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TESTING STATIONARITY IN THE MEAN OF
AUTOREGRESSIVE PROCESSES WITH A
NONPARAMETRIC REGRESSION TREND

By HARTMUT MILBRODT

Universitdt Dortmund

In this paper, we suggest tests of stationarity in the mean of autore-
gressive time series versus arbitrary trend alternatives. As an intermediate,
" though essential, step local asymptotic normality of autoregressive models
with a nonparametric regression trend is established. Moreover, a func-
tional central limit theorem for the underlying likelihood ratio processes is
derived. These results then offer a general construction principle by which
every goodness of fit test (case 0), which is based on comparing the
empirical distribution function and the hypothetical distribution function,
corresponds to a test of stationarity in the mean of AR processes. The
asymptotic power of these tests is derived. A small simulation study
illustrates the performance of Kolmogorov—Smirnov and Cramér—von Mises
type tests of stationarity in the mean at hand of a particular AR(2) process.

1. Introduction. In time series analysis, there is a large variety of
procedures that are a priori only applicable to stationary series. This concerns
statistical problems in both the time domain and the frequency domain.
However, many time series occurring in practice, particularly those arising
from economic areas, are nonstationary. To apply the usual methods of time
series analysis one has to convert them into a stationary series, for example, by
transforming the data, by estimation and elimination of a trend and seasonal
components, by repeated differencing or whatsoever [see, e.g., Brockwell and
Davis (1987), Sections 1.4 and 9, or Wei (1989), Section 4, in connection with
ARIMA models]. This naturally raises the question whether the resulting
process is stationary. Due to a lack of alternative methods, this is often decided
just by inspecting the series or some of its characteristics, such as the sample
autocorrelation function. It is the main goal of the present paper, to provide
reliable and easy-to-use tests in order to detect any kind of departures from
stationarity in the mean. The procedures proposed are developed in Section 3
(see in particular Theorem 3.4 and Remarks 3.5), whereas Section 2 contains a
functional version of a local asymptotic normality result, which is our most
important tool. ,

In a series of recent papers, the usefulness of the notion of local asymptotic
normality for the statistical analysis of time series has been demonstrated.
Hallin, Ingenbleek and Puri (1985) and Hallin and Puri (1988) proved LAN of
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ARMA models in order to develop a theory of rank tests within time series
analysis. Kreiss established LAN of ARMA processes (1987b) and AR(x)
processes (1988, 1990) and gave applications to adaptive and locally asymptoti-
cally minimax (LAM) estimation of functionals of the structural parameters
(1987a, b; 1988; 1990) and to testing linear hypotheses concerning these
parameters (1989). An early predecessor of the testing results is Akritas and
Johnson (1982). All these papers refer to stationary processes. Among the
papers considering not necessarily stationary time series we mention the thesis
of Schiitt (1985) and Swensen (1985). In both of these, LAN of AR(p)
processes with an additional linear regression term was established under
conditions including the ‘“‘stationarity assumption’’ for the structural parame-
ters and Hajek-type assumptions on the density of the ii.d. innovations.
Swensen used the result to derive the asymptotic power of the Durbin—-Watson
test of positive dependence of regression residuals under local alternatives.
[For similar investigations in the stationary case, see Moussatat (1976), Chap-
ter 9.] Analogous results for MA(q) processes with a linear regression trend
have recently been obtained by Garel (1989).

