at the uniform distribution function U and apply
Fernholz (1983), Theorem 4.4.2.

First, we notice from (2.4) that the functional A induces a functional x on Q
defined as a root k(D) = 6 of

vo(D,80) —yi(D,0) =1—-a forD €,
where
y(D,0) =D F(F'-D"%(1/2) - 0)
and

y9o(D,8) =DoF(F oD }(1/2) + 0).
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Thus the functional T' defined by (2.5) induces a functional 7 on Q) as
(3.12) "(D) = (1-a) " [**PF 1D I(x) dr,
(D)

where
¥, (D) = ’yj(D,K(D)) for j =1,2.

From the chain rule and Fernholz (1983), Proposition 6.1.8, (D) is Hadamard
differentiable at U provided:

1. F~'o D! is Hadamard differentiable at U,
2. ¢, is Hadamard differentiable at U, )
3. F~'o D! is continuous at ¥ (U).

Here we recall that the trimmed mean functional T* defined by (2.6)
induces a functional 7* on ) as

(3.13) (D) = (1 —a)‘lfal/'“/zF—loD-l(x)dx.

Also the so-called Hodges-Lehmann estimator induces a functional 75 on
defined as a root 75,(D) = 6 of

(3.14) ['DeF(20 - F oD }(x))dx = 1/2.
0

It is noticed from (3.12) that the integrand, F~!'o D~! is the same as the
integrand of (3.13) and the 1ntegrat10n limit ¢; is the same form of integrand
as in (3.14). Therefore both F~'o D~ ! and ; are Hadamard differentiable at
U with modification of D and truncation of F as discussed by Fernholz (1983).
With these modifications of D, then F~!o D! is continuous at #;(U). There-
fore 7(D) is Hadamard differentiable at U and the proof is complete. O

REMARK. If F is a symmetric distribution function about 0, then the
influence curve of the metrically trimmed mean in (3.1) simplifies to
-C(F,a), if x < F Y(a/2),
4 jx—=C(F,a), ifF Ya/2)<x<0,
x+C(F,a), if0<x<F Y1-a/2),
C(F,a), ifx>F }1-a/2),

IC(x; F,T) = (1 — )

where
C(F,a) = /(1 - a/2) f(F~X(1 - a/2)) /f(0).

4. Comparisons. In this section we discuss the relative merits of the
median X, the trimmed mean X, and the metrically trimmed mean X,

The breakdown points of X and X, are well known to be 1/2 and a/2
respectively. It is easy to see that the breakdown point of X is a. That is, the
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breakdown point of X, is double that of X, when the same number of
observations is removed.

The influence curves of X,, are shown in Figure 1 for some distribution
functions with those of X and X,,. The upper figures refer to symmetric
distribution functions and the lower figures refer to asymmetric distribution
functions. It is observed that the influence curve of X, has jumps at ¢ — A, ¢
and ¢ + A. Also it has relatively small absolute value at + . It is surprising to
observe that the influence curve of X, has positive value at — in the lower
right figure.

The discontinuity of the influence curve of the metrically trimmed mean can
be relieved by considering smooth weighting instead of trimming. It is noticed
that the metrically trimmed mean is the weighted average where the weight W,
is 1 if |X, — X| is small and 0 otherwise. As an alternative to the 1 and 0
weight, the weight W, may be given inversely proportional to |X, — X| ora
studentized version of IX, — X|. A successful example of weighted averages is
the biweighted mean discussed by Mosteller and Tukey (1977).

To compare the three estimates in terms of the bias, variance and MSE, we
consider neighborhoods of nonparametric models with natural parameters
where F = (1 — ¢)G + ¢H. Without loss of generality, the center of symmetry
of G is set at 0. For given F and a, we evaluate the asymptotic bias and the
asymptotic variance of X, as T(F) in (2.5) and &2 in (8.2) respectively. In
view of the asymptotic bias and variance, the question again arises of the
applicability of the results to finite sample size. For this reason, we present
Monte Carlo results with sample size n = 20 for the same distribution func-
tions.

