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AN IMPROVED SEQUENTIAL PROCEDURE FOR
ESTIMATING THE REGRESSION PARAMETER IN
REGRESSION MODELS WITH SYMMETRIC ERRORS

By T. N. SRiram
University of Georgia

A sequential procedure for estimating the regression parameter B € R®
in a regression model with symmetric errors is proposed. This procedure is
“shown to have asymptotically smaller regret than the procedure analyzed
by Martinsek when B = 0, and the same asymptotic regret as that proce-
dure when B # 0. Consequently, even when the errors are normally dis-
tributed, it follows that the asymptotic regret can be negative when g = 0.
These results extend a recent work of Takada dealing with the estimation
of the normal mean, to both regression and nonnormal cases.

1. Introduction. Consider the general linear model

(1.1) Yi=XiB+e =pix; + o ABxy gy,

i=1,2,..., where each X; = (x;;,...,x,,) is a known k-vector of design
points, B = (B,,...,B,) is an unknown k-vector of parameters, €1, Eg,... are
iid. with mean 0 and variance o2, and y,, y,,... are the observed responses.

Define X,, for each n to be the n X k£ matrix with (i, j) entry x;; and assume
that for each n, M, = X/, X, is nonsingular. Then the least squares estimator

of B based on the first n observations is

n -1 5
(1’2) énzM;IX,nyn= (Z XL‘XL/) ZyLXL’
i=1 i=1
where y, is the n-vector (y,,...,y,). Suppose that one can stop observing the
sequence (X, y,),(X,,y,),... after any number of observations n and esti-
mate B by B,,, subject to the loss function

(1.3) L,=An"'(B,-B)M,(B-B)+n, A>o0.
If o is known and a fixed sample size n is used, then the risk
(1.4) R,=E(L,) = Akc?/n +n

is approximately minimized by n, = (Ak)'/?s, with corresponding minimum
risk R, = 2(Ak)'/%0. On the other hand, if ¢ is unknown, then n, cannot
be used and there is no fixed sample size procedure that will achieve the
risk 2(Ak)'/?. Motivated by the formula for n, and the idea of Robbins
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1442 T. N. SRIRAM

(1959), Martinsek (1990) proposed the following stopping time: Let &, =
n~'Tr_(y; — XiB,)? and define

T=T, = inf{n >myin > (Ak)1/26-n}

n

=infin>myn"ty &2 - n_l( Y eng)M;I( Y Xisi)
(1.5) i-1 i-1 i=1

<n?/( Ak)} ,
where m, may depend on A and 6?2 is an estimator of o~ at each stage n.
The parameter B is then estimated by B, and the risk of the sequential
procedure B, is R = E(Ly).

Martinsek (1990) showed that if the errors are symmetric, nonlattice
with Ele,|°” <o for some r > 1, the initial sample size m, satisfies
8AY?/log(A) < m,4 = 0o(A'/?), and the design points and the matrix M,
satisfy some mild conditions, then the regret

2

3 1 (T
R — 2(Ak)?0 =2.75 - ZE(£1/0)4 + zE{ Y X[zt - TM;I]X,.}
i=1
(1.6) . ,
+——E{(Z g, X,

2
ko i-1

T
[TM;1 - 2“1] ( Y X,
i=1

} +0(1)

as A — x [see Martinsek (1990), Theorem 2]. Note that the above result
extends the work of Mukhopadhyay (1974) and Finster (1983) to the nonpara-
metric case and also generalizes the results of Woodroofe (1977).

The possibility of improving the performance of a stopping rule at a fixed
value of a parameter has been investigated recently by Takada (1992) for
estimating the mean of a normal population. Takada (1992) constructed a
stopping rule analogous to the rule proposed by Robbins (1959), where the
unknown variance o? is estimated by an improved estimator of o2 instead of
the usual sample variance. He showed that the asymptotic regret of his
sequential procedure is negative when the mean is 0 and 1/2 otherwise, thus
improving the expansion obtained by Woodroofe (1977). Note that the im-
proved estimator of o2 given in Takada (1992) is similar to the one proposed
by Stein (1964) to establish the inadmissibility of the usual estimator of o2 in
the normal case.

