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STATISTICAL TOOLS TO ANALYZE DATA REPRESENTING
A SAMPLE OF CURVES!

By Arois KNEIP AND THEO GASSER

Universitit Bonn and Zentralinstitut fiir Seelische Gesundheit

The paper is concerned with data representing a sample of smooth
curves which can be considered as independent realizations of an underly-
ing biological (chemical, ...) process. Such samples of curves often possess
the following features: There is a typical structural pattern common to all
curves of the sample. On the other hand, individual realizations of the
typical shape show different dynamics and intensity. In particular, typical
peaks are shifted from individual to individual. Differences in dynamics
complicate the analysis of samples of curves. For example, the cross-
sectional average usually does not reflect an average pattern. Due to shifts,
structure is smeared or might even disappear. Qur approach consists in
synchronizing the individual curves before determining the average or any
further statistics. Pointwise averaging of the synchronized curves then
leads to an average curve which represents the common structure with
average dynamics and average intensity. The method requires the introduc-
tion of new statistical objects. They are defined mathematically, their
properties are discussed, and possible estimators are proposed. The asymp-
totic bias and variance of the estimators are derived. An application to
visually evoked brain potentials illustrates the approach.

1. Introduction. Many experiments in biomedicine and in the physical
sciences are initiated to study a biological (chemical, ...) process by a num-
ber of different realizations. At consecutive times (or ages,...) t, SEJ =
[ay, ;] € R observations Y,,j=1...,n;51i=1,...,m, are collected for a
sample of individuals (or experimental units) of size m. The assumption that
each realization of the underlying process generates a smooth curve then leads

to a nonparametric regression model
(1.1) Yij=fi(tij)+eij, i=1,...,m;j=1,...,n,,

where €;; denotes an unknown zero-mean error term, and where the f; are
unknown smooth functions.

Such data are frequent in statistical practice (e.g., growth curves, brain
potentials). If a parametric model were available a priori, subsequent analysis
would be simplified. However, at the beginning of a data analysis there does
usually not exist enough knowledge to build an appropriate parametric model.
Existing models may be seriously deficient in classical fields of application, as
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could be shown, for example, for modeling human height growth across age
[Gasser, Miiller, Kéhler, Molinari and Prader (1984)].

In such situations a nonparametric analysis of the data is called upon. So
far, nonparametric techniques for analyzing single curves have been exten-
sively studied [compare, e.g., Eubank (1988), Miiller (1988) and Hirdle (1990)].
This paper provides some basic concepts and estimators for analyzing samples
of curves. In particular, a meaningful definition and an estimator of some
average curve is sought. This curve should both summarize the data and
generate hypotheses about the mechanisms generating f,,..., f,,. The cross-
sectional average, which is frequently used in practice, is generally not ade-
quate in quantitative or qualitative terms. Due to individual shifts, structure is
smeared and might even disappear.

Figure 1 illustrates the problem and approach for five (true) curves from a
simulated sample of size m = 40 (for details see Section 3.2). The five curves

Fi1c. 1. Top: five curves from a synthetic process which differ in dynamics and amplitude.
Middle: transformed curves obtained after applying time transformations. Bottom: cross-sectional
average (dashed curve) versus structural average (solid curve).
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f1,---, f5 in the upper part reflect some basic features of many real samples of
curves:

(1) There is a typical structural pattern common to all curves of the sample.
(ii) Individual realizations of the typical shape show different dynamics and
intensity.

Admittedly, the example is simplified. In practice, we have to estimate the
curves from noisy data, using nonparametric regression methods. Further-
more, the common shape of real samples of curves may not be as regular.
The basic idea is to synchronize the individual curves before determining
the average or any further statistics. Heréby, we rely on structural characteris-
tics like extrema or inflection points occurring in a manner which is qualita-
tively equivalent or corresponding in different curves (this vague idea will be
partially formalized in Section 2). For the curves in the upper part of Figure 1,
this holds for each of the five common extrema. In a first step we determine a
set of locations of corresponding structural characteristics. In our example:

1. The individual locations 7;,...,75;, i = 1,..., m, of the five extrema pres-
ent in all curves are determined.

In practice, such locations have to be estimated from the data, using estimated
curves. In the example, the assignment of corresponding structural character-
istics is given rather straightforwardly by the succession of extrema. In
general, this can be a more delicate problem. However, the decision on the
equivalence of features will often be clear from the specific application or by
common sense. For example, well-known common characteristics of the hu-
man growth process are the so-called mid-growth spurt and the pubertal
growth spurt. Biomedical knowledge permits the assignment of—estimated—
extrema in the growth velocity curves to these spurts.

Corresponding structural characteristics often indicate equivalent states of
the underlying process. Different locations then quantify individual (local)
shift differences. Thus, we can eliminate differences in dynamics by aligning
individual locations of corresponding structural characteristics to their average
locations. Since we want to synchronize curves, this can be combined with an
interpolation step resulting in smooth, strictly monotone time transformations
for individual functions. (the notion ‘‘time” should not preclude any other
interpretation). In our example the procedure is as follows:

2. Smooth, strictly monotone time transformations g; are defined, assigning

Tiir---»Ts, to their average locations (for details see Section 3).
3. Synchronized curves f;* = f(g;(-)) are determined (middle part of
Figure 1). :

4. Pointwise averaging of the synchronized curves yields the structural aver-
age (lower part of Figure 1).

Evidently, the structural average represents the common pattern better and is
more informative than the cross-sectional average.
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Fic. 2. Evoked potentials to flashes of light (slightly smoothed) for eight healthy children
(10-12 years old) recorded over the visual sensory area.

The usefulness of the new method is well illustrated for real data, consisting
of brain potentials evoked by external stimuli [Brillinger (1988) and Gasser,
Pietz, Schellberg and Kohler (1988); the data to be presented stem from the
latter paper]. The curves given in Figure 2 represent slightly smoothed average
evoked potentials to flashes of light, recorded over the occipital cortex. They
belong to 8 healthy children, aged 10-12 years, who are a subsample of
m = 42 children. We recognize a common structural pattern. At the same
time, we note a substantial variation in amplitude but also in the dynamics
(called ““latency” in neurophysiology) of individual processing of stimuli by the
brain.

Traditionally, the cross-sectional average of individual potentials has been
used as the average waveform of a group. Subsequently, different groups, or
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F1G. 3. Top: cross-sectional average (dotted curve) versus structural average (solid curve) of
evoked potentials of m = 42 healthy children. Bottom: same for m = 25 mildly retarded children.

different experimental conditions, have been compared graphically to depict
neurophysiological functioning. The estimated cross-sectional average is com-
pared with the estimated structural average in Figure 3 for a sample of
healthy children (m = 42) and a sample of mildly mentally retarded children
(m = 25), both aged 10-12 years. The structure of the average potentials
conforms to expectation taken from the literature, with maxima at approxi-
mately 60, 165 and 245 msec and minima at 130 and 190 msec. The compo-
nent at 60 msec is considered to be related to primary sensory processing,
whereas the latter ones are influenced by sensory and psychological factors.
For the group of healthy children, the cross-sectional average and the
structural average show much the same structure, but it is more accentuated
for the latter method. Strange enough, the cross-sectional average does not
show the primary component at 60 msec for the retarded children (their
individual acuity had been tested). This paradox can be solved by considering
the structural average, which shows this component in about the same size as
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for healthy children. Its disappearance in the cross-sectional average can be
attributed to the greater variability in latencies of evoked potentials in re-
tarded children [Gasser, Pietz, Schellberg and Kohler (1988)].

This method has also been applied to longitudinal growth data. It led to new
insight into the mechanisms of normal growth [Gasser, Kneip, Binding, Prader
and Molinari (1991)] and in the pattern of stunted growth due to chronic renal
failure [Schifer, Seidel, Binding, Gasser, Largo, Prader and Schéarer (1990)].

The new approach requires the introduction of mathematical entities at a
conceptual level. Therefore, work to be done is threefold: Appropriate statisti-
cal objects have to be defined mathematically, their properties have to be
discussed and possible estimators have to be considered. In Section 2 we start
with the definition of structural functionals which enable, for example, the
localization of corresponding extrema. The subsequent estimators rely on
nonparametric curve estimation. Section 3 is first devoted to the construction
of time transformations which enable the synchronization of individual curves.
The definition of a structural average is then straightforward. Section 4 deals
with connections to semiparametric model building. An asymptotic theory for
the estimators proposed is treated in Section 5. It gives a solid basis for our
intuitive idea that an average sample curve can be determined more reliably
than an individual curve. The proofs are deferred to the Appendix.

2. Structural functionals.

2.1. Concepts. First, we formalize the identification of locations of typical
features in individual curves. An example are the locations of extrema in the
synthetic data of Figure 1. In general, such a location is obtained by applying a
functional T which maps elements of the space of regression functions to
time.

We start with some notation: Let H C R. For any v € N U {0}, C*(H) will
denote the set of all v times continuously differentiable functions from H into
R. As far as this is necessary, for compact H, C*(H) will be endowed with the
norm |[vl|¥ == L%_,sup,c glv'¥@)I, v e C*(H). Note that for any u <v,
C*(H) c C*(H), and |lv — wll% <y implies [lv — wl% <y, v,w € C*(H);
vy > 0.

Recall that t;, € J := [a,,a;] CR. In the following discussion it will be
assumed that the true regression curves f, f,... of our sample are elements
of C¥(J) for some v > 2.

The shape of a curve is to some extent quantified by the locations and
amplitudes of its extrema. Functionals T localizing corresponding extrema in
different curves necessitate some identification procedure. This might be based
on knowledge from the field of application: The traditional approach for
evoked potentials uses the absolute maximum (or minimum) in some prespeci-
fied time window according to prior experience.

Generally, the following principles can be stated: First, if no unique identi-
fication is possible for some function v, we set T'(v) = a for some prespecified
a & J (“missing”). Second, continuity may be used in the sense that for curves
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v,w close to each other T'(v) and T'(w) should also be close, if neither is
missing. This is supported by the following proposition.

ProposiTiION 1. Let v € C*(J) for some v > 2, and let x denote the
location of an extremum of v with sgn(v’(x)) + 0. Then there exist an ¢ > 0
and some neighborhood U c C*(J) (referring to || - |?) of v such that for any
w € U there is exactly one x, € [x — ¢, x +¢] with w'(x,) =0 and
sgn(w”’(x,,)) = sgn(v”(x)).