While Akritas and Johnson (1982) rely on the classical technique of differ-
entiability in quadratic mean, which is more suited to the i.i.d. case, later
papers employ variants of martingale central limit theorems especially de-
signed for log-likelihoods of dependent observations [Le Cam (1986), 10.5,
Theorem 1; Schiitt (1985), Satz 3.1.2; Swensen (1985), Lemma 1]. The theo-
rem of Schiitt, which has also been used in the papers of Kreiss (1988, 1990),
turned out to be particularly useful. Relying on this result, we prove LAN of
AR(p) processes with a regression trend in Section 2 of this paper. In fact, an
invariance principle for the underlying likelihood ratio processes, which essen-
tially is a variant of the local asymptotic Wiener (LAW) structure of So and
Sen (1981) is established along these lines. Of course, this entails LAN. In
contrast to Swensen (1985), we impose a nonparametric regression model.
More precisely, we use L,-generated triangular arrays of regression constants.
This particular way to look at nonparametric regression, which is inspired by
the “approximate scores” of Hajek and Sidak (1967), is made explicit and
investigated by Moussatat [(1976), Chapter 8] and Millar (1982) [see also
Milbrodt (1985) for its use in the asymptotic theory of sampling from finite
populations]. Within this setup, we suggest tests of stationarity in the mean of
autoregressive time series versus fairly general trend alternatives in Section 3.
Their asymptotic power will be derived from our LAW results. The proposed
tests are similar to the classical tests of goodness of fit of a single univariate
cdf based on comparison of the empirical distribution function edf with the
theoretical distribution function. To every such edf test there corresponds a
test of stationarity in the mean of AR(p) models. These tests may be employed
to decide whether heuristic methods to generate stationary data, such as
differencing [see, e.g., Anderson (1971), Section 3.4, or Wei (1989), Section 4],
have been successful with certain data. In contrast to Epps (1988), who
suggested y2-type tests of stationarity of Gaussian processes, we require some
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knowledge of the model structure (though not that it be Gaussian), but no
prior knowledge of possible change points. This makes our approach inher-
ently nonparametric. A recent paper dealing with a somewhat related problem
is Barry and Hartigan (1990), where an omnibus test for departures from
constant mean in a nonparametric normal regression model is investigated.

Now, let us describe the situation dealt with throughout. Fix p € N and let
® c R? denote the open subset of those & for which 9, # 0 and the polyno-
mial X7_;9;2" (9, := 1) has only zeros outside the closed complex unit disk
(“stationarity assumption”). Let (¢,), . denote a white noise process consist-
ing of centered, square integrable i.i.d. variables. It is well known that for
every 0 € 0O the stochastic difference equation

p
(1.1) YOV, =6, te€Z 9,=1

i=0
has a unique strictly stationary solution (V,), ., which can be represented as
an L,-convergent MA(e) series

Vz= Z 6r8t—r’ tEZ,
r=0
hence, V, is independent of (¢,),., [Anderson (1971), Section 5.2]. We are
interested in the process

(1.2) X,=m,+V, teN,

defined by the autoregression parameter ¢ and an unknown mean function m:
N - RL

2. Local parametrization and local asymptotic Wiener structure.
Let 9 € © and a € R! be fixed. We reparametrize our model for the observa-
tions (1.2) locally around ¢ and m = a. For this, we introduce L,-generated
triangular arrays of regression constants:

(21) b=vo [ b(x)ds, 1<ts<n,neNbeLo,1]

(t-1)/n
Every b € L,[0, 1] generates a sequence of mean functions (m (b)), < accord-
ing to

m,(b) =a+ ), b, Ly
t=1

Let 0,(8) ={reRP| 9 +n" %2 €0}, neN. For b € L,0,1], n € N and
T € 0,(9) the distribution of (X, ..., X,)T under the parameter values & +
n~'27r and m,(b) is denoted by P, , ,. No reference is made to (9, a), the
center of localization. Subsequently, we work with the coordinate representa-
tion models

(22) E, =R %, (P, ,,|7r€0,9),beLy0,1]}), neN,
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where &, denotes the sub-o-field of #(R"), generated by the first n coordi-
nates. Within these models, the variables under consideration are the coordi-
nate projections (x,),cy, which correspond to the observations (X,), .y, the
centered variables v, == x, — @, t € N, and the innovations e, = Lf_y%v,_;,
t = p + 1, which under P, , , are i.i.d. according to the law of &,.

Our assumptions on the innovations will be a slight generalization of the
Hijek-type assumptions used by Schiitt [(1985), Sections 3.2 and 3.4], by
Swensen [(1985), (A.2)] and by Kreiss [(1987), (A.1); (1990), (1.5)].