In this simulation study, X, X, and X are computed for 20 pseudo-ran-
dom variates from F and this process is repllcated 3000 times. For X, let
AVE denote the average of 3000 realizations of X, and let VAR denote their
variance multiplied by the sample size. We then evaluate the Monte Carlo bias
and the Monte Carlo variance of X, as AVE and VAR respectively. Finally, the
asymptotic MSE and the Monte Carlo MSE of X, are, normalized by the
sample size, given below. These remarks apply in a s1m11ar way to X and X

Asymptotic MSE = 20(T(F))” + &2

Monte Carlo MSE = 20AVE? + VAR.

Table 1 represents the asymptotic results and Table 2 represents the Monte
Carlo results corresponding to Table 1. From Table 1 it is noticed that the
asymptotic bias of X, is smaller than that of X,. The difference between the
two biases grows fast as the center of H gets farther from the center of G. The
asymptotic bias of X, is smaller than that of X if a > ¢. As the center of H
gets farther from the center of G, the asymptotic variance of X grows slow,
the asymptotic variance of X, grows fast and the asymptotic variance of X
fluctuates depending on G and H. The asymptotic MSE of X gets smaller
than that of X, as the center of H gets farther from the center of G or as G



Fic. 1. The influence curve of X (dotted line), X, (broken line) and X, (solid line). “t,(d)

N(O, D)

METRICALLY TRIMMED MEAN

S ao

-4 -2 o} 2 4 6
0.9N(0,1) + 0.1N(4,9)
-4 -2 o 2 4 6

" IC

IC

t5(0)°

1541

-1

~en

0.925(0) + 0.1¢,(4)

<«

1 1

-6

-4 -2 (o}

denotes the t-distribution with v degrees of freedom centered at ¢.

2 4

6



1542 S.-J. KIM

TaBLE 1
The asymptotic bias, variance and MSE® of X, Xa and Xa for distribution functions in neighbor-
hoods of nonparametric models with natural parameters

0.9N(0,1) + 0.1N(p,02) 0.8N(0,1) + 0.2N(y,02)
X Xﬂ.l X~0.1 XO.Z X~0.2 X XO.I X’O‘l XO.Z X0.2

BIAS 0.13 0.17 0.10 0.16 0.10 029 0.37 026 035 0.23

w=20=1 VAR 190 136 178 137 210 237 170 228 1.75 2.66
MSE 224 196 199 187 229 4.06 446 3.63 4.19 3.76
BIAS 0.07 0.10 0.03 0.09 0.04 0.15 027 0.08 0.21 0.08
nw=20=3 VAR 184 146 152 136, 1.92 219 254 1.70 1.96 2.01
MSE 193 168 154 151 195 262 396 1.82 2.80 213
BIAS 0.14 029 0.04 021 0.06 032 071 0.36 0.61 0.09
w=40=1 VAR 198 247 143 194 176 271 393 3.64 424 2.05

MSE 237 415 146 280 183 4.74 1388 6.21 1159 221

BIAS 0.11 021 0.04 0.15 0.06 025 057 0.19 0.42 0.10
w=4,0=3 VAR 190 223 143 153 186 242 469 3.06 3.77 1.87
MSE 215 3.07 146 200 193 367 1124 3.79 7.29 2.08

0.9N(0,1) + 0.1£,($)® 0.8N(0,1) + 0.2¢,($)
X XO.I X~0.1 20.2 X0.2 X XO.I XO.I 20.2 X0.2

BIAS 0.12 0.17 0.09 0.15 0.09 027 036 0.24 0.33 0.21
¢=2,v=5 VAR 189 137 176 137 208 235 173 222 1.76 2.61
MSE 219 192 193 183 224 382 429 336 399 352

BIAS 0.12 0.16 0.09 0.15 0.08 026 035 0.23 0.32 0.20
¢=2v=3 VAR 188 137 175 137 207 234 176 218 1.78 2.58
MSE 216 189 190 180 221 369 4.18 3.22 3.86 3.39

BIAS 0.14 028 0.04 020 0.06 031 069 034 059 0.09
é=4v=5 VAR 197 244 140 186 178 268 392 359 418 193
MSE 235 4.03 143 267 185 4.65 1345 593 11.10 2.10

BIAS 0.14 027 0.04 020 0.06 031 068 0.33 0.57 0.09
¢=4v=3 VAR 196 243 139 181 179 266 393 358 416 1.87
MSE 233 394 141 258 186 454 1310 5.76 10.72 2.05

0.9¢5(0) + 0.1¢,(¢) 0.825(0) + 0.2¢,(¢)