Proor. The assumptions on v and x imply the existence of some £,y > 0
such that [v'(x — €)| = v, [V'(x + &)| = v, 5gn(v'(x — ¢)) = —sgn(v'(x + ¢)) and
[v"(#)] = y for all ¢t € [x — e, x + e]. The assertion then follows with U :=
{we CADllv-—wlP <y} O

We will use 9 to denote the space of all functions v in the domain of T
with T(v) # a, that is, not missing. The above arguments motivate the
following definition.

DEFINITION 1. A functional T: C%(J) —la,, a;[U{a} (for some a & J) is
called a first-order structural e-functional if the following conditions are
satisfied:

(1) T is continuous on Z.
(ii) For all v, w € 9, v(T'(v)) and w(T(w)) are either both local maxima or
both local minima of v and w, and sgn(v"(T(v))) = sgn(w”"(T(w))) # 0.

To give an example, let H = [¢,d] € J. Then

arg supv(t), if v possesses a unique supremum in Je, d|,
(21) T(v):= teH

a, else,

is a first-order structural e-functional. Another e-functional may be specified
by replacing “supremum” by “infimum.” This establishes the type of struc-
tural functional that might be used for evoked potentials.

Additionally, one might quantify the rate of increase in corresponding
monotone segments of curves. Points where a specified percentage of total
increase or decrease is reached might be useful, and such points will be called
p-points (p for percentage).

DeFINITION 2. For some p €]0,1[ a functional T: C*(J) —la,, a;[U{a}
(for some a & J) is called a first-order structural p-functional if the following
conditions are satisfied: '

(i) T is continuous on Y.
(ii) For all v € 9, it holds that

v(T(v)) = pv(¥o,,) + (1 = p)v(¥,.),
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where ¢ ,, ¥ , are successive local extrema of v, and v is strictly monotone in
[Wo,, ¥y, 1. Moreover, either o, is a local maximum for all v [with T'(v) # «]
or it is a local minimum for all v [with T'(v) # «al.

In the following we will just say ‘‘structural functionals” to denote both
structural e- and p-functionals. A further possibility for quantifying individual
locations of equivalent structural features is to use, for example, correspond-
ing inflection points. This leads to structural functionals for the derivatives.

DEFINITION 3. For some u € N a functional T: C**%(J) —la,, a;[U{a} is
called a structural functional of order .u + 1 if there exists a first-order
structural functional T,: C%(J) —lay, a;[U{a} with T(v) = T,(v'*) for all
v e C“ ).

For a structural functional T and for any v, T'(v) will be called a structural
point of v based on T.

2.2. Practical aspects and estimation. Following the definitions in Section
2.1, the first step of our approach is to specify a number of structural
functionals T4,...,T,, Il € N.

Evidently, there are many alternative specifications. However, the problem
is not to define just any structural functional, but rather to specify functionals
which make sense for the given sample of curves and the given problem. They
have to quantify individually differing locations of corresponding extrema or
p-points. Obviously, this necessitates defining structural functionals in such a
way that no, or at least very few, missing structural points are to be expected
for the true curves. Apart from prior knowledge on the underlying mecha-
nisms, or some other kind of substantive knowledge, the data themselves may
suggest reasonable specifications of structural functionals. A simple possibility
is visual inspection of nonparametric estimates fl, ceey fm.

A heuristic automatic procedure has also been developed and successfully
applied [Gasser and Kneip (1991)]. It has been tailored to the case, which
frequently arises in practice, that interindividual differences between the
locations of corresponding structural characteristics are relatively small com-
pared to intraindividual differences between the locations of different struc-
tural characteristics (compare the evoked potential data of Figure 2). Without
loss of generality let us consider the problem of defining first-order structural
functionals identifying common maxima:

(i) First, we try to retrieve all local maxima in each individual curve. This
is done by computing the appropriate zeros of the first derivative by kernel
estimation.

(i1) All zeros of all curves are sorted into one array and submitted to kernel
density estimation.

Common maxima will then give rise to peaks in the resulting density. This
leads in a straightforward way to a specification of structural functionals
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T

Fic. 4. Top: five curves from a synthetic process (same as Figure 1). Middle: Simulated data,
generated by adding normal residuals to 40 equally spaced functional values of the above curves,
followed by linear interpolation. Bottom: Curves obtained from ‘“data’ by kernel estimation.

following (2.1). For the evoked potential example, this method brought out the
typical components, that is, extrema, known in neurophysiology. In this
example the method allows a more rational selection of sharp time windows,
that is, intervals on the time axis where specific extrema are sought.

The exact definition of structural functionals needs some care. This is due
to the possible occurrence of random peaks and the possible omission of true
peaks in the estimated curves. For example, the simple rule of using successive
extrema—as for the simulated true curves in Section 1—will usually not work.
The middle part of Figure 4 shows simulated noisy data generated from the
synthetic curves of Figure 1. Data are linearly interpolated. The curves
estimated from these data reflect the structure of the true curves quite well,
but there are some additional small wiggles (lower part of Figure 4; for details
see Section 3). Therefore, more robust and more complicated definitions of
structural functionals were used. For v € C%J) let E, denote the set of all
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t €lay, ay[ with v'(¢) = 0. The following specifications are in line with the
assignments of corresponding structural features one might intuitively use,
based on estimated curves.

It is graphically evident that all curves have a unique and corresponding
minimum approximately in the middle of the abscissa just after the steep
decline. For the true curves it is always the fourth local extremum. For true
and estimated curves it is a global minimum when excluding the last third of
the abscissa:

' arg inf wv(¢), if v hasaunique infimum in Ja,, a*],
T4( v) = te lay,atl

a, else.

Here, a¥ = a, + 2(a; — ay)/3. T4(v) is the location of the one local maximum
Jjust preceding T,(v) (always the third local extremum and global maximum in
the true curves):

Ty(v) = {

Similarly, structural functionals T, T, T; are defined based on the largest
local maximum preceding Ts(v), the global minimum in between T(v) and
T5(v), and the global maximum in [T5(v), a,]. For the true curves this leads to
the same structural points as in Section 1. By construction, T(v) < Ty(v) <

- < Ty(v) holds if all structural points are not missing.

Estimates of the structural points 7, := T.(f;) are determined from the
estimated curves (compare Figures 2 and 4). The procedure can in general
terms be described as follows: For any r € {1,..., [} determine nonparametric
estimates fl, e fm of fi,..., [, using, for example, smoothing splines or
kernel estimators. Estimate the structural points r.,...,7,,, by 7, :=
T.(fD), ..., %, =TFf).

Identifying structural points will, in practice, often require estimating
derivatives. Even when determining typical extrema of the curve itself, it will
usually be advisable to look for the corresponding zeros of the first derivatives.
The respective smoothing method should thus be chosen in a way to guarantee
the best possible estimates of f, for example. For kernel estimators this might
be realized by using specific kernels, tailored to estimating derivatives [com-
pare Gasser, Miiller, Kohler and Mammitzsch (1985)].

t, = max{t € E |t < Ty(v)}, if T,(v) # a, t, exists, v"(¢,) <0,
a, else.

ReEMARK. When applying kernel estimators, an appropriate choice of band-
widths is important. Following the theoretical results of Miiller (1985, 1989),
optimal bandwidths for estimating individual locations of extrema and for
estimating the derivative of an individual curve are approximately of the same
order of magnitude. The latter bandwidth might be estimated as in Gasser,
Kneip and Kohler (1991). It has to be emphasized, however, that in order to
obtain a best estimate of a structural average mildly undersmoothing band-
widths (i.e., smaller than the individually optimal ones) have to be used. This
is justified theoretically in Section 5.
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2.3. Theoretical considerations. This section deals first with a formaliza-
tion of the mechanisms generating the regression functions f;. Then a unique-
ness result is given which provides some insight into the problem of specifying
reasonable structural functionals.

As outlined in Section 1, we assume the sample {f;},_,...,, of true
regression functions to be generated by common underlying mechanisms. At
the same time, individual realizations will be governed by unknown factors.
Together with the assumption of smoothness, this leads to the following
formalization:

There is some set ) and a mapping A: Q - C*(J), v = 2,
(2.2)  such that for any ¢ €{1,...,m}; f; = A(w;) holds for some
w; € Q.

Throughout this paper it is assumed that (2.2) holds. If (2.2) is supplemented
by a probability measure based on appropriate o-algebras, this is equivalent to
assuming that f;, f,,... are independent realizations of a function-valued
random variable. This assumption is reasonable when dealing, for example,
with the visually evoked potentials of Figure 2.

In most applications it can be assumed that the physical processes are such
that all functions in %#:= A(Q) are uniformly bounded and of a comparable
degree of smoothness. Furthermore, one will suppose a continuum of possible
“factors” w, as well as some homogeneity of the population studied, as is the
case in most statistical approaches. If there is evidence of distinct subgroups,
such as boys and girls when studying human growth, a separate analysis
should be performed. Formally, the following additional assumption will thus
not impose a severe restriction:

(2.3) # = A(L) is a compact, connected subspace of C”(J).

Necessary and sufficient for compactness of # is that

sup  sup sup [v™(t)] < =,

ted pn=0,1,..., v veR
and that Z" = (Vv € A} is equicontinuous. For compact %, connected-
ness means that there do not exist two sets #,, #, # & with #Z= %, U %,
such that inf, . 5 inf,c 5, sup,c ;/w(@) — v(®)| > 0.

Assumption (2.3) refers to the topology induced by || - [|7’. However, for any
p < v, compactness and connectedness of # with respect to || - I carries
over to compactness and connectedness of %, when referring to | - [|$*.

Now, assume (2.2) and (2.3), and let us return to the problem of specifying
appropriate structural functionals. Such specifications can be done in many
different ways. The question arises whether this leads to arbitrariness. This is
not the case for functionals T localizing structural features which occur
consistently in each possible realization of the underlying process. They have
to satisfy

(2.4) T(v) #a forallve Z.
We will expect that (2.4) holds for each of the structural functionals specified
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in our real and synthetic examples. Proposition 2 shows that two functionals
of the same order satisfying (2.4) are either identical or completely different on
. In other words, given T(v) for one curve v € #, # itself uniquely
determines all further values T(w), w € A.