AssumpTIiON 1. The distribution of e; possesses a strictly positive and
bounded Lebesgue density f. The shift-parameter family

2(f(—a)/f)"?,  acR,
is quadratic-mean differentiable with L,( f)-derivative ¢ and Fisher informa-
tion

L= [(e(x))*f(x)dx <.

Let y denote the autocovariance function of V [(1.1)] and T = (y(|i —
JMizi j<p Forevery n €N, 7 € 0,(8), b € L0, 1], we introduce variables

0, 1<t<p,
M —e(e)(nT VAR mv s — Thoo®iby i), ptl<st<n.

The following LAW theorem is the main result of this section.

2.1. THEOREM. Suppose Assumption 1 holds. Then (E,), .y is LAW on
H = R? X L,[0, 1] with covariance

K,: ((717 b1), (72, bz)) = I(( f 19i) /Osb1(x)b2(x) dx + s{ry,I'ry) |,

i=0
0<s<l1,
and centered log-likelihocds

[ns]
Ln,s(77b): (xl""’xn) = E znt(x)’
t=1
(r,b) € ©,(9) X L,[0,1],0 <s < 1:
For every (r,b) € H,

°/((Ln,s(?" b))Osssl'PO,O,n) i j(W(Ks((T’ b)’ (T’ b))))’
weakly in D[0, 1]

(2.3)



1430 H. MILBRODT

(W a standard Brownian motion on [0, 1]), and

dP‘r,b,nigfns]
sup |log——""——

-L, (7,b
O0<s<1 dPO,O,nlznsl ' ( )

(2.4) 1
+_2-Ks((7-,b),(7',b)) -0 (Po,0,n)-

ProoF. Since the proof follows ideas of Schiitt (1985) and Swensen (1985),
which have also been used in several papers of Kreiss, we shall restrict
ourselves to a brief outline. Let (7,b) € H be fixed and n € N be such that
7 € 0,(9). Put

dPT,b,n]g; <t<
9= 55 > bp=sit<n,
! dPO,O,nlg}
and
q,
ynt:=2( d —1), pt+tl<t<n.
qn,t—l

In order to establish our theorem, we shall apply Satz 3.1.2 and Satz 3.1.5 of
Schiitt (1985) [cf. also Swensen (1985), Lemma 1]. Hence, we have to show
that:

D) (2,5 F) 1<t <nnen 1s a square integrable martingale difference array
under (P, ). '
(ll) maxlstsrzlzntl -0 (PO,O,n)'
(i) lim sup,, ., Py o (Z7-122,) < .
(V) L7 1Py o (221, 150l Fio) = 0 (Py,,) for some C >0 (F =
(@, RM).
W) TR Py o (2] F ) - K (7,b), (,0)) (Py,,), 0 <s < 1.
(Vl) hmn — PO,O,n(27=p+l(ynt ~ 2nt 2) = 0.
(vii) q,, > 1 (Pg ,)-

For a detailed proof of (i)-(vii), see Milbrodt (1990). O

2.2. REMARKS.

(1) Since O is an open subset of R?, the parameter sets of E,, n € N,
converge to H. Moreover, (H, K,) is a Hilbert space: For every 9 € ® we have
YP_,9; # 0, and the spectral density of V is bounded away from 0 [Neuhaus
and Kreiss (1985), Korollar 7.2]. It follows that I' is strictly positive definite,
and that the norm induced by K, is equivalent to the sum of the usual
Euclidean norms on the factors of H. Using the terminology of Strasser
[(1985), Section 80], Theorem 2.1 entails that the experiments (E,), . are
asymptotically normal on (H, K,) with central sequence (L, ), -
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(ii) Because of the monotonicity of s — K (7, b), (1, b)) the limiting pro-
cess in (2.3) is the centered Gaussian process starting at 0 with covariance
structure

(s1,82) = K 15 ((7,0), (7,0)).