In this paper we use the technique developed by Takada (1992) and propose
a stopping rule N for the sequential estimation problem in regression setup
(1.1). Under the same regularity conditions as in Theorem 2 of Martinsek
(1990), it is shown that the procedure N has asymptotically smaller regret
than T defined in (1.5) when B = 0, and the same asymptotic regret as T
when B # 0. This result extends the work of Takada (1992), not only to the
regression setup but also to the nonnormal cases. In the case of normal errors,
our result implies that the asymptotic regret of N is negative when = 0 and
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1/2 when B # 0, which improves the regret expansion obtained by Finster
(1983) at B = 0.
To this end, instead of 6,2 in (1.5), consider an estimator ¢, of the form

n

(1.7) ¢, =n"" min{ Y (v - XB.), i Y2/l
i=1

i=1
where ¢, > 1 is a sequence of constants. Now, let
(1.8) - N =inf{n = my: n = (Ak)*¢1/%)

and estimate B by f ~- In what follows we will assume that c,, is nonincreasing
and
(1.9) c,=1l+c/n+o(n') asn — x,

where ¢ is a nonnegative constant. The main result is given next.

THEOREM. Assume that for some C < », |x,;| < C for every i and j. Assume
further that

(1.10) n[M,/n - 3] =0(1)
as n — o, where 3 is nonsingular, that Ele,|®” < « for r > 1, £2 is nonlattice,

e, has a distribution that is symmetric about 0, and that 8§A'/?/log(A) <
m, = o(AY?) as A > «, for some § > 0. Then as A — o,

3 (&2 1 (N
Ry — 2(AR) 0 = —ZE(U—I2 - 1] + EE{ Y X[zt - NM;,l]Xi}
i=1

N

> sng)[NM;,I - 2—1](§1Xiei)}

i=1

1
(1.11) + ———E{

ko?

E(k~'xf — 1)max{x}, c} + o(1), when B =0,
2 +0(1), when B # 0,

where x? is a chi-square random variable (r.v.) with k degrees of freedom and
cisasin (1.9).

REMARKs. For the case B # 0, the regret expansion for N agrees with that
of T obtained by Martinsek (1990). However, for B = 0, since it follows easily
that

(1.12) E[k~'x? - 1|max{x?,c} > 0 asc — o,

the procedure N has asymptotically smaller regret than T [see (1.6)]. If
n[M,/n — 3] has a limit as n — , then the terms in (1.11) that involve the
design matrix cancel, thus yielding a negative regret at § = 0 for large c. In
particular, suppose 2 =1 and all x;; = 1, so that y,,y,,... are iid. with
mean B3, and variance o2 Then M, /n = 1, and in this case, even if the error
distribution is not symmetric, it can be shown directly [assuming E|y,|®" < «
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for r > 1, y, is nonlattice and §A'/* < m, = 0(A'/?) as A — =] that
Ry - 2AY% = 2E%(Z)® - (3/4)E[ 22 - 1]°
E(x} — 1)max{x?,c} + o(1), when g, =0,
2 +o0(1), when B; # 0,

where Z = (y; — B;)/0 and this extends the result of Takada (1992) to the
nonparametric case, and improves the expansion obtained by Martinsek (1983)
at B; = 0. Moreover, in setup (1.1), if the errors are normally distributed, then
it can be shown using an analog of Property 2 of Finster (1983), (1.11) and
(1.12) that Ry — 2(Ak)/%0 is negative (—3/2, for large ¢) when B = 0 and
1/2 when g # 0.

The proof of the theorem is given in Section 3. In Section 2 we prove some
preliminary results which will be used in Section 3. The method of proof of the
main theorem is similar to that of Theorem 2 of Martinsek (1990). Therefore,
we will only elaborate on those necessary steps that distinguish the stopping
rule N from T.

2. Preliminaries. In this section we prove several lemmas that will be
used in the proof of the main theorem. We will label some repeatedly used
assumptions as follows:

(A1) |x;;| < C <o foralli,j;
(A2) M,/n -3 asn — o, where ¥ is positive definite.