ProprosITION 2. Assume (2.2) and (2.3). For some u <v — 2 let T:
Cu*%(J) >lay, a[Ufa} and T*: C**%(J) >la,, a,[U{a} be structural func-
tionals of order u + 1, and assume that T(v) + a, T*(v) # a for all v € £.
Then one of the following relations is fulfilled:

(a) T(v) < T*(v) forallv € A.
(b) T(v) = T*() forallv € A.
() T(w)>T*() forallve A.

Proor. Note that, as indicated above, &% is also compact and connected
when referring to |- ||%*®. By the definition of a structural functional, it
follows that 7 and T* are continuous on % (referring to | - || *?).

Now, let %, = {w € ZIT(w) < T*(w)}, #Z, = {w € ZIT(w) = T*(w)} and
Ry = {w € Z|T(w) > T*(w)}. Continuity of T and T* on &% implies that we
obtain for s = 1, 3:

For any v € %, there exists an open neighborhood U,/(v)

(2.5) C**%(J) such that U,(v) N #Z= U,(v) N %,.

Consider #,. The definition of structural functionals implies that %, is
nonempty only if either both T' and T* localize local maxima or both localize
local minima or both localize p-points (for the same p €]0, 1[). Note that if
T,T* are structural e-functionals, v***2(T(v)) # 0 and v**2(T*(v)) # 0
hold for all v € #. Continuity on # and the results of Proposition 1 then
imply that for any v € #, we have x, = T(w) = T*(w) for all w € # in a
sufficiently small neighborhood of v. It can easily be verified that this general-
izes to the case that both T and T* are structural p-functionals for the same
p €10, 1[. This shows that (2.5) also holds for s = 2. We can now conclude from
(2.5) that there exist open subspaces D; > #,, Dy, 2 #, and D; 2 #; of
C**%(J) such that D, "D, N #= 3, D, N D3N R=3, DyN Dy N R=D
and #Zc D, U D, U D,. Only one of these open spaces D,, D,, D, is nonempty,
as follows from the connectedness of %#. O

The assertion of the proposition is not necessarily true if T and T* are of
different order. Note that (2.4) is not postulated for the estimated curves.

3. Synchronizing regression curves. Assume that [ structural func-
tionals T, ...,T,, [ € N, have been specified, the orders not necessarily being
equal. We require that these functionals be defined such that T,.(v) < T,(v)
holds for r < s, when T (v) # @ and T,(v) # a. Some notation will be used: Set
T(v) == (T\(v),...,T)(v)). Furthermore, let &#, denote the set of all x =
(x1,...,%) € (J U {a})! with x, <=x, for all r <s with x, # a and x, # a.
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3.1. Concepts. Let us first study the synchronization of the true curves
f1, -5 [ By definition, structural functionals are identifying individual loca-
tions of corresponding structural characteristics. They may thus be used to
quantify local shift differences. Our approach consists in assigning to each f; a
(local) shift function g; which transforms this curve to a common time scale.
The mathematical formalization by an operator G, assigning a shift function

&; to each individual curve f;, is based on the following ideas:

1. For all ¢, j €{1,..., m} differences between g; and g, may only depend on
differences between the structural points 7, :=T.(f;) and 7, = T.(f)),
r=1,...,1, since there is no further information about shift differences.
Shift functions have to be strictly monotonically increasing.

2. Structural points are aligned to fixed x;,...,x; € R such that g,(x,) =
T.(f), r=1,...,1, for all i [then f(g/(x,) = f(T.Cf))]

3. It is most natural to align structural points to their average locations, that
is, x; = 7y,...,x, = 7,. Here, for r € {1, ..., 1}, 7, denotes the average of all
7,; with 7., # a (i.e., not missing).

4. In line with the smoothness of individual curves, one will ask for some
smoothness of g;.

This leads to the following definition of shift operators and shift functions.

DEFINITION 4.

(I) An operator G: #;2 > CXR) is called a shift operator if the following
conditions are satisfied:

(i) For all (r,x) € H#}2, G, (") is a strictly monotonically increasing real
function. Furthermore, for all ¢ € R, G, .(¢) is continuous.

(ii) Forall 7 = (7,...,7,) € #, and all x = (x,...,x,) € #,

G(r,x)( xr) =7

forall r=1,...,0 with 7, # a, x, # a.
(I1) For some shift operator G,

&)= G(T(fl),q“-)( ")

is called a shift function for f, based on G. Hereby, 7 := (7,,...,7,).

As an example G, ., might be a.function defined by smooth, strictly
monotonical interpolation of the points (7, x,), ..., (7, x)).

It immediately follows that (1/m)L 7 ,g,(7.) =7, r=1,...,1, if there
are no missing structural points for the true curves. Ideally, one might
wish that the average of the shift functions corresponds to the identity.
This can be realized by determining normalized shift functions g :=
g, °((1/m)L? ,8,)" " In practice, problems might arise when there is a
substantial proportion of missing structural points.

By applying shift functions, a synchronized sample is obtained as
{(fheq, s m={flg( ey, -, m For these curves differences in individ-
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ual dynamics are partially eliminated, and remaining variation will be at-
tributed mainly to intensity.

DEFINITION 5. Let G be a shift operator, and let g; denote the respective
shift functions based on G. Then

1 m
f(t) = — 1 fi(g(t)), tedJ*=supg '(a,), infg (a))|,
i=1 i L
is called the structural average of {f}};c ..., m) based on G, T.

Often we cannot define f on the whole interval J since the domain of
fi(g:(*)) is [g7 "(a,), g; '(a,)] which may not be equal to J. However, J*
necessarily contains the interval [7,, 7,]. This problem is associated with the
experimental design. For many processes there will exist a known starting
point ag <a, and a known end point ay > a,. For the evoked potential
example, the starting point is naturally defined to be the stimulus (a §=0g=
0). Neurophysiological experience suggests an end point at about 800 msec.
When studying human growth processes across age, one can assume that any
such process starts at conception and ends before 24 years. It is reasonable to
postulate that there are no individual shift differences at such starting or end
points. Hence, if these points are known we might use them when defining G,
setting g,(ag) = ag and g,(ay) = ag. In particular, if we can assume that our
measurements cover the whole range of the underlying process, that is,
ay = ag and a, = ay, we might set g,(a,) = a, and g,(a,) = a,. In this case
we obtain J* = J. This assumption was made for the simulated data.

As discussed in Section 2.3, the true curves f, f,,... should, in many
applications, be formalized as independent realizations of a function-valued
random variable F, say. Then a structural average f can be considered as an
estimate of the structural mean f = EF(Gq, ey ), provided the mo-
ments exist (E denotes expectation).

3.2. Practical aspects. Obviously, there is some arbitrariness in the defi-
nition of a shift operator G and of the resulting shift functions. Only the
values of g; at the points 7,,...,7, are fixed. In between these points it is
merely required that g; be a smooth, strictly monotonically increasing func-
tion. In some cases (compare Section 4) there will be a priori knowledge
determining g; in a unique way. Otherwise, one might use the approach
discussed below. Increasing [ by including a further functional T,,, with, for
example, T.(f;) < T,, (f) <T,, (f,) for some r <, results in fixing the
values of g at a further point 7,,, €17, 7, |[. It is easy to see that, at least if [
is reasonably large, the defining properties of G and g, are quite restrictive
and one possible shift function cannot be very different from any other.
Increasing the number of structural functionals in order to fix the values of 8;
at additional points will result merely in marginal changes of the transformed
curves.
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If no knowledge in between structural points is available, ad hoc procedures
might be used to define shift functions. The simplest one is piecewise linear
interpolation of the individual structural points at their mean locations. This
violates, however, the smoothness requirement. It is not trivial to find a
flexible class of smooth interpolants which guarantee strict monotonicity. This
is, for instance, not the case for interpolating splines.

Treating known starting and end points ag and aj like additional struc-
tural points, the following general procedure might be applied [recall that
=T.(f)

For [ = 0 let g,(¢) = ¢.

Forl=11let g(t):=¢t+ 71, -7,

For [ = 2 let g, be the straight line with g(7) =7 and g,(7,) = 7,,.

For [ > 2 set g,(7)) = 7y;,...,8/(7) = 7,;. Keeping up with monotonicity,
use monotone piecewise cubic interpolants as proposed by Brodie (1980)
and investigated by Fritsch and Butland (1984) to determine g,(¢) for
t € [7,, 7,]. Outside this interval extrapolate linearly.

5. If some structural points are missing, apply the above rules to the remain-
ing ones.

Ll

These rules implicitly specify a shift operator G. Replacing 7,,,7, by x,, x*
this procedure might be applied to any (x, x*) € s#?, and it is easy to see that
it satisfies the conditions of Definition 4. Resulting shift functions are once
continuously differentiable, but not more. A method to obtain twice differen-
tiable functions has recently been published by Kelly and Rice (1990).

3.3. Estimation. In practice, shift functions and structural averages have
to be estimated. Based on a shift operator G, estimates g; of the shift
functions g, are obtained by

(3.1) 8.(1) =Gi 5().
Hereby, 7, = (7,,...,%,;Y and 7 = (7,,...,%,), where 7, denote estimates of
the structural points 7,, = T,(f,) (compare Section 2.2), and 7, are the result-
ing averages. Again averages are determined by omitting all missing structural
points.

Estimated shift functions g; lead to estimates of the synchronized curve
f (&,(+)), and straightforwardly to an estimated structural average,

(3.2) f(t) = Z fi(éi(t))’
m;_1
which estimates the structural average [ for every
t€J* N |supd, '(ao), infg; '(a,)|.

Here, fl is a nonparametric estimate of f;, for example a kernel estimate,
which involves the choice of a bandwidth. Theoretical considerations and

practical experience show that a mildly undersmoothing bandwidth is advis-
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able in this step. Undersmoothing means to choose a smaller bandwidth than
the optimal one for estimating an individual curve. The following argument
gives some insight (for details see Section 6): Under suitable conditions, it can
be shown that the expansion

m

A 1 R d
F@) =£(t) + — Y | filg:(t)) - ﬁ(gi(f))+£ﬁ(G<x,a(f))'

i=1 x=7

2

)

+ terms of smaller order

holds for large m and n. By undersmoothing individual curves, we reduce the
bias, while averaging curves by itself diminishes the variance (first term in the
sum). A similar argument applies to the estimators of the structural points,
and the choice of their bandwidths, as can be seen from the second term in the
sum. Asymptotic theory demonstrates that in this way for large m much
better rates can be obtained for the estimated structural average than for an
individual nonparametric estimate.