(iii) Theorem 2.1 refers to the case that the density f of the innovations is
completely known. An analogous result also holds in the unknown variance
model, where f is known apart from its variance % > 0. If the center of
localization is (3,0, m = a) € ©® X (0,») X R!, the modifications required are
as follows. Additional assumption J := [(1 + x¢(x))*f(x) dx < e; local param-
eter space H := R? X R! X L,[0, 1]; covariance formally unchanged, however
with a (p + 1) X (p + 1) matrix I" which is obtained from the original I" by
placing J/I in position (p + 1, p + 1), filling up with zeros and dividing by
o% for p+1<t<n, z, has to be modified by subtracting n~'/27, (1 +
e,p(e,)) and then dividing by o. The changes required in the proof are now
more or less obvious [cf. also Schiitt (1985), Section 3.3].

(iv) Although no explicit attempt in this direction has been made yet, it
seems to be reasonable to expect an LAN-LAW result similar to Theorem 2.1
also to hold for invertible ARMA models with a nonparametric regression
trend. This is suggested by the fact that Swensen’s (1985) argument ensuring
LAN in the parametric AR case carry over to the parametric MA case [Garel
(1989)], and that the general ARMA case will not lead to substantially new
problems compared with these two special cases [cf. Hallin, Ingenbleek and
Puri (1985), Appendix 2].

Concluding this section, we remark that similar to asymptotic normality,
the invariance principle (2.3) also carries over from the hypothesis to contigu-
ous alternatives:

2.3. COROLLARY. Suppose Assumption 1 holds. Then for every (r,b) € H,
Z(L, (7,b) — K((r,b), (7,0))g_.,1P,; ) = L(WK(7, b), (r,b)),
weakly, in the Skorohod space D[0, 1].

Proor. By standard arguments involving Le Cam’s third lemma and the
Cramér-Wold device, one gets weak convergence of finite-dimensional marginal
distributions from Theorem 2.1. Moreover, since the processes converge under
the hypothesis, their (P, , ,) distributions are uniformly tight. Using contigu-
ity, this tightness carries over to the alternative (P, , ,). O

3. Testing stationarity in the mean of autoregressive time series.
In this section, we shall apply the LAW result Theorem 2.1 to the construction
of tests for the hypothesis of stationarity in the mean. The observations (1.2)
are stationary if and only if the mean function m, = a is constant. We want to
test this hypothesis against alternatives with arbitrary nonconstant mean
function and arbitrary autoregressive structure (1.1).
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3.1. DiscussionN. In a certain sense, the following discussion parallels the
derivation of omnibus tests of the hypothesis of randomness against the
alternative that the observations are independent but not identically dis-
tributed in Strasser [(1989), Section 4].

Reparametrizing locally around fixed parameters (¢, m = a) € ® X R!, the
hypothesis of stationarity in the mean is given by R? X H,, where

H, = {b € L,[0,1]| b = const}.
The whole regression parameter space is the orthogonal sum
L,[0,1] = H, @ {b € L,[0,1]| b = 0}

(here b = [¢b(x)dx denotes the mean of the regression function). Since
b — b — b is the projection on H", it seems reasonable to reject the hypothe-
sis of stationarity if and only if

(3.1) supan’l(O,b—B)[>ca, n €N,
beH
where #'C L,[0,1] is “sufficiently large’” and the critical value c, is chosen as

to guarantee asymptotic level a. Having in mind Kolmogorov—Smirnov-type
tests, we take

H= {1, ,]0=<r=<1}
The tests (3.1) may be rewritten as follows. Let

+1
0, OSS<p ,
Z” n
Ut‘} (S)= [ns]
@rn p+1
5T Y ee) s T e, <<
t=p+1 t=p+1 n

Then it is not hard to see that

sup |L, (0,6 —5) — ]’lb(s)U19 an(ds)| <const(¥) -n" 2 max |e(e,)].
be X ’ 0 T p+l<t<n
Due to Lindeberg’s condition, the right-hand side tends to 0 stochastically
under (P, , ,); hence also under contiguous alternatives. This shows that the
tests (3.1) are asymptotically equlvalent to the tests i , , defined by the
critical regions
sup lUﬁ,a,n(s)l>ca’ n €N.