Without loss of generality, take o = 1.

Lemma 1. Assume (Al) and (A2). For N defined in (1.8), if m, >
8AY?% /1og(A) for some & > 0 and A sufficiently large, then for all r > 0,

(2.1) {[(Ak)l/z/N]r: A> O} is uniformly integrable (u.i.).
Proor. Let

i=1

n 1/2
(2.2) N2=inf{n2mA:n > (Ak)1/2(2yi2/ncn) }
Then by (1.8), (1.5) and (2.2) it suffices to show that

23) {[(ar)*/1]" 4> 0} and {[(Ak)l/z/Nzlr: A> o} are u.i.
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The first assertion in (2.3) follows from Lemma 1 of Martinsek (1990) and the

second assertion follows from Lemma 3 of Chow and Yu (1981). Hence the
result. O

LeEmMA 2. IfEle)|” < forr > 1 and m, = O(AY2) as A — o, then

(2.4) {([N/cae)”] - A= 1) is i,

Proor. Since N < T and {{T/(Ak)'/?]": A > 1} is u.i. [see display (2.7) in
Martinsek (1990)], we have the required result. 0O

Results from nonlinear renewal theory [see Lai and Siegmund (1977, 1979)
and Woodroofe (1982)] are given next. The stopping time N may be written
using a Taylor expansion as

(25) N-= inf{n >myn—(1/2) f (e2-1)+¢, > (Ak)1/2},

i=1
where
(2.6) .= (1/2)y, + (3/8)A;%%n(, — 1)°
with

@7 = max{( y X)M( y Xiei), Yoy yf/cn}
i=1 i=1 i=1

i=1

and A, is a random variable satisfying |A, — 1| < [¢, — 1].

LeEmMA 3. Assume (Al) and (A2). If Ele,|° < « for some s > 4, then
(2.8) {£,: n > 1} is slowly changing .
Proor. Since ¢,/n — 0 as., it follows easily that n~! max, _;_ &l =0

a.s. as n - «, To show that {¢,: n > 1} is uniformly continuous in probability
(u.c.i.p.), we first show that {y,: n > 1} is u.c.i.p. Let

A, = {Z el — L yl/e, < (Z Ein)Mn_l( Xifi)}
i=1 i=1

i=1 i=1

and write

n n n n
(2.9) Yn = (Z Ein()Mrfl( Z Xisi)IAn + {Z 3i2 - Z yiz/cn}IA—ny
i=1 i=1

i=1 i=1
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where A is the complement of A . For any B, write

Y&l = Y yi/e,
i=1 i=1
(2.10)

=[n(c, = 1)/c,| Y e2/n — 2¢c,;'B' Y. X;e;, — ¢, 'B'M,B.
i=1 i=1
Now, if Ele,|” < « for r > 2, then by (2.10) we have for g # 0 that

P(Zn) < P{n_1 Y e2> (ncn)i1 Y yf}
i=1 i=1

< P{2n‘1 X,e;| > (2n)“IB'MnB}

L
i-1

(2.11)
P{n‘2 i‘ e [n(c, — 1) /c,] > (2ncn)_IB’MnB}
i—1

=0(n"/%) asn > o,

where we used that

n k

BY X, = X B (z 9l

i=1 Jj=1

the Markov inequality, Theorem 10.3.2 and the proof of Corollary 10.3.2 of
Chow and Teicher (1978), (A1), (A2) and |n(c, — 1)/c | is bounded in n. So, by
Lemma 2 of Martinsek (1990), {y, IA n> 1} is u.ci.p. When g = 0, by (2.10),
(1.9) and SLLN, we have {y,Iz: n > 1} is u.cip. For g # 0, note that if
Ele,° < » for s > 4, then by the Borel-Cantelli lemma and (2. 11), nlz z, 0
a.s. as n — . Now, restrict the terms on the right side of (2.10) to the set A
and use (A1), (A2) and the proof of Lemma 2 of Martinsek (1990) to get {y, Ix

n > 1} is u.c.i.p. That {{,: n > 1} is u.c.i.p. now follows from the identity

(2'12) nq‘)n = Z Eiz - yn’

the above arguments, Example 1.8 of Woodroofe (1982) and standard argu-
ments. O

From Lemma 3 above and Theorem 1 of Lai and Siegmund (1977), it follows
that if the distribution of &2 is nonlattice, then the overshoot

(13 U= N (/)T (1) by (AR U

i=1
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as A — «, for some random variable U. Moreover, by the arguments similar to
(3.4) of Martinsek (1990) and (2.1), we have that

(2.14) {Uj: A> 0} isu..forall r > 0.