This approach is exemplified by our previous simulated example. Based on a
prespecified basic curve ¢, the true individual curves were generated according
to a model fi(¢) == S,(4(s,(2))), where S,(¢) and s, (¢) were specified paramet-
ric functions, monotone in ¢. For simulation, parameters were selected ran-
domly to generate 40 different individual curves. For each of these 40 curves,
Gaussian noise was added to 40 equally spaced functional values in order to
simulate observations Y, ; satisfying model (1.1) (to get an idea of the variance
used, see Figure 4). These observations then served as input to the procedure
described above, using kernel estimators. Optimal bandwidths were estimated
from the individual data following Gasser, Kneip and Kohler (1991), and
averaged. A mildly undersmoothing bandwidth equal to 0.75 times the average
optimal one then was used in all steps. Computation of an estimated structural
average was based on the five structural functionals defined in Section 2.2.
The shift operator G was chosen according to Section 3.2.

This simulation procedure was used to generate and analyze 101 different
samples of 40 curves. The resulting 101 estimated structural averages were
compared to the true ones. Figure 5 shows the realization with median
integrated squared error out of the 101 replicates. The estimated structural
average is surprisingly close to the true one. Both represent the common
structure well, which is evidently not true for the cross-sectional average. The
individual nonparametric estimates (Figure 4) do not show the small shoulder
occurring in each of the five curves just before the last maximum. However,
this subtle structural feature again appears in the estimated structural aver-
age.
The usefulness of the new approach cannot only be seen in synthetic
examples, but also in the real evoked potential data. We used (3.1) and (3.2) to
determine the estimated structural averages given in Figure 3. A small band-
width was selected according to prior experience. Quantifying shift differences
was based on five structural e-functionals of the type (2.1), three of them
localizing maxima (in appropriate time windows including 60, 165 and 245
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Fic. 5. Structural average (solid curve) versus estimated structural average (dotted curve) and
cross-sectional average (dashed curve).

msec), and two of them localizing minima (in appropriate time windows
including 130 and 190 msec). Synchronization then followed the procedure
described in Section 3.2.

3.4. Some conceptual remarks. This discussion is based on the true curves
f,. Transforming individual curves using some shift operator G splits the
sample: Instead of the original curves {f},c s .. -, ) We have the synchronized
sample {f,(g,(:‘D},cq.---» m together with {g},cq ..., ) This is no loss of
information, since knowing f,(g;(*)) and g; leads to f. =f(g,(g7'(")). For
any i, g, is a parametric function with the structural points as individual
parameters, leading thus to a partial parametrization of the curves. We obtain
the following: The number and amplitudes of the local extrema of f; and

f.(g.(+)) are identical. Furthermore, if f; possesses an extremum at ¢* € J,
then f(g,(-)) has an extremum at g; '(¢*), and g; '(t*) =7, if ¢* = 7,, for
some r € {1,..., ). Similar relations hold for p-points.

If there are no missing structural points, the following properties hold for

the structural average f:

1. Let T, be a first-order structural e-functional. Then the structural average
f has an extremum at 7,, and (7, )= A/m)T T f(7,.).

2. Let T. be a first-order structural p-functional, and assume that for some
r,rs €{1,...,1}, T, and T, are structural e-functionals such that for all
v e .# we have v(T () = pv(T @) + (1 — p)u(T,(v)). Then [7,,7,]is a
strictly monotone segment of f, and (7)) = (l/m)Z * [ = pf(f )+
(1 -p)f(7,).

These properties show that the concept of first-order structural functionals
is consistent with interpreting different locations of corresponding structural
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characteristics as results of shift variation of the individual curves f;. We see
that all curves f;(g,(+)) of the synchronized sample assume the same values as
the original curves f;, but part of the shift variation has been eliminated.

The above properties do not, in general, carry over to higher-order struc-
tural functionals. The derivative of f(g,(-)) is f/(g,(:)g/(-). Thus, the shift
curve introduces an additional amplitude variation, unless g; is a straight line.
If structural homogeneity is mainly expected for derivatives f*), it may be
preferable to analyze the sample of derivatives.

Given a sample {f;};c(; ..., ), we have proposed one possible approach to
analyze differences between individual curves, which can be expected to work
in many applications. Evidently, two extreme principles are to explain individ-
ual differences fully as differences in individual intensity (or amplitude), or as
completely as possible by differences in dynamics (or location). Without a priori
knowledge we cannot decide in which proportion interindividual differences
should be assigned to one of these sources of variability.

The first extreme is represented by principal component analysis, a popular
method to analyze samples of curves [Rao (1958)]. It does not account for
interindividual shifts since this approach explains interindividual differences
completely by amplitude variation. As a consequence, PCA may create addi-
tional components which are derivatives of those components showing sub-
stantial shifts from subject to subject [M6cks (1986)].

The other extreme, explaining variation mainly by shifts, can be described,
for example, as follows: Given an individual curve f; and a reference curve v,
one might try to determine an alignment by minimizing pseudometrics like
[If(g;(#)) — v(¥)|dt or, more reasonable, [|f.(g,(t)) — v(H)ldt+ [If/(g;(¢)) —
U'(¢)| dt with respect to g,. However, such an approach does not guarantee that
structural characteristics, which intuitively should be aligned, really are
aligned. Furthermore, too much variation is explained by shifts, producing
shift functions having jumps or being constant within certain intervals. If, for
example, f; and v differ only by an additive constant, methods based on such
pseudometrics will generally tend to explain part of the differences by shifts. A
further disadvantage is the need for a reference curve v.

The approach presented is more flexible: It allows us to explain by (local)
shift differences those phenomena thought to be associated with an individu-
ally differing dynamic. Furthermore, the concept of—a spontaneous or stimu-
lated—process with an individually differing dynamic and intensity seems to
be fruitful for many disciplines. When collecting data across time, age, and so
on, which often starts at some intervention or stimulus, such a concept is
frequently in our mind and might facilitate the statistical analysis.

4. Analyzing semiparametric regression models. As might be ex-
pected, the above concepts are useful in the context of semiparametric model
building. The most frequently used models in nonlinear (parametric) regres-
sion share a common structural form [compare Ratkowsky (1983)]. It is
assumed that for some ¢ € C*(R), v > 2, and some [, ¢,/ C R the following
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holds for all i € {1,..., m}:

There are unique parameters ,;, 8,;, 0,;, 9y; € R, 9y;,0;; > 0, such that for
some interval J; C J with [0,;¢, + 0,;,0,,¢, + 05,1 € J,,
(4.1) fi(t) = %cﬁ(

02i

+ 8, forted,.

1i
According to (4.1), f;l;, arises from linear scale and time transformations of a
basic function ¢. Usually, the analysis is based on a prespecified ¢ (examples
are the logistic and the Gompertz function). The importance of this model
class led Lawton, Sylvestre and Maggio (1972), Kneip and Gasser (1988) and
Hérdle and Marron (1990) to consider the semiparametric model where ¢ is
unknown. In the first two papers a rather complicated iterative scheme is
proposed to estimate ¢ and the individual parameters simultaneously, while
the third paper deals with somewhat different questions.

It will now be sketched that the tools developed in this paper lead to a
simple procedure to estimate an unknown model function ¢. Let x € [¢,,t,]
denote the location of an extremum of ¢*), u < v — 2. Evidently, each f*
possesses a corresponding extremum at T'(f;) = 6;;,x + 60,,. Structural func-
tionals can localize these extrema, and thus provide information about 6,; and
0,;, even if ¢ is unknown.

Based on Section 2.3, we can give this idea a theoretical basis. Assume that
(2.2) and (2.3) hold. We will then assume that (4.1) extends to all functions
v e A for some J, CJ and parameters ¥V, 0;,, 0s,, ¥5,- Then the following
proposition holds.

ProrosiTiION 3. Under the above assumptions let T be a structural
e-functional of order u + 1 (u < v — 2) with T(v) # a for allv € £, and with
T(f) €10ty + 0y,0,,t; + 05,1 for some i €{1,...,m}. Then there is an
x € [ty, ;] such that:

(@) ¢ has an extremum at x.
(b) T(v) = 0,,x + 05, forallv e R.

Using Proposition 2, the proof is straightforward and thus omitted. Under
some additional conditions the proposition generalizes to structural p-func-
tionals. l

Suppose that the sample of curves yields enough information to specify two
structural e-functionals T; and T, with T\(v) < T,(v), v € %, which satisfy
the conditions of Proposition 3. Then there are some x, x, € [¢,, t,], x; < x,,
such that for all : € {1,..., m},

(4.2) Ty(f;) = 0%y + 8y, To( fi) = 015 + 0y,

Now note that for any ¢* with ¢*(¢) = a*¢p(b*t + ¢*) + d*, a*, b* > 0, c*,
d* € R, a trivial reparametrization can be done such that the model remains
valid when replacing ¢ by ¢* (and [¢,, t;] by some [¢¥, £¥]). This unidentifiabil-
ity may be eliminated by appropriate normalizing conditions. A possible nor-
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malization is to impose that the parameters (9y;,6,;,0,;,J,;) average to
(1,1,0,0). This implies that ¢(t) = (1/m)L ™, f(6,,t + 0,,). Furthermore,
considering (4.2), we obtain x, = 7, = (1/m)L™ T,(f), x5 =7, =
(1/m)L T Ty, f;). We now can define a shift operator G by

72_71

G o(t) =7 + Zy — 2, (t—2z),
= (1,75) € H#p, z = (2, 2,) € #,. This leads to
g:(t) = Gerry, m(t) = 04t + 0y, i=1,...,m,

1 m
8(0) = X f(&D), 1€ = |supg Nug,), infer (u,)|,
i=1 1 12

where [u, ;, u; ;] = J;. The function ¢ thus can be represented as a structural
average, which can be estimated as described in this paper.

The basic ideas of the above approach generalize to some more complicated
semiparametric models.