O0<s<1
We also consider Cramér-von Mises-type tests x; , , given by critical regions
of the form

1
[ Ul,,a,n(s)2 ds>c? neN.
0

To evaluate the asymptotic power of these tests, let (€, 27, @y, (Wy(s))g o, 1)
denote a standard Brownian bridge on [0, 1].
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3.2. THEOREM. Suppose Assumption 1 holds. Then for every (r,b) € H,

>k )
and

lim P, (Xo,0n) = QO([I(Wo(s) +C(0) [ (b(r) —B)dr)2ds > k2,

where C(8) == YIL?_,¥, = ¢, |C(D)| ™" is the critical value of the two-sided
one-sample Kolmogorov szrnov test of level a and k!, = c,|C(9)|™" is the
critical value of the corresponding Cramér—von Mises test.

B P, (U,e) = Qo sup [Wils) + C(0) ['(8(r) ~B)r

O<s<1

Proor. Let (7, b) € H. Employing Lemma 80.11 of Strasser [(1985), page
414], the Cramér-Wold device and the fact that

sup |Ln s(O 1) n,l(O’ l[O,S]) -

0<sx<l1

(PO,O,n)

(hence also under contiguous alternatives), we obtain convergence of finite-
dimensional marginals under (P, , ,):

L, ,(0,1) — K,((0,1), (r,b)) » W(C()?%), 0<s<1.

The same tightness argument as in the proof of Corollary 2.3 then entails
weak convergence in D[0, 1]. Hence,

1 [ns] s
((f—t%“ﬂso(et C(ﬁ)fob(r)dr)ossgﬂ,b,n - L(W),

showing that the P, distributions of

7,b,n
C(9) Uy au(s) - C®) [ (b(r) =B)dr, 0s<s<1,
0
converge to Z(W;|Q,). O

3.3. REMARKS. The asymptotic power functions given in Theorem 3.2 nei-
ther depend on 7 nor on b. On {b € L,[0, 1]/ b = 0} they coincide with the well
known asymptotic powers of the corresponding two-sided one-sample edf tests
of level a up to the normalizing factor C(9) [cf., e.g., Milbrodt and Strasser
(1990), (6)]. Hence, for every (9, a) € ® X R™:

() (¥ 4 ) and (xy ,. ,) are strictly asymptotically unbiased at (9, a):
limen('pﬂan)/\hm bn(Xﬁan)>a bi?)

[cf. Milbrodt and Strasser (1990), Remark 2.3].

(i) (¥y 4 ,) and (x4, ,) are locally asymptotically admissible at (¢, a)
[consult Strasser (1985), Example 82.23].

(iii) The curvature of the asymptotic power function at the hypothesis
has—up to the normalizing constant C(9)—the same principal components’



1434 H. MILBRODT

decomposition as the power of the corresponding two-sided edf test [see
Neuhaus (1976) in the CM case and Milbrodt and Strasser (1990) for KS tests].

Evidently, results corresponding to Theorem 3.2 and the preceding remarks
also hold for other tests of stationarity in the mean, which reject the hypothe-
sis, if the observed sample path of Uy ,, is “too-large”—its size being
measured by an appropriate seminorm on the Skorohod space DI[0,1] [see
Shorack and Wellner (1986) for a survey of edf tests which thus may be carried
over to our present situation].

The tests ¢ , , and x; , ,, n € N, constructed in (3.1) still depend on the
global parameter (9, a) and the unobservable white noise (e,). It remains to
remove this dependence by estimating the center of localization. To be more
explicit, our final variants of the KS tests and the CM tests will be

(3.2) KS, =4¢p , and CM, =xr ,, neN,

where (T,), cy is a sequence of estimates of the reference point (9, a). This
construction will work under the following additional conditions:

AssuMPTION 2. f € Cy(RY), ¢ is uniformly continuous and ¢(s,) is inte-
grable.

This assumption of Cramér-Wald type is trivially satisfied in the most
important case, that of Gaussian white noise (then ¢ is constant). It also holds
for centered logistic errors. Double exponential densities, however, satisfy
Assumption 1 but not Assumption 2.