X XO.I X~0.1 XO.2 X0.2 X Xo.l X~0.1 XO.2 X0.2

BIAS 0.13 0.18 0.12 017 0.10 029 038 0.30 0.36 0.25
¢=2,vr=5 VAR 209 178 201 173 219 263 211 255 212 2.89
MSE 242 246 231 230 238 426 5.04 431 4.76 4.10

BIAS 0.12 0.18 0.12 0.16 0.09 027 037 028 0.35 0.23
¢=2,r=3 VAR 208 180 199 174 218 262 216 252 2.15 2.86
MSE 239 244 227 227 235 411 494 4.13 463 3.94

BIAS 0.15 032 0.08 024 0.05 033 073 040 064 0.15
¢=4,v=5 VAR 219 293 221 257 188 3.06 432 428 459 3.08
MSE 261 497 234 374 194 526 1490 752 1280 3.3

BIAS 0.14 031 0.08 024 005 032 071 0.39 0.63 0.14
¢$=4,v=3 VAR 218 292 216 253 189 3.02 433 424 457 294
MSE 259 4.87 228 363 195 513 1454 728 1240 3.35

“Normalized by the sample size n = 20.
% (¢) denotes the ¢-distribution with v degrees of freedom centered at 6.
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The Monte Carlo bias, variance and MSE® of X, X, and X, for distribution functions in
neighborhoods of nonparametric models with natural parameters

0.9N(0,1) + 0.1N(p,a2)

0.8N(0,1) + 0.2N(p,02)

X X XO.I Xo2 Xz ¢ Xo.1 X~0.1 Xo2 Xoz

BIAS 0.14 0.8 0.2 0.17 0.11 030 037 028 035 025

w=20=1 VAR 187 142 182 144 209 230 172 222 176 263
MSE 225 209 210 201 233 404 443 377 419 384

BIAS 0.07 0.13 0.04 0.10 0.03 0.15 030 012 024 0.08

w=20c=3 VAR 184 177 163 155 192 206 249 199 213 201
MSE 194 210 165 174 195 252 423 227 323 214

BIAS 0.15 031 0.12 025 007 034 070 040 0.62 0.19

u=40=1 VAR 185 227 177 204 173 275 364 330 377 2.80
MSE 233 425 204 331 182 504 1356 653 1144 354

BIAS 0.12 0.25 0.08 0.19 006 026 062 029 049 0.13

p=40=3 VAR 180 240 175 193 185 255 504 348 431 233
MSE 210 3.69 1.87 264 192 394 1269 519 9.09 2.69

0.9N(0,1) + 0.1£,($)® 0.8N(0,1) + 0.2¢ ()

b ¢ Xo.1 XO.I X0z Xo.z >¢ Xo.1 XO.I Xo2 Xo.z

BIAS 0.12 0.17 0.10 0.15 0.09 029 038 027 035 0.24

$=2v=5 VAR 175 133 165 133 199 248 197 243 199 279
MSE 2.03 190 1.86 180 214 419 478 394 447 398

BIAS 0.12 0.16 0.10 0.15 0.09 028 037 027 034 023

$=2v=3 VAR 181 140 169 139 205 231 176 217 178 266
MSE 208 194 190 184 221 392 444 358 412 3.72

BIAS 0.15 031 0.11 025 0.06 033 069 039 060 0.18

¢=4,r=5 VAR 187 230 181 206 178 295 3.71 336 3.80 293
MSE 234 422 206 327 186 514 1326 640 11.05 3.60

BIAS 0.14 030 0.10 023 0.05 033 069 038 059 0.19

¢=4,r=3 VAR 190 239 185 211 183 290 386 339 391 281
MSE 231 4.13 207 320 1.89 507 1326 6.34 1097 3.0

0.925(0) + 0.1¢,(¢) 0.8¢5(0) + 0.2¢ ()

b'¢ Xﬂ.l Xﬂ.l 20.2 Xo.z b'¢ XO.I XO.I 20.2 Xo.2

BIAS 0.14 0.19 0.14 0.8 0.12 030 038 031 036 026

¢=2rv=5 VAR 197 174 198 169 224 258 210 248 209 292
MSE 236 245 236 230 252 434 500 441 473 4.31