5. Asymptotic theory. Rates of convergence will be derived for the
estimators just presented. To simplify the presentation, an equally spaced
design with an equal number of observations per subject is assumed. The
theorems can be generalized to more complex situations, relaxing Assump-
tion 1.

ASsSUMPTION 1.

(@ n=n,=ny= -+ =n,,and for all m,n and each j €{1,..., m} we
have ¢;=1t,;= --- =t,, Moreover, t;,, —t;=(a, —ay)/n for all je
{1,...,n — 1}.

(b) For all ¢, j the random variables e; ,; are independent, and for any i,
€1, €;9, - .. are i.i.d. random variables with expectation 0 and variance o < .

Furthermore, for each p € N there exists a C, <  such that Eef; < C, for all
i (E denotes expectation).

We assume that the analysis is based on [, [ € N, structural functionals
T,,...,T,. We use u, to denote the order of the structural functional T,
r=1,...,1. Recall that u, = u, + 1.

Asymptotic theory relies on n — «, while m is held fixed or increases, too.
Asymptotics for m — « is based on model (2.2) (compare Section 2.3). We need
further conditions on structural functionals and on the shift operator G.

ASSUMPTION 2.

(a) Model (2.2) holds for some v > p + 2, where p == max, (..., M, &
is a compact subspace of C*(J) (referring to || - ||}’

(b) For any r € {1,..., 1} there exists an open subspace D, c C**! (refer-
ring to || - |7 ") such that Zc D, c Dr.

(¢) G. .[(?)is twice continuously differentiable at each (x, x*) € #2.
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The shift operator given in Section 3.2 satisfies condition (c). Condition (b)
is crucial for asymptotic theory. It imposes a real restriction by requiring that
T.(v) # a for any v € %, that is, that the true regression curves have no
missings in the above sense. This is kind of a homogeneity requirement. If, for
example, T, is defined by (2.1) this condition is fulfilled if any v € Z# possesses
a unique supremum in Jc, d[ [note that then 9r_ is an open subspace of

C3(J)].
We use kernel estimators f;, and f for determining structural points
= T (f,) and for the synchronization step. Other nonparametric techniques
could be applied instead.

Given a kernel function W and a bandwidth b > 0 a (W, b)-kernel estimate

fW »;: of f; will be defined as follows:

13

fw,b;i(x) =

lj’

1 s, x—u
- W( ) du ‘Y,
b |
where s, == (¢;,, +¢,)/2,j=1,...,n—1,sg=t, —(s; —t),and s, == ¢, +
(t, —s,_y). This is a convolution-type kernel estimator as considered by
Gasser and Miiller (1984). It is similar to the one proposed by Priestley and
Chao (1972).

We consider the following situation with bandwidths b, ¢ > 0:

1. (W b)- kernel estimates are used to determine f;, i =1,...,m.
2. fi,.. ., f,, are obtained as (W, c¢)-kernel estlmates of f1,..., [

Here, W denotes a prespecified kernel function. We assume that:
3. W is a kernel of order % for some even Rk e Nand v — u > k.

Some additional technical requirements on W are deferred to the Appendix.
Together with Assumptions 1 and 2, they are expected to hold throughout.

It should be noted that using the same kernel function within each step of
the analysis is in no way necessary. This is done to simplify the notation.
Moreover, different bandwidths might be used to estimate different structural
points 7,,. In both cases the basic results of Theorems 1-4 remain unchanged.

Before stating the asymptotic bias and variance of the estimators of the
structural points, we have to introduce some notation:

Let T, be a u,th-order structural e-functional. We will say that % is
“symmetric at T,” if there exists an'e > 0 such that for any v € % we have
v (T (v) — x) = v (T (v) + x) for all x < &. It should be noted that an
assumption of symmetry has to be based on prior knowledge. For example, let
S: C"(R) » C*(R) be an operator such that S, is a monotone function.
Assume that for some z € C"(R), v(¢) = S, (2((¢ — a,)/b,)) holds for all v € #
and all £ in an e-neighborhood of T,.(v), where (a,, b,) € R X R, are appropri-
ate parameters. Then % is symmetric at T, if z* has a symmetric ex-
tremum at some x € R, and if x = (T\.(v) — a,)/b, for all v

For any m, E, var, cov, resp P will denote expectation, variance, covari-
ance, resp. probability. The following theorem establishes the asymptotic bias



SAMPLE OF CURVES 1287

and variance of 7., when T, is a structural e-functional. Asymptotic normality
can be inferred from Miiller (1985, 1989).

THEOREM 1. In addition to the above assumptions, suppose b — 0 as

n — o such that n'/®**3p/logn -, r=1,...,1. If T, is a structural
e-functional, then for all i,

(I) E(é\'ri - Tri) = Bri + 0(1/(nb2#r+1))’
where

B, = O(b*~1/Vnb? 1)

if # is symmetric at T,, and else

(=D ()
(k + w) ()

(II) var(#,;) = v,; + o(B%) + o(1/(nb?r*1)),

B = bkf_llw(“r)(x)x“"“k dx +o(b).

where
o L w2 (1) 2
Ui = e | W) e/ f 00,

A proof is contained in the Appendix. Within Theorem 1 and the subsequent
theorems, convergence established by O and o terms holds uniformly for all
i{l1,...,m}and m € N. In each of the theorems this can easily be verified
when using the compactness of #5 {f;},c(1 ..., and the uniform bounded-
ness of all moments of ;; (with respect to 7). In the following it will not be
explicitly mentioned.

The theorem shows that the bias is practically negligible if % is symmetric
at T,. We then might let b —» 0 extremely slow, to obtain E|7, — 7| =
O(n~'/2). In the general case, both bias and variance depend on |1 /f*-* (7, ).
This term is small if f*+~V is rapidly increasing/decreasing near its ex-
tremum at 7,,. It is large if f*~~" is very flat in a neighborhood of 7,,. The
bias additionally depends on |£,“r**)(7 ,)|. Evidently, if f*~ is symmetric at
Ty [(7,) =0 for all y €{0,2,4,...}. Since %k is even, |f**%(r.)|
provides some measure of symmetry of the respective extremum. As regards
the constants in the bias and variance terms above, we thus can conclude:

(a) The constants are small if the extremum of f*~~V at r,, possesses a
high degree of symmetry, and/or if f“-~1 is rapidly increasing/decreasing
close to 7,,.

(b) The constants are large if the extremum is rather asymmetric, and if
fi#r=1 is flat in a neighborhood of 7,,.

The best individual rates of convergence are achieved when choosing & to be of
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the order n~1/@2k+2u,+1 Then
E(%, -1, 2 _ O(n~2k/@k+2u+1)
ri ri .

If k> 2, setting b = C - n~1/**24:*D for some appropriate C minimizes the
bias. We then obtain

| By — 74" = O(n 724/ 2urs D),

For k = 2 the corresponding rate O(n~*/@#-*9) cannot quite be reached, since
the theorem requires n'/#-*3p /log n — . Apart from some particular situa-
tions, for example, symmetry, it is not possible to reduce the order of the bias
any further. This result is not surprising. Let T, be a first-order structural
e-functional identifying corresponding maxima. Suppose we do not smooth at
all, and let 7,; denote the location of the maximal observation Y, ; within some
neighborhood of 7,,. If the peak is asymmetric, 7,; is a biased estimator of 7,;,
and this bias does not converge to 0 as n — «. Thus, smoothing is necessary to
reduce both the bias and the variance. The minimum bias choice of b will play
an important role when dealing with averages over samples of curves, since
averaging in itself diminishes variance.

Theorem 2 gives the asymptotic bias and variance, if 7. is a structural
p-functional. We additionally impose the minor restriction that for any v € D,
the strictly monotonical segment containing T,(v) is given by [,(v), ¥,(v)],
where i, ¢, are structural e-functionals (D, C Dy D. € 9,).

THEOREM 2. Let T, be a structural p-functional. Under the above assump-
tions we obtain

(I) E(%,—7,) =B+ O(l/(an"r“)),
where

B,, = bkfl WD () gh a1 gy
-1

X (-1 w, B8 0(r) = pFR R D (Wo(£) = (L= p) F4# Dy (1))
(=D (k+ i, = DUP(r)
+0(b").
(ID) var(7,;) = v,; + o(max{b®,1/(nb* " 1)}),
where 4
2(1+p%+ (1 - p)?
om TOEE L LZPY) 10 yroniay? e v -

A proof is contained in the Appendix. We see again that & =
C*n~Y/*+2u+D (for some appropriate C*) minimizes the bias if & > 2.

The best individual rates of convergence are obtained when choosing b =
C**p~ 1/2k+2u,+ 1). Then

E(%ri — Ty ? = O(n_Qk/(2k+2#r_l))‘
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Thus, in general, the optimal rates of convergence for u,th-order structural
p-functionals are better than those of u,th-order structural e-functionals.

Based on Theorems 1 and 2, it is possible to obtain the asymptotic bias,
variance and covariance of the estimated transformations g; = G;, 5), of the
transformed curves f 8;, and of the estimated structural average. In the
following G* and G** will denote partial derivatives of G, G .«(t) =
(a/aa)G(,,,x*)(t)l.,q and G} (t) == (3/90)G, 5y for (x, x* ¢) €
H2XR. For r=1,. l let G .+ (t) resp. Gi¥.« ,(¢) denote the rth
elements of the vectors e xn(8) resp. GEF o« ().

THEOREM 3. Under the above assumptions let b — 0 as n — » such that
n'/@ert3p /log n — ». Suppose that m (= m,,) is a nondecreasing function of

n. Forr=1,...,1, let o, =, if T, is a structural e-functional, and o, =
w, — Lif T, is a structural p-functional. Furthermore, let 0 = max{o,, ..., 0.},
w = max{u,,...,u,}. Then, as n — », we obtain for all t € J,

(1) E(&i(2) - &(2)) = Bi(t) + O(1/(nb**1)) = O(b* + 1/(nb* 1)),
where
l

1 m
Bz(t) = E ( (175 r)(t)ﬁn + G(tzkr r)(t); Z ﬁrj)‘
j=1

r=1
(I) var(g,(2)) = Vi(¢) + o(bZk +1/(nb2+ly) = O(bZk +1/(nb%*1)),
where
l

V(t) = %

vri(Gti,F;r)(t) + G**T r)(t) mz E UrkG(fk 75 r)(t)z)'

k#i

1
(II1)  cov(g,(2), 8,(2)) ;(Cik(t) +0(b%* + 1/(nb**1))) + o(n?)