AssumPTION 3. Under the hypothesis of stationarity in the mean, T, =
(5n, é,)", n €N, is a Vn -consistent sequence of estimators of (¢, m = a): For
every (9,a) € ® X R! the distributions Z(Vn (T, — (3,a)")IPy, ), n €N,
are uniformly tight; that is,

Vn (T, = (9,a)") = Op, , (1).

Note that we neither require efficiency nor asymptotic normality of (T',). Of
course, Assumption 3 holds if Vn (3, — ¢) and vn (4, — a) both satisfy a clt.
In particular, we may use the sample mean &, := (1/n)X}_,x, [cf. Brockwell
and Davis (1987), Theorem 7.1.ZJ together with Yule-Walker estimators or
maximum likelihood estimators 3,, n € N [see Brockwell and Davis (1987),
Chapter 8 and Anderson (1971), Section 5.5], or the least absolute deviations
estimators discussed in Bloomfield and Steiger (1983) and Dunsmuir and
Spencer (1991).
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3.4. THEOREM. Under Assumptions 1-3, for every (%,a) € ® X R! the
pairs of sequences of tests

Uo,0,m = Loupiysnym o UARDIEE, o) =5t porptep>h T E N
(3.3) KS, = Lsupy s1m oo cxOVRDIES, 000 —sTtpiotepil> by 1 EN
and
. X9,a,n = 1«1/n1>f(,,+1,/n(2, o el —sE i piree )P ds > kiZp n €N,
4
(34) M, {(1/n1>f(,,+1)/"(>: e 1e(En) ST pr10(En N2 ds > kZ) n €N
(6, =LP od,(x,_, —&,),D,, =1, “estimated white noise’] are both asymp-

totically stochastically equivalent with respect to (P, , ,)-

3.5. REMARKS. Before entering the proof of Theorem 3.4, let us point out
some of its consequences.

(i) To implement our KS test and the CM test proposed in (3.2) for a given
level o and a given choice of ¢ satisfying Assumptions 1 and 2 proceed as
follows:

- Look up critical values ., and %/, in tables for the usual two-sided one-sam-
ple KS test and CM test, respectively. If the sample size is small (< 50),
simulated critical values may be used.

- Use your favorite vn -consistent estimates @, of the sample mean and 9, of
the structural parameters to calculate estimated residuals

14
=21§ni(‘xt—i_&n), t=p+l,...,n

- Plug these critical values and estimated residuals in formulae (3.3) and (3.4)
for KS, and CM,, to decide whether the time series is stationary in the
mean. Of course, for the evaluation of KS, it suffices to calculate the sup
over s=(p + 1/n, (p +2)/n,...,1. The CM -test statistic is asymptoti-
cally equivalent to

nll(l nil ( Zk: ‘P(én’t))2 ( 3 ‘P(ent))

nopp+1\t=p+1 t=p+1

Y ¢(ént))( nil ¢(énu)u2))

t=p+1 u=p+1

as can be seen be lengthy but elementary calculations.

(ii) For reasons of contiguity, the stochastic equivalences claimed in Theo-
rem 3.4 carry over to arbitrary local alternatives (P, , ,). Hence, for every
(8,a) € O, the asymptotic power functions of (¢ , n) and KS, as well as
those of (xy ,,) and CM, near (#,a) coincide, showing that assertions
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FiG. 1. Power of KS g (solid) and CMy, (dotted), monotone trend (upper curves) and cosine
trend (lower curves); 5%-level.

Theorem 3.2 and Remark 3.3(1)-(iii) remain valid for (KS,) and (CM,). In
particular, the principal components’ decompositions mentioned in Remark
3.3(iii) hold, indicating that both testing procedures are rather sensitive to
monotone trend alternatives whereas they rapidly loose their power for oscil-
lating trends with increasing frequency. This is also supported by the following
small simulation study.