LEmMMA 4.  Assume (A1), (A2) and the condition on the initial sample m 4, of
the theorem. If Ele,|** "¢ < » for p > 1 and some ¢ > 0, then for v, defined in
2.7

(2.15) {lyn|?: A>1}isu.i.

ProoF. Recall the identity (2.9). If-Ele;|**** <o for p > 1 and some
£ > 0, then by (2.1), (2.4) and Lemma 5 of Chow and Yu (1981), we have

(2.16) {lvwlIay: A= 1} isud.

See display (3.6) of Martinsek (1990), for example. As for the uniform integra-
bility of {|yyl"Iz,: A > 1}, first we obtain a rate at which P( A) tends to 0 (for
B+#0) as A—> . But, when g =0, if El:sll2er€ <o for p>1 and some
e > 0, then by (2.10) and (1.9)
p+e/2
sup } <
n>m,

by Theorem 10.3.3 of Chow and Teicher (1978). When B # 0, argue as in
(2.11) to get

p+e/2

<BE

n

X &/n

i=1

N N
Z 3i2 - Zyiz/CN

i=1 =1

(2.17) E

N
P(Ay) < P{2N‘1 BY Xe|> (2N)‘13'MNB}
i=1
(2.18) N B
+ P{N-2 5 e[ N(ex - 1) /ex] > (2New) B’MNB}
i=1

= (i) + (ii).
By Markov inequality, c -inequality and (A2), for some generic constant K,

we have

2s

k N
(i) sKssuI;[(Zn)(B’MnB)—I]z > lﬁjlst(Z xijs,.)/N
nx> j=1 i=1

(2.19)
= 0(A3/?)

if Ele,|**** < o, s > 1, where we used (2.1), that

2p
tA>1

N
(2.20) { Y x, 6./ VA2
i=1

isui. (if Ele,[*” <, p > 1),

which follows from (Al) and Lemma 5 of Chow and Yu (1981) and Hélder’s
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inequality. A similar argument using Theorem 10.3.3 of Chow and Teicher
(1978) and (1.9) yields (ii) = O(A~5/2) (if Ele,)*" <, s > 1). Hence, if
EI:—:llzs+€ < o, s > 1, then (for B # 0) ‘

(2.21) P(Ay)=0(A*/?) as A - w.

Now, consider the expression on the right side of (2.10) with n replaced by N.
By (A2), Hélder’s inequality, (1.9), Lemma 2 and (2.21), we have

-1/ 4 —1nq P P
Eley'B'MyBFIz, < sup|(nc,) ‘g M, [ EIN| Iz,
(2.22) nz1 :

< KAP’EV?|N/AV2[T P12 Ey) = o(1)

if we take s = 2p + ¢ in (2.21). The rest of the terms in (2.10) are handled
similarly using (2.17), (2.20) and (2.21) to get {lypfIz : A > 1}isui. O

LEMMA 5. Assume (A1), (A2) and the condition on the initial sample m , of
the theorem. If Ele,|*"** < for p > 1 and some ¢ > 0, then for ¢, defined in
(2.6)

(2.23) {|én]P: A= 1) isu.i.

Proor. By Lemma 4 it suffices to show that { AN%2N(py — 1P A > 1} is
ui Since ¢y > (N - DN 'y >2 %,  >2 (N - 1)?/(Ak) we have
AN®? < O(1 + (Ak)/2/N®} and hence by (2.1), all positive powers of A 5/2
are u.i. Now, from (2.12)

N 2
N(¢'N_1)2=Nﬁl(28i2_7/N_N)
i=1

(2.24)

2
+ 2y2/N.