O((l/m)(b2k +1/(nb** 1)) +o(n"?),

where

o~

Cik(t) = Z (U GZ‘;L 75 r)(t)G(‘rk 75 r)(t) + UrkG(‘rk 75 r)(t)G(‘r 75 r)(t)

1 m
Gz“‘:f r)(t)GZ't 75 r)(t); Z Urs
s=1

A proof is contained in the Appendlx In the following, for any £ > 0 and all
m, we will set o, = [Sup,c 1 ..., m & (@¢) + &inf; - o my 81 (a) — el It
should be noted that [(l/m)Zl T, /m)S™ 7 1 Cd,, if e is sufficiently
small.

THEOREM 4. Let ¢ > 0. Under the assumptions of Theorem 3 let blog
n — 0. Furthermore, let ¢ = O(b) such that nb?>°*! = O(nc) and nc®b - » as
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n — o, We then obtain as n — «,
(M [ (Efi(a0) - f(g(1)) dt

L W(x)xtd :
=L{ck$ﬂ(k)(gi(t)) +fi,(gi(t))Bi(t)} dt

+o(b%) + O(1/(n***?))
= O(b* + 1/(n®*™ %))

(M) [ var(fi(&:(1))) dt

0';'2 1 9 , )
- fcfs(%f_lwm dx + f(g,(1)) Vm) dt

+o(b% + 1/(nb%**1y)
= O(b% + 1/(nb%**1)).

M) [ eov(£i(8:(1)), ful&u(®))

1
m ([,Eﬁ'(gz(t)) fi(8x(£))Ci(2) dt

+o(b%* + 1/(nb** 1)) + o(n"?)

O((1/m)(b* + 1/(nb*>*1))) + o(n"?).

A proof is contained in the Appendix. By the above conditions on ¢, the
error terms depending on ¢ are of smaller or equal magnitude compared to
those stemming from the error in estimating the structural points. These
conditions can always be fulfilled. The theorem implies the following corollary
for the estimated structural average f.

COROLLARY 1. Assume the conditions of Theorem 4. For any m (= m), let
f=Q/m)™, fi(g,()), f={,, denote the respective structural average. Then

E[I(f(t) - f(t))2 dt = O(b2k + 1/(n2b4“+2) + 1/(mnb2°+1)).

Evidently, there is a difference in whether one wants a best estimate of an
individual transformed curve f;og;, or a best estimate of the structural
average f. In the second case one has to use smaller bandwidths throughout.
This is not surprising since averaging in itself diminishes variance.
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Under the conditions of the corollary, we have to choose b to be of the order
of magnitude max{n 1/ (f 20D (mp)~1/@kT20+D) to obtain the best possible
rate of convergence for f. Then

E[ (F(t) = () dt = O(n~ /025D 1 () ~2h/ @k 2uD),
J,

If m (= m ) increases fast enough with n, and if % (and ») become sufficiently
large, this approaches n~2. The lower bound n~2 is a consequence of the fact
that the bias of f cannot be made arbitrarily small by increasing m. Existence
and magnitude of this lower bound are plausible, since it also arises in the
parametric case. Assume a parametric model for the regression curves f;.
When estimating the parameters by nonlinear least squares, it is well known
that the resulting estimators have a squared bias of the order n~2. This bias
leads to a corresponding bias for shift curves determined from these parame-
ters. A respective—parametric—structural average then shows a best obtain-
able rate of convergence O(n~2).

As an example let £ =4 and assume that T,,...,T, are all first-order
structural functionals. Furthermore, suppose that min{m, n} —» « such that
n*7 = 0(m) as n » ». Then we might choose ¢, b to be of the order n~1/7,
This yields

E[ (f(t) ~£(1)) dt = O(n™").

3

APPENDIX

The kernel function W (of order k) is assumed to satisfy the following
conditions:

1. W is symmetric, and W(z) = 0 for Ju| > 1.
2.

1, forj=0,
JW(wyw/du={ 0, forj=1,.. k-1,
#0, forj==k.

3. Wis u + 1 times continuously differentiable on R, and it is u + 2 times
continuously differentiable on [—1,1].

Throughout the following lemma and the proofs of the theorems, conver-
gence established by o(-) [and O(-)] terms is to be interpreted to hold uni-
formly for i € {1,..., m}, m = m, € N. In either case this will follow from the
arguments used to derive the respective results.

LemMMa. Let y €{0,...,u + 2}. Under the assumptions of Theorem 1, let f,
denote (W, A)-kernel estimators of f; with A - 0 and nA*> >  as n - ». For
p* €{0,...,u + 2}, define Wyu: R » R by Wal(x) = W®Xx) for x € [-1,1]
and W(x) =0 for x & [—1,1].
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Furthermore, let #+ J denote some compact subinterval of J, and let
{n,}, e be an arbitrary sequence of constants with m, — ® as n - «. Then, as
n — o, it holds with « == min{v — v, k}:

(a) There exists a C > 0 (independent of i,m) such that for each t €
A NE(F) — ()] < XC sup, e AfD, and if k + v < v,

(-7 ()
(k + y)!

E(F(t) = £2(2)) = X[ W,(x)ax**7 dx + o(N),
-1

where the remainder term is uniform in t € /.
(b) For any t € J,

2

var(fiw)(t)) %f W(x) dx + o(1/(nA?*1)),

where the remainder term is uniform int € J.
(c) Foranyp €N,

B(sup| 7°(0) - B0 ) = o(ap).
teR
Hereby, q(n) = n, logn/ VnA*>**+1,

@ Ify<w+ 1and nt/?**1) /logn — o, for each ¢ > 0 and all B € N,

P(sup| FO(8) - FO(8)| > s) — o(1/n").
te f

Proor. Assertions (a) and (b) follow from Lemma 1 and Theorem 4 of
Gasser and Miiller (1984) in a straightforward way. The proof of assertion (c)
is based on the proof of Theorem 3 of Cheng and Lin (1981).

Evidently, f{(x) =0 for x ¢ J, = [a, — A,a, + A]. We thus only have to
show that

(A1) . 5 sup | 7(¢) = EF(1)| = o(1).
( ) ted,

Define the truncated random variables

(A2) et = eIl < (1))

and set

x—u
A

X0 (x) = Zf Il (

By using now a moment 1nequa11ty of the exponential form [compare
Lamperti (1966), pages 43 and 44] and assertion (b), analogously to Cheng and
Lin (1981), we obtain for every ¢ > 0,

1 _ _
P(mlﬂ“m—Eﬂ“mlm

) du €.

< C-p-en”
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forall t € # and all i [0 < C < «, note that due to Assumption 1(b) C can be
chosen independent of i, m].
We now claim that for all p € N,

(A3) - B[ = o(1).
( ) ted,
This can be seen in the following way:
For some 8 € N define 21 = o — A and Zri1,n =2, t(a; —ay+

20)/n® for each r e({2,...,n%. Let E,={z, n},e(1 -+ o and for each
x € J, let Z(x) denote an element of E, w1th the property that [x — Z(x)| =
min,«c g |x — x*|. Then there exists a generic constant A , such that

(A1) 5 sup | f20(t) - Bf*™(t)| < A, (St + S&, + S8,),
ted,
with
1
— £k (y _ PRy
Su Giay S 0@ = froz@),
1 _
Sy, = ()sup|f*(”(Z(t)) Ef¥(Z(t))],

S, = su | Efx0(t) — Ef*@(2(¢))|
T q(n) ey ‘ '

Since by construction n, — o,

(A5) P(S, > ¢) < n®Cn—c"*
implies ES%, - 0 as n — o,

Let L := supxeRIW(x)l Noting that for any ¢t € J, Js W ((t —x)/Mdx =
MW, _ (¢t —s,)/0) — W, _ (¢ - s;_1)/A), we furthermore obtaln that with
probablhty 1,

)\)1/4 L(a, - a,)

nSAy+1

A6 !
<
(46) ~q(n)

Thus, choosing 6 large enough, ES{;, - 0 and S& — 0 as n — . This proves
(A3).
We are now in a position to show (A1): Note that for all ¢,

t—u "
M(T)du(eij —€).

a1 0 =irm + L7 s
Jj=1"5,-1
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For any p > 0, all i and each B8 € N, we obtain

P

1 n s 1 t—u
—— E sup Z ! IW(—)du(el.A—e;k‘
(A8) q(n)" iey, j:lfsﬂ)‘” LA T
1 Lr

" =o(n)

< q(n)P AP(“/"’I) (nA)(p*—p)/élEIEijl

by choosing p* > p sufficiently large, as follows from (A2) and the bounded-
ness of all moments of ¢,;. When combining this with (A7), then (Al) is a
consequence of (A3).

It remains to show assertion (d). Note that under the postulated additional
assumption on A, we might choose the sequence 7, such that 1/q(n) > 1 for
all n large enough. By assertion (a) and by the compactness of %, it is easily
seen that assertion (d) holds iff for any ¢ > 0 and all B8 € N,

P sup| . (t) — Ef(8)| > 2| = o(n"#).

(I( n) te f
This immediately follows from (A7), (A4), (A5), (A6) and (A8). O

Proor oF THEOREM 1. Let y := u, + 1. By assumption, % is a compact
subspace of C"(J), v >y + 1, with C*(J) being endowed with the norm
|- . Together with the continuity of T, on #, and with T (%) Cla, a4,
this implies that there is a compact subinterval # J with T.(%) c #.

In the following, for all ¢ > 0, v € C?( ), t €/, we will use U.(v) and
U.(¢) to denote e-neighborhoods of v and ¢ (with respect to | - I and | - ).
Furthermore, let A := sup, ,;ymlx — yl.