(iii) Our simulations have been done for the AR(2) model with standard
Gaussian white noise and structural parameters 4, = —1.3 and ¥, = 0.6. The
levels were @ = 1% and a = 5%, and the sample sizes n = 75, n = 100 and
n = 150. Figures 1 and 2 refer to the 5% level and the sample size n = 100.
Figure 1 shows simulated powers of KS,,, (solid) and CM,,, (dotted) based on
5000 Monte Carlo replicas, and for directions of alternatives determined by the
first two principal components of the asymptotic power of the CM test. To be
precise, the trend alternatives considered were

vir
my (t) =A *cos(

=1,...,100
100) t=1,...,100,

with amplitude A = 0.1;0.2; ...;2.5 varying for each curve and frequency
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FiGg. 2. Power of KS ¢, (solid) and CM,, (dotted), sine trend; 5%-level.

parameter v fixed: v = 1 (upper curves) and v = 2 (lower curves). The test
statistics were calculated using the sample mean and Yule—-Walker estimators.
Both tests show a very good performance in case of the monotone trend
alternative (v = 1), and they still work for v = 2, whereas their power against
cosine trends, which oscillate stronger (v = 3, v = 4, ...), is extremely poor.
Also, they tend to be slightly conservative. The CM test is a little bit superior
to KS in the situations studied here (the reason being that the cosine functions
are the exact principal components of the asymptotic power of CM, but only
approximations in case of KS). The behaviour of both tests for the 1% level and
for the sample sizes n =75 and n = 150 is qualitatively the same. To
illustrate that the power for periodic trend alternatives is not only a matter of
frequency but also strongly depends on their phase, Figure 2 exhibits simu-
lated powers of KS,,, (solid) and CM,,, (dotted) against alternatives ¢ —
A #sin((7/50)t); compare with the two lower curves in Figure 1.

This simulation experiment is ‘“preliminary” in the sense that we did not
investigate the effect the choice of the estimators T, = (9,,d,)” has on the
finite sample behaviour of the tests. Additionally, it would be interesting to
examine and compare the small sample performance of our CM tests and our
KS tests.
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PrOOF OF THEOREM 3.4. Let (9, a) € ® X R! be fixed. For every 0 <s < 1,
a Taylor expansion around (6, a) gives

[ns] n
%( > (e(€,.) —¢(e)) — SEI (¢(€,) — ‘P(ez)))

t=p+1
. 1 [ns] s n
=X ‘/E(ﬁni - 0i) ; Y ¢(e)v; — . Y ¢(e)v;
i=1 t=p+1 t=p+1

p 1 [Ins] s n
—(goai)m(an~a>(; L o(e)~— ¥ ¢(e,))

t=p+1 n t=p+1

[ns]

n
Z rnt_s Z rnt)’

t=p+1 t=p+1

1
+_
Vn

with remainders

Tne = <g‘I‘ad|,9:’a9Z<p(et) - gradlﬂ,d‘no(et)’ Tn - (67a)T>’
where for some ¢,, € [0, 1],
(9F = %,a% —a) =, (T] - (9,0)), t=p+1,...,n.

We show that sup,_ | - | of the right-hand side tends to 0 (P, , ,)-sto-
chastically. For this, we use the following assertion:

Let (Y,), cn be a stationary shift-ergodic sequence of integrable random
variables on some probability space (), &7, P). Then

1 [ns] s n
sup |[— Y. Y, —-—Y Y, |—>0, Pa.e.
0<s<1|M p—1 no._y
(Splitting up supg_,.; *** = SUPg.gs<c ~'° V SUP. ., ' and first letting

n — « and then ¢ \ 0, this follows from the ergodic theorem.)

Employing this fact and the consistency Assumption 3, we obtain that
supgy ., -1l - - - | of the first two summands in the expansion tends to 0 (P , ,,).
As to the remainders, the claim will follow from Assumption 3 and the
Cauchy-Schwarz inequality, once

n

1
(38) — ¥ |eradly;ae(e) — gradlsap(e)| =0 (Poo,n)

t=p+1

is established. However, using Assumptions 2 and 3, it is more routine to
verify (3.5). O
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