BIAS 0.14 0.19 014 018 0.11 028 036 029 034 025

$=2r=3 VAR 215 190 210 183 236 253 218 256 212 289
MSE 254 261 247 245 262 411 480 426 450 4.18

BIAS 0.16 032 0.14 027 0.07 037 074 046 066 026

¢$=4,v=5 VAR 227 290 250 264 222 371 433 442 444 412
MSE 276 5.00 286 4.06 232 649 1517 865 1320 5.46

BIAS 0.16 034 0.15 0.28 0.08 038 074 046 066 026

$=4,vr=3 VAR 215 282 239 255 215 339 428 422 436 3.80
MSE 267 514 283 413 227 625 1520 844 1311 5.12

“Normalized by the sample size n = 20.
% () denotes the ¢-distribution with v degrees of freedom centered at 6.
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_ TaBLE3
Normalized variance of X, Xy, and X, 5 from N(0,1) (n = 20)

X Xo.1 Xo.2
Exact value 1.47 1.02 1.06
Princeton study 1.50 1.02 1.06
Duplication I 1.46 1.02 1.05
Duplication II 1.42 1.00 1.02

has heavier tails. The asymptotic MSE of X tends to be smaller than that of
X unless a < «.

From Table 2 it is noticed that the asymptotic results give a reasonable
approximation to the finite sample size Monte Carlo results. As the sample size
increases, we can see that comparison of MSEs among X, X, and X, will be
one sided in favor of X, because the bias increases faster than the variance.
As a check of the simulation results, duplication of VAR is made for X, X,
and X, from N(0,1). They are shown in Table 3 with the exact values and
the Princeton robustness study in Andrews, Bickel, Hampel, Huber, Rogers
and Tukey (1972), page 69. Some idea of the precision for the Monte Carlo
results can be gained from Table 3.

5. ARE for symmetric distribution functions. Once we observe that
the metrically trimmed mean X, works well for distribution functions in
neighborhoods of nonparametric models with natural parameters, it is inter-
esting to investigate the performance of X, for symmetric distribution func-
tions as well. Let 62 and &2 denote the asymptotic variance of X and X,
respectively. We will denote by e,(F,a) the asymptotic relative efﬁmency
(ARE) of X, to X and similarly by e,(F, a) the ARE of X, to X, where

e(F,a) =62/62 and ey(F,a) =52/52.

[e3

The values of 62, 52, G2, e,(F, a) and ey(F, a) are shown in Table 4 for some

symmetric distribution functlons Table 4 shows that X, is more efficient
than X but X, is less efficient than X,.1- The efficiency of X decreases as «
increases from 0.1 to 0.2. We will derive the lower bounds of e(F, a) and
ey(F,a) for all symmetric unimodal distribution functions in the following
proposition.

PROPOSITION 5.1. Let F be the family of all symmetric unimodal distribu-
tion functions which possess the regularity conditions of Proposition 3.1. Then
(5.1) inf(F € & e(F,a)} =3/(7 - 4a)
and

(5.2) inf{F € F; e)(F,a)) = (1 + 2a) /(7 — 4a).
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TaBLE 4
The asymptotic variance of X, X, and X, and the ARE for symmetric distribution functions

X Xo1 Xo1 Xo2 Xo2 €,(F,0.1) e,(F,0.1) e,(F,0.2) e,F,0.2)

N, 1) 1.57 1.03 1.54 1.06 1.83 1.02 0.67 0.86 0.58
t5(0)° 1.73 1.39 1.59 1.35 1.82 1.09 0.87 0.95 0.74
0.9N(0,1) + 0.1N(0,9) 1.80 1.32 1.56 1.30 1.93 1.15 0.85 0.93 0.67
0.9N(0,1) + 0.1£5(0) 1.59 1.05 1.53 1.08 1.83 1.04 0.69 0.87 0.59
0.9N(0,1) + 0.1£5(0) 1.60 1.07 1.53 1.10 1.83 1.05 0.70 0.87 0.60
0.9¢5(0) + 0.1¢5(0) 1.75 1.43 1.59 1.37 1.82 1.10 0.90 0.96 0.75
0.8N(0,1) + 0.2N(0,9) 2.09 1.80 1.66 1.63 2.05 1.26 1.08 1.02 0.80
0.8N(0,1) + 0.2¢5(0) 1.60 1.08 1.53 1.11 1.82 _ 1.05 0.71 0.88 0.61
0.8N(0,1) + 0.2¢5(0) 1.62 1.12 1.52 1.14 1.82 1.07 0.74 0.89 0.63
0.8t5(0) + 0.2¢4(0) 1.76 1.46 1.60 1.39 1.82 1.10 0.91 0.97 0.76

“¢,(¢) denotes the ¢-distribution with v degrees of freedom centered at ¢.