Note that % is also a compact subset of C*(,#) and C?( #) (referring to
Il - IIf}) and | - IIf})), and that sup,. ., sup,.,|[v'P()| < for all g =0,...,
y + 1. By definition of a structural e-functional, we have [v”(T.(v))| > 0 and
sign(v(T,(v))) = sign(w"(T(w))) for all v,w € #. Moreover, T (v) and,
hence, v”(T,(v)) are continuous functionals of v € % (with respect to both
II - IIf}) and || - IIf})). Based on the properties of %2, we thus can infer that there

exist some d, 8 > 0 such that for all v € £,

inf  |v™(8)] > 2d.
te Uy(T.(v))

Furthermore, there exists an e > 0 such that for each v € Z#, U(v) € D, and

sup |T.(v) — T.(w)]| < b/4.
we U,(v)

With & := min{e, d} we thus obtain for each v € %,

inf inf  |w?(¢)|> inf inf  |v(¢)| - d
we U, (v) t€ Us ,o(T,(w)) weU,(v) teUs (T (w))

inf |[v(t)] -d >d.
te Uy(T,(v)

(A9)

%
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The above considerations now allow us to derive upper bounds for the rates of
convergence of E|7,; — 7,.|*:

If £ e U(f) we obv1ously have |f(¢)| > d for all ¢ in the segment j joining
7., and 7%,. Moreover, f; (”')(7 D) =f*Xr,)=0. A Taylor expansion of
fer(7) thus shows that if f; e U(f)

|3, — 7] < —! f#(,) = ()]

It follows that for any p € N and any ¢,

Bl =l < A L P(sup| £(6) = f0(0)| > e/ + 1))

s=0 tef
2°
|

By Lemma 1(d), the first term on the right-hand side is 0(1,/n?). By Lemma
1(b), E|f#X(r,,) — Ef{#(r,)I" can be bounded by O(1/(Vnb?r*1)) for p =
1, 2. This generalizes to p > 2, as can easily be seen by using Whittle’s (1960)
inequality. Lemma 1(a) y1e1ds O(b°*) as a general bound for |f{*(r.) —
Ef*(z,)I". Now consider the special case that % is symmetric at T,. Note
that then 7, —x) = —f%¥ X7, +x) for all x sufficiently small. The
following relations now follow from the arguments of Appendix (1) of Gasser
and Miiller (1984), partial integration and the symmetry of W:

fi(#r)( Tri) - Eﬁ(”r)( Trz ) = —Eﬁ(ﬂr)( 1-ri)

Efe(r) |

ri

+EB| [0 (r) = B () [).

(_1)#r+1f1 W(x)fi(”r)(Tri _ bx) dr
-1

+0(1/(nb")) = O(1/(nb")).
Let «, = 1/(nb* ') if # is symmetric at T, and set «, =
max{b2k 1/(nb2*r*1)} else. When combining the above results we obtain
(A10) Bl — " = O(x2).

Based on (A10), it is now possible to derive a more exact approximation to
the conditional asymptotic bias and variance. Let T*(v) = T.(v) for all v €
U/(f};), and set T*(v) = 7., for any v & U/(f). Obviously, (A10) still holds
when replacing there 7,; by 7% = T*(f,) and #, by #* = T*(f). A more
precise analysis of 7,; — 7., leads to

3
(A]'l) ;’\-ri_Tri:A(f;’ fz)+ Z Rs(fi’ fz)y
s=1
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where for all v, w € C“’(J)

A5,10) = s (WO(T () = 05 (T*(w)),
Ri(0,w) = oo sw 06, ,)(TH(v) = T(w))’

for some measurable mean-value function $o s
Ry(v, w) == [T (w(r) = v9(r)) dr,

a(w) T*(w )

: 2
Ry(v,w) : (T,(v) ~T(w) ~A@w) = L R, (0,w)

X I(v & U(f,) or w & U( £,)).

Hereby, a(w) = max{d, w”(T*(w))}, and I denotes the indicator function.

The above arguments show that E|A(Ff,, f)I° = O(k?/?). Now combining
(A10) with the results of Lemma 1, repeated use of the Cauchy-Schwarz
inequality yields E|A(f,, f,)C3_,R (ﬂ, fl = o(k,) and E(C3_ R(f, f))? =
o(k,). Hence,

(A12) E(#, = 7,.)" = EA(f,, ;)" + o(x,) = O(x,).

Relation (A12) and v > y + 1imply E|R(f,, f,)| = O(x,). By Lemmas 1(c) and
1(d), we furthermore have E|R(f,, f)l = o(k,). We thus obtain

(A13) E(?,—1,) =EA(fi, ﬂ) +ER2(fl-, ﬂ) + O(k,).

By (A12) and (A13) the assertions of the theorem follow from Lemmas 1(a) and
1(b), given that

(A14) ER,(f;, f;) = O(b%/x, +«,),

where g := min{v — v, k} [when considering the assumptions of the theorem,

note that necessarily ¢ > £ — 1 and 5%~ 1\/;7 = o(b%)].
It thus only remains to prove (A14). Lemma 1(a) and (A10) imply that

- 1 2% T—u
Rg(fi; fz)= a(f) b7+1 Z f‘j;;k‘ W(Y)( )deuflJ+0(bq\/;;)
‘RY(f, fi) + 0(6%/x, ).
The only difficulty in proving that ER3(f;, f;) = O(1/nb*+*1) obviously stems
from the fact that 7% and €;, are not independent.

Now, for any j € {1 n} and all ¢t € J, let

t—u

(a15) e =i = [ w5 e,

-1
)

(A16) &= T*(F,

er

\’51
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The arguments leading to upper bounds for the rate of convergence of
|7,; — 7,,/° might also be applied to |7} ; — #%|°. For any j € {1,..., n}, this
leads to

E|#s, — #i = MEI(f, & U, o £)) + NEI(f, ;€ U, ()

s, 1 . t—u 1

(It is evident that the results of Lemma 1 still apply when replacing f, by
fi?)

Since for any j, #); ; is independent of €

P

(A17)

1
+ — E sup
ar ted

;j» we obtain

. 1 n ‘T';!(‘ T —
ER3(f,, 1)) - a(f)bmg B[ { [Fwel

- Tri

o r
- fT"vJW(y)(
*

Tre

u
)dT

-u
) d’T} due;;.

Taylor expansion leads to

< 1 S A VI
BRY(F £) = Sryp ZE{[ Wm(T)(m— 2 Vdue, }
(A18) )
+O(W)

The remainder term can be bounded by £%_,|L/n - 1/67*% - (3% ; — #})* - ¢,
which is o(1/(nb%*r*1)), as follows from (A17) and an apphcatlon of the
Cauchy-Schwarz inequality.

Similar to (A11) a more detailed analysis of 7); ; — 7 yields

3
(A19) ;l\';ki—%;kiYJ‘:A(fi’ fi,j)+ Z Rs(f;’ f;,j)'
s=1

Using the Cauchy-Schwarz inequality, A(17) and Lemma 1(d), it can easily be
checked that for s = 2, 3,

1 n

ri,j oz 1
a(f)by+ ) {f Wm(—bu‘)duRs(ﬂ’ﬁd)%}=O(W)-

The same relation can be deduced for s = 1, when additionally using that by
Lemma 1(a) sup, . ,|Ef"”; Fr+1(¢)] = O(1), and that by Lemma 1(c)

Esup| £979(t) — Ef0(8)[ = o((log n)* /(nb>*%)”%) = 0(1/07).
te f
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Recalling the independence of 7% . and ¢, ;, (A18) and (A19) thus imply

ri,j ij
- 0'~2 -1 n 1 S; TR o —u
* ' _ i J | rij
FR(f £) cumb%“EEiqﬁALHWy( )

Ak
% | i ¥ _
foHW ( | du| +o| —r |-

Based on (A17) and on the arguments of Appendix (A1) of Gasser and Miiller
(1984), it is easily seen that

1 n 1 s T u s; i u
e | e B w2

J=1

1 1 = —u oy
= anYHE{ (f)f W(y)( ; )W(m( ; )du}
a i — o0

1
ol )
The last relation can be inferred by using the arguments of Appendix (A1) of

Gasser and Miiller (1984). But according to the properties of W, W? is
symmetric at 0 if ¢ is even and it is antisymmetric if ¢ is odd. Hence,

N AN
f W(y)( ; )W(nr)( ; ) du =0

2

if 7% €lag+b,a;, — bl Since b - 0 and 7% € U; 5(7,;), we consequently
obtain

. 1
ER3(fi, f;) = O(W)’
which completes the proof of Theorem 1. O

PrOOF oF THEOREM 2. Similar as above, compactness of # implies the
existence of a compact subinterval ## J with T.(#) C _#. Let o, ==, — 1.
We will use some of the notation introduced in the proof of Theorem 1. In
particular, let A,y == u, + 1, U,(v), U,(t) (for some ¢ > 0) be defined as before.
Furthermore, let £, > 0 and &, > 0 be defined in such a way that for some
appropriate 6;,d; > 0 and 8,, d, > 0, (A9) holds, when replacing there T by
the structural e-functionals ¢, and ;. Let ¢, == ¢o(f;) and ¢y; = ¢4(f;). For
all v, w € #Z we have [v*(T,(v))| > 0 and sign(v*~(T.(v))) = sign(w*~(T (w))).
This is evident, since if for some v € % it holds v* (T (v)) = 0, for any small
e > 0 there has to exist a w € U,(v) € D, such that the segment [¢(w), ¥ (w)]
is not monotone. Arguments similar to that used at the beginning of the proof
of Theorem 1 now show that there are some &5, d > 0 such that for all v € #
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and each w € U, (v),
|w®(¢)| > d for all ¢ in the segment joining T,(v) and T.(w).