< 2(A1/2/N)[£ (62— 1)/V/AVZ

i=1

By (2.9), (2.16) and (2.10) (splitting the cases B = 0 and B # 0) and using (2.1),
Theorem 10.3.3 of Chow and Teicher (1978), (1.9), (2.20), (A1), (A2) and (2.21),
we get

(2.25) {142 /N "y /VN [ A > 1) is wi,

If Ele,|**"* < o, p =1 and some ¢ > 0. The required result now follows from
(2.24), (2.1) and Lemma 5 of Chow and Yu (1981) and the above arguments. O

It is possible to use the method of proof of (1.17) in Sriram (1988), (2.1),
arguments similar to (2.25) and Lemma 5 of Chow and Yu (1981) and show
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that
(2.26) {[w- (ar)?| N[ A > 1} isui,

if Ele,|?”*° < w, p > 1. From this, the identity in (2.13), (2.14), (2.1) and that
{IE N2 - 1)/VNP: A > 1} is ui. Gf Elgll2er€ < w, p > 1) it follows that

(2.27) {len/VNT: A= 1} is i (if Ble, [P <, p > 1).

Also, from (2.7), that {y,: n > 1} is u.c.i.p. (2.21), (2.10) of Martinsek (1990),
(1.9) and Anscombe’s theorem,

2
max{y7,c!, whenp =0,
(2.28) YN 7D\ o { * }
Xk when B # 0,

where x7 is a chi-square r.v. with & degrees of freedom. Hence, it follows from
the identity and the result in (2.13), (2.14), Wald’s lemma, (2.28), that
ANY2N(¢py — D2 > E(e2 — 1)%¢Z, and Lemma 5 that

EN - (Ak)"? = EU - (3/8)E(s? — 1)’
(2.29) | (1/2)E max{x?,c} + o(1), whenp =0,
(k/2) +o(1), when B # 0,

where the expansion for B # 0, agrees with (3.10) of Martinsek (1990) for the
stopping T defined in his paper.

3. Main result.

ProoF oF THE THEOREM. Holder’s inequality is used many times in the
proof, but an explicit mention of it will be suppressed. Now, argue exactly as in
Martinsek (1990) [see (3.17) to (3.20)], using Wald’s equation for the second
moment of a stopped Martingale, (1.10), (2.1) and (2.20) to get

N N
Ry — 2(AR)Y? = E[AN—I( Y eiX;)Mg,l( Y X,
i=1

i=1

+ EN — 2(Ak)'?

-E

(AN"2 - kﬂ’)( g Sin)E—l( g Xiei)]

i=1 i=1

(3.1) + k—lE{ f X[zt - NM;,l]Xi}

i=1

vn] [ w54 )|

i=1

i=

+ 2E{N — (Ak)"?} +0(1)
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as A — o, It remains to analyze the first term on the right side of (3.1), which
may be written, after some algebraic manipulations, as

E[(AN‘Q - k-l)( £ siX;)E‘l(g Xisl”

i=1

N N
= 2k‘lE{N‘1[(Ak)1/2 - N](Z sixg)z*l( v X,.gl)}
(3.2) i=1 i=1
of N N
+ k‘lE{N”[(Ak)l/z - N] ( Y sixg)z*l( Y Xig,.)}
oli= i=1
= (i) + (ii).
By (2.1), the identity in (2.13), (2.14), (2.27) and Lemma 5 of Chow and Yu
(1981)

(i) = (1/4) A~ 'R 2E

[ﬁ( - 1)]( ;ﬁvx)z( ﬁx)}

(3.3)
+ 0(1)
as A — «. Once again, by the identity in (2.13)
N
(k/2)(i) = E{N-l[—UA —(1/2) T (e2 - 1) + &y

i=1

(3.4) N N
X ( Yy siXi)Eﬁl( Yy Xisi)} .
i-1 i-1
Since {n " L }_ 1, X)) "N, Xe,): n > 1) is slowly changing [see Lemma 2
of Martinsek (1990)], it can be shown along the lines of the lemma in
Martinsek (1983) that U, and {(N"MZN ¢, X))S "L ¥, X,¢,)} are asymptoti-
cally independent as A — . Since N"X(Z N 16, X)S YN X.e,) >, xZ (by
Anscombe’s theorem), it follows from (2.13), (2.14), (2.20) and (2.1) that