Proor. We will prove (5.2). In a similar way, (5.1) can be proved. Without
loss of generality, let F be a symmetric distribution function about 0. Let
a=F1'1-a/2), b=7F(a)/f(0), c¢c=[%x*f(x)dx and d = [ |x|f(x)dx.
Then

(5.3) eo)(F,a) = (aa® + ¢)/(a®b? + 2abd + ¢).

The problem is now to maximize d subject to the given conditions on a, b and
c¢. The maximum of d is clearly approached by a density concentrating its
mass more and more closely inside of —a and a. Since f(x) is symmetric and
unimodal, the maximum value of d is approached by the density f*(x), where

(1-a)/(2a), iflx|<a,
B*7 iflx] >a,

[ (x) = {
and B* is arbitrary, provided that f*(x) is continuous and unimodal. A formal
proof for the density f*(x) can be found in Bickel (1965), Lemma 4.1. For this
density f*(x), we have b =1, ¢ = a*(1 — @)/3 and d = a(l — «)/2. Substi-
tuting the values of b, ¢ and d in (5.3), the proof is complete. O

6. Extension to multivariate location. The trimmed mean X, has
been extended to the multivariate case in various directions such as convex
peeling and depth trimming as discussed by Barnett (1976) and Donoho and
Huber (1983). However, few theoretical results are available. This is due to the
fact that there is no universal agreement on multivariate ordering and it is
rarely possible to remove outliers without reliable robust estimates of multi-
variate location. For recent developments, we refer to Davies (1987), Lopuhai
(1989), Rousseeuw and van Zomeren (1990) and Lopuhaid and Rousseeuw
(1991). On trimming and weighting for robust estimation in the linear model,
we also refer to Koenker and Basset (1978), Ruppert and Carroll (1980),
Portnoy (1987), Welsh (1987) and Portnoy and Koenker (1989).
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The same difficulties arise in the extension of the metrically trimmed mean
to the multivariate case except for spatial data. For spatial data, the univariate
median is naturally extended to the spatial median as discussed by Brown
(1983). Thus the univariate definition of the metrically trimmed mean in (2.1)
still makes sense, interpreting X as the spatial median and |- | as the
Euclidean distance. It is noticed that the spatial median and the metrically
trimmed mean from the spatial median are not affine equivariant if they are
rotationally equivariant.

As an alternative to the spatial median, Oja (1983) proposed an affine
equivariant estimator, called the generalized median, which is based on mini-

mizing a U-statistic as follows: Let X,,...,X, be a p-dimensional random
sample. Let A(X ...,ij;ﬂ) be the volume of the p-dimensional simplex
formed by X; ,X i and 0 € R?. Then the generalized median, denoted by

X is a solutlon of 0 which minimizes

-1
(6.1) (7] ZARX,...X,9),
where the summation in (6.1) is over the (;’,) combinations of p distinct
elements {j,,..., j,} from {1, ..., n}. Recently Lopuha# and Rousseeuw (1991)
indicate that the finite sample replacement breakdown point of X might be
greater than [(n — p + 1)/2]/n.
Let

n—1)" g .
(6.2) Yi=(p_1) YAX,... X, ;X,X) fori=1,...,n,

where the summation in (6.2) is over the (Z - i) combinations of p — 1 distinct
elements {jl,...,jp J from {1,...,i—1,i+1,...,n}). That is, Y, is the

average volume of simplexes formed by p —1lof the sample points, X, and X.
To determine if X, is outlying, we use Y, as our distance of X; from X. Let K,
denote the empirical distribution function of Y;,...,Y,. Then the metrically

trimmed mean in (2.1) is extended to the multivariate case as

(6.3) X, = Z X, 1Y, <K, '(1 - a)}.

n— [an]

Since the volume of simplex is affine equivariant, X in (6.3) is affine equivari-
ant. The statistical properties of X in (6.3) are not known yet.
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