Set & = min{e, 5, £5). Let ¢, ¢F, T* be equivalent to ,, ¢,, T, on UL(f),
and set T*(v) = 7., v¥() = ¢F(f), w;“(v) yi(f;) for all v GE U.f). We
will abbreviate ¢g(f,), ¥ (f,), T*(f)), VECED, v, T*(f,) by
YEL R TR R ;"l, 7%. By construction, it f € U/ f,), it holds

FOat) = Fon () = p( 07 wi) = F(d5)

~(1 - )£ — Fer (1))

Furthermore, £ (y*) = fO %) + FOUENWE — §%)2/2, s = 0, 1, for some
suitable mean values ¢,;. The compactness of % implies

A

lTrz - Tri' = E

sup sup suplw®)| < .
veZ wel,w) tef

For any p there thus exist generic constants H, and H, such that
Y

Blt, = 7.l < A0 T P(sup| £90) = F(0)] > /(v + 1)

s=0 te

H -
+ —ﬂE(! fee) = feol

- P AL |2
> (| reonuzy = o+ mylus - iz ])
s=0
Combining (A10) with the results of Lemma 1, we thus obtain
(A20) E|4,; - 7, = O(max{b*, 1/Vnb> 7)),

Based on (A20), it is possible to derive the exact rates of convergence. With
z; = 1/f*(1}) a closer inspection of #,; — 7,, leads to

(A21) Tri — T =A; + Z R,

rt
g=1

where with p, =p, p, = (1 — p),

1
A=z, (fi“’f)(f;i = fe(m) = T py( £ —ﬁ“’f’(wé))),
s=0

1
R, =z Z ps[( f‘:i('u.r)((l/;ki) — ﬂ(#r)(w:i))( A;ki — (//;kl) + f"i(y)(§Si)( A;ki _ ;)2/2]
s=0
for some suitable mean values ¢,
Ry = 2 f0(e5) = R (5 = 72) = 2 f& (et = #)°/2

for some suitable mean values ¢*

ri»

Ry = (7,1, —Ai)l(fi & Us(fz))
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Using (A20), Lemma 1 and Theorem 1, an analysis of the above terms
immediately leads to the assertion of Theorem 2. O

PROOF OF THEOREM 3. Let « = b% + 1/(nb?*1). Relations (A10) and
(A20) imply that P(%,, = a) = o(n"2) for all r {1,...,00and i €(1,..., m}.
Furthermore, by (A11) and (A21) we obtain E(7,, — E7, X7, — E?,,) =
o(1/(nb?*1)) for r +# s, since flor(r,) — Ef{°’(z,,) and flo(r,;) - Ef©)(z,)
are independent for all b small enough. Using Assumption 2 and the results of
Theorems 1 and 2, some easy computations now immediately lead to asser-
tions (I) and (II) of the theorem.

To prove assertion (III), note that by Theorems 1 and 2, E7., € for all i
and r, if n is sufficiently large. For given i,k, i <k, let ?i’k;, = (E%,; +
E7,, + Lowinty  IGF, # a))/(2 + L,seinty I, # a)). Set T p =
(i k157 ) and 7% = (1/m)Z]L E?y,,...,(1/m)L " |E#,,). Using As-
sumption 2, Theorems 1 and 2 [together with relations (A10) and (A20)] and
the independence of %, from 7, (i, # i,), we obtain

cov(£i(2), 8u(1)) = cov(Ges, 5, (1), Ges, 5 (1))

1 !
+ ; Z UriGél,?;r)(t)G:rt,‘F;r)(t)
(A22) r=1
+UrkG(ﬂ‘<rk,‘F;r)(t)G(ﬂ:-zk,?;r)(t)
FGE L (DGE () (v, + u,,) +o(i +n-2)
(1, 7571) (Tp, T51) m ri rk m )
cov(Ge, 2 (2), Gz, 5, (1))
= E(Gg, 5, (1) - EGe, 5, 0(O) (G, o(1) = Gz, e (1))
(A23)
l 1 K
= GE*_ ()GF* . (t)— + (—+ *2),
El (‘rl,‘r,r)( ) (Tk,‘r,r)( )mzsg’kvrs) o m n

Combining (A22) and (A23) proves the desired result. O

Proor oF THEOREM 4. By the compactness of % we have con, =
SUP, ~0,1,2 SUP, & 5 SUP, « ;[v")(¢)] < . Now define an arbitrary continuous op-
erator asserting to each v € % a function : R — R such that Uly = v and such
that ¥ and its first two derivatives can be bounded by 2con,. By definition of
our kernel estimators, there is a con, <  such that If) — BEf@()| < con,
for all ¢t € R, every v = 0, 1,2, and all ;.

For ¢t € J, we obviously have

f.(81)) ~ fi(&:(0))

(A24) ) .
=1.(8.(2)) - 1i(&:i(t)) = Ay(¢) + Ayi(t) + R (1),
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where
A(t) = fi(gi(t)) - fi(ai(t)),
Agi(2) = ;;(gi(t)) - fvi(gi(t))’
R() = [*0(fils) = fits) ds

It is immediately verified that there exist some y, > a,, §, < a, such that
g.(J,) clyy, 8,1 cJ for all i, m. Lemma_1(a) thus yields an approximation to
the asymptotic bias of Ah(t) ¢t € J,. Analyzing EA,(t) can be based on a
Taylor expansion of f &) - f ( gl(t)) and on Theorem 3. It is then immedi-
ately seen that assertion (I) of the theorem holds if uniformly for all ¢ € J,,

(A25) ER,(t) = O(1/(nb®*1)) + o(b*).

Choose some vy,, 8, with y; >y, > a,, 8, <8, <a,, and let #:= [y,, 5,]. We
can infer from (A10), (A20) and Assumption 2 that P(3(J,) ¢ _#) = o(n"2).
Together with Lemma 1 and Theorems 1-3, it follows that in order to prove
(A25) it suffices to show that for all » € {1,..., 1},

By, [oO R W) dudxe,
(A26) S0 s, c Y

= 0(1/(nb>*1)),

uniformly for all ¢ € J,, where H, (¢) == Gf; .. () + A/m)GEE ., (2).

Recall the definitions of 7% at the beglnnmg of the proofs of Theorems 1
and 2. Note that the error in replacmg 7.; by 7% on the left-hand side of (A26)
is of the order o(l/(nbz"“))

Now, define f ; and 7 ; by (A15) and (A16). Since 7
we obtain that (A26) holds if and only if

; 1s independent of

lj’

n v 1 ; X —Uu
ER} (t) = ) E(fg‘(tHH”(tXT” T”)?/s W’( )du dxe;;
j=1

&g, , 5,1 c

H Ak s X — U
_/‘g,(t)+ AOGE =7, fj W’( )dudx .,
g.(t) c? s,

= 0(1/(nb**1)),

uniformly for all ¢ € J..
Let T. be a structural e-functional. Then ER}; might be analyzed
in the same way as ERZ(f,, f,) in the proof of Theorem 1 [note that
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1/(n®c®62%2) = 0(1 /(nb2“r*1))]. Since JW'(x) dx = 0, this leads to
H;, (t)o?
ne?b* la( f)

w () +H ()7 -7.)-u FE —
Xf W,(gz( ) lr( )(Trz Trz) )W(l"r)( Trzb u ) du
— o C

| ER7 (t)] =,E

1
+ O( nb2p,,+1 )
Htr(t)0i2
neb**la( f;)

r- 8t ~H (O -1) e
+ J—
b b

w 3
x[ W’(x)W‘”r)( x) dx

1
+ 0( Py

1
- of g )
Alternatively, if T, is a structural p-functional (A26) can be shown in a very
similar manner. Using (A17), the arguments used to prove (A20) yield E(5% —
75,07 = 0(1/(n?6?°* D)) A further analysis similar to that sketched above
lapply expansion (A21) instead of (A11)] then leads to the desired result.

For the proof of assertion (II) note that R (8 =( fi’(fi(t)) - f;(gi(t)))
() — g,(1)) for some suitable mean value function &(#). It holds P(&(t) ¢
&) = o(n"?). Additionally, using Lemmas 1(a) and 1(c), our assumptions on ¢
imply that Elf’(fi(t)) — ;&) = o(1) for any p. By Lemma 1(b) and Theo-
rem 3, appropriate Taylor expansions and the Cauchy-Schwarz inequality
thus lead to

1
cov(R,(1), Ay, + Ay(t) + R,(t)) = O(b2k + b2+ 1 )’

uniformly for all ¢ € J,. Using Lemma 1 and Theorem 3 to analyze var(A,(¢))
and var(A,,(¢)), it is easily seen that assertion (b) holds, given that

[J cov( Ay, (2), Ay(t)) dt = O(W:HT).

To prove this, it suffices to derive that for all r {1,...,1},

C

I, (éff’ W ) &) H (1) de(f,, ~ B2
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Using (A11) and (A21), some easy computations show that (A27) is fulfilled if

gl() 1
5% % )dx "5'2'51_1)’

with ¢, = 7,; for structural e-functionals, and with either ¢,; = 7,;, £,; = ¥,,,
&, = ¢y; for structural p-functionals. Relation (A28) is evident for o, > 0. If
0, = 0, it can easily be verified when noting that ¢/b = O(1) and W (3}, -
x)/b + (c¢/b)x) = 0 if |#% — x| > b(1 + ¢/b).

It remains to prove assertion (III). Recall our assumptions on G. For ¢ € J_,
T, 7% € #, and x,x* € H,

(A28) [‘ boﬂf W(x )W<0>( dt—o(

. !
( (r* x*)(t)) = fi(GT,x(t)) + ﬁl(G(T,x)(t)) Z ( (r,x; r)(t)(T;k -7,.)
(A29) R
G**x r)(t)(x xr)) + Vf'L,'r,r*,x,x*(t)>

where for some @, @,, @3 < » the remainder term can be bounded by

- Bi ()| B(2)])

Vf,,-r,-r*,x,x* < QI(
te

x (llr = 7*lz + e = x*ll5) + Qu(llr — 7*I13 + llx — x*113)

+Q3( ( (r* x*)(J) ¢/) +I(G(T x)(J) ¢f))

Let i # k. Recall Lemmas 1(a) and 1(c) and the independence of f;,#, from
f4» %5, Bounding differences by (A29),

cov( £i(2:(0)). Fu(8x())) = cov( fi(Ger, (D)), Fi(Gsp (1))
might now be analyzed in a way similar to (A22) and (A23). This yields

J, eov(7(&0). &)
- E}f [ (F(a) - EF(6.(00)) - i &n(D) G (1) (5, ~ B,
+ ErZ; [, (Filex(®)
~BF8(1)) - £ (&) G (1) (o — E)

1
" ;/:]Efi,(gi(t))fl«/:(gk(t))cik(f) dt

+o((b% + 1/(nb**1))/m) + o(n=?).
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Compared to the expressions obtained in the proof of Theorem 3, the first two
terms on the right-hand side are additionally induced by the randomness of
fi, fr (with respect to ¢;;). Arguments analogous to those used to deduce (A27)
show that they can be bounded by o(1 /(mnb2°*1)). This completes the proof of
the theorem. O
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