(35) - E{N*IUA(g gixg)z*l(f Xisi)} = —kE(U) + o(1)

as A — «. Further, by (2.6) and (2.12)

N N ‘
E{N_lfN(ZEin')E_I )y Xigi)}
i=1

i=1

N 2
(36 " E{(l/z) Nlyy + (3/8)N‘1A&5/2[ L (ef = 1)/VN —yy/VN ] }
. i=1

N
X(Z z—:iX;)E_l

1=1

= (1a) + (ip)-

N
Z Xigi)
i=1
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By (1.10), that {lyy/NI*: A > 1} is u.i. [similar to (2.25)], (2.1), and (2.20), we
get

N N
(iz) = (1/2)EYN( )» Sin)MKrl( )y EiXL) +o(1)

i-1 i=1
(3.7)
_ {(I/Z)E max{xZ,c}x? + o(1), when g =0,

(1/2)(k2 + 2k) + 0(1), when B # 0,
where we used (2.7), (2.9), and (2.10) of Martinsek (1990), (1.9), (2.21),

Anscombe’s theorem, Lemma 4 and (2.20): By (2.1), Lemma 5 of Chow and Yu
(1981), (2.20) and (2.25), we get

Lo [Beorfso{ )

As for the remaining expression on the right side of (8.4), use arguments
similar to (3.26), (3.18) and (3.27) in Martinsek (1990), (1.10), (2.1) and
Lemma 5 of Chow and Yu (1981) to get

(i,) = (3/8)(Ak)'E

(3.8)
+o(1).

- (1/2)E{N*1 g (312 - 1)( g sin)E_l(g, Xiai)}

Il

—(1/2)E{N-1 5 (e2 - 1)[(£ sixg)z*l(f Xisi)

N
- X (X37'X))
i=1

} + 0(1)

It

;NI(E - 1)[( 5 ginf)E_l(ngigi

i i=1

(3.9) —(1/2)(Ak)~* {

- igl(X;E*lXi)]}

£ o[£ s e

i i=1

+(1/4)(Ak)‘1E{[

_(1/4)A~1/2k1/2E

£ (- 1)

}+0(1),

where we used the identity in (2.13), (2.14), (2.27), (2.20), (2.1), Lemma 5 of
Chow and Yu (1981) and arguments similar to (3.28) in Martinsek (1990) to
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get the last equality. Now, combine (3.1) to (3.9) to get

l

N
Ry — 2(Ak)'? = 2E[N — (AR)"?} + k—lE{ X[zt - NMg,l]X,.}
=1

N
+k-1E{(Z e, X!

i=1

[ NMy? —2-1](i§N1Xigi)}

+(3/2)A" % 2E

[é(sf - 1)]2( ﬁx)z(ﬁx)}

1=

(3.10) —(1/2)A"Y/2p~1/2F [f (2 - 1)] — 2E(U)

1

e T e RPN

i-1
N
- (ng—lXi)]}
i=1
{k‘lE max{x7, c}xZ + o(1), whenp =0,

(k+2)+0(1), when g # 0.

From (2.29), Lemma 3 of Martinsek (1990) applied to N in place of T, (3.10),
Wald’s identity for the second moment and Lemma 2,

Ry — 2(Ak)? = k“E{ >§ X[zt - NMﬁllXi}
N N
+ k-lE{( ¥ sixg)[NM;vl - 2‘1]( )y Xigi)}
i=1 i=1
+(3/2)E(} - 1)° - (1/2) E(e} - 1)° - 2E(U)
— E(s2 - 1) + 2E(U) - (3/4)E(e2 - 1)°

E(k™'xi - l)max{x,f, ¢} +0o(1), whenp =0,
2 +0(1), when- g # 0.

The result in (1.11) of the theorem now follows easily. O
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