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VINCENTIZATION REVISITED

By CHRISTIAN GENEST

Université Laval

Vincentization is a convenient method of aggregating a set of n > 2
probability distributions Fy,..., F, in such a way that their synthesis,
F=T(F,,...,F,), be of the same functional form as the F;’s when the
latter are identical up to a location-scale transformation. A characterization
of this combination rule is proposed and some of its consequences are
outlined.

1. Introduction. Vincentization was originally conceived as a method for
combining sets of independent repeated measurements made on individual
subjects into a synthetic probability distribution F based on a small number of
observations per subject cell. The procedure, which was described by Ratcliff
(1979), is named after biologist S. B. Vincent (1912), who used something very
similar to it for constructing learning curves at the beginning of this century.
It basically consists of averaging n > 2 subjects’ estimated or elicited quantile
functions in order to define group quantiles from which F can be constructed.
To cast it in its greatest generality, let F,,..., F, represent arbitrary (em-
pirical or theoretical) distribution functions and define their corresponding
quantile functions by

F/l(a) = inflt € #: F(t) 2a}, 0<ax<l.

The Vincent average of the F;’s is then computed as

(1.1) Fla)=Y wFY(a), 0<acx<l,

i=1
where wy,...,w, are arbitrarily chosen nonnegative numbers summing up
to 1.

This combination rule is an instance of what is known in the literature as a
pooling operator, that is, a mapping T which extracts a synthetic distribution
F=T(F,...,F,) from any set of probability measures, expressed here as
cumulative distribution functions on %, the real line. A distinctive and
appealing feature of Vincent’s procedure over other aggregation formulae
surveyed by French (1985) and Genest and Zidek (1986) is its compliance with
the following axiom.

SHAPE-PRESERVATION PROPERTY. A pooling operator T is said to be shape-
preserving if cumulative distribution functions Fi,..., F, belonging to the
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same location-scale family are always merged by T into a synthetic probability
distribution, F = T'(F,, ..., F,), of the same functional form as the F.’s. More
precisely, one must have

T(F,...,F,) (a)=u*+0*L™Y(a), O0<acx<l,

for some u* € #Z and o* > 0 whenever there exist a cumulative distribution
function L and sets of parameters u; € # and o; > 9 such that, for all
l1<i<n,

F Y (a)=p,+0,L (a), O0<ax<l.

The theoretical interest and practical value of shape-preserving pooling
operators is manifest; their use may also be critical in certain kinds of
applications. In experimental psychology, for example, researchers who have
collected a relatively small number of observations on reaction time from a few
subjects often wish to combine the data so as to test their hypotheses on a
larger sample size. Unfortunately, if raw reaction times from various subjects
were simply pooled, the resulting distribution would not necessarily reflect the
shape of the individual ones. Similar difficulties might arise if classical aggre-
gation rules, such as the linear or the logarithmic opinion pool discussed by
French (1985) and Genest and Zidek (1986), were used to merge the subjects’
personal reaction time distributions. It is well known, for instance, that a
weighted arithmetic mean of Cauchy or logistic densities will not itself be
Cauchy or logistic unless all but one of the weights are equal to zero. A similar
comment applies to the weighted geometric averaging procedure, although it
has been reported by Gilardoni (1989) to inherit the structure of density
functions belonging to the same exponential family. In contrast, shape-preserv-
ing pooling operators are designed to yield synthetic distributions that retain
information about the functional form of their constituents when the latter
are identical up to a location-scale transformation. In this manner, it is thus
possible to apply meaningfully, and with the increased power provided by the
accumulation of observations, tests of change in, say, the location, scale or
skewness of a reaction time distribution under various experimental condi-
tions. These points, as well as a number of practical considerations surround-
ing the implementation of Vincentization, are covered by Thomas and Ross
(1980).

The purpose of the present note is to suggest a characterization of Vincent’s
method within the class of shape-preserving pooling operators. It will be
shown, in Section 2, that up to a scale factor o > 0, formulae displayed in (1.1)
are the only ones which possess that property among those that can be
expressed in the form

(1.2) F-Ya) = H{F{Y(a),..., F; ()}, 0<ax<l,

for some arbitrary function H: %" — . This regularity condition is akin to
the locality assumption of Genest (1984a) and the strong setwise function
property of McConway (1981), interpreted by Wagner (1982) as an indepen-
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dence of irrelevant alternatives hypothesis. Its meaning will be briefly exam-
ined in Section 3, along with the implications of a somewhat weaker version of
(1.2) wherein the function H itself could vary with a.

2. Characterization. The folfowing result provides a characterization of
Vincent’s averaging procedure, up to a multiplicative factor.

PropPOSITION 2.1. Let A be the class of cumulative distribution functions on
# and let T: A" - A be a shape-preserving pooling operator. If there exists a
mapping H: " — R# such that

T(F,...,F,) (a) = H{F{ Y(a),...,F; (a)}, O0<a<l,

is a quantile function for all F., ..., F, in A, then there must also exist a scalar
o > 0 and nonnegative numbers w,...,w, adding up to 1 for which the
identity :
n
(2.1) T(Fy,...,F,) (a) =0 ¥ w;FY(a)
i=1

holds true for all F,,...,F, € Aand all 0 < a < 1.

Proor. Let L denote a continuous, strictly increasing cumulative distribu-
tion function on & and consider quantile functions defined for 1 <i < n by

F Y(a) =u; + oL Y(a), O<ac<l,

with arbitrary location and scale parameters u; € # and o; > 0, respectively.
Under the hypotheses of the proposition, one must have

(2.2) H{p,+o L Xa),...,p, +0,L7(a)} =p*+0*L"(a),0 <a <1,

for some u* € # and o* > 0 whose values may depend on the choice of the

w;’s and the o;’s but not on the value of L~'(a). When the latter vanishes, it is

found that u* = H(u,,..., u,); likewise, setting L~ (a) = 1 yields
o*=H(py+ 0, ..., +0,) —H(pg,y.oo pp).

Substituting in (2.2) and switching to vector notation for convenience, it can
be seen at once that

H(p + o) = H(p) + M{H(p + o) — H(p)},

where A = L™ 1(a) varies freely in # and, by convention, addition is per-
formed componentwise. Setting A =1/2 and v = u + o, it follows that H
satisfies Jensen’s functional equation on a restricted domain, namely,

{H(u) + H(v)}/2 = H{(n + v)/2},

with u,v € #" and v; > u;, 1 <i < n. In view of Theorem 1 in Radé and
Baker (1987), it is then plain that H obeys Cauchy’s functional equation

H(p) +H(v) =H(p +v), w,v € 2",
on its entire domain. Furthermore, H must be nondecreasing in each of its



1140 C. GENEST

coordinates, since F~Y(a) = H{F{ Y(a),..., F; (a)} is required to be a quantile
function for all choices of Fy,..., F,. This allows one to conclude that

n
H(pyson s p) = oY win,
i=1
for some o > 0 and a collection of nonnegative weights wj, ..., w, satisfying
E?,lwi = 1. O

It should be observed that the above result is in fact stronger than stated.
Indeed, looking at the proof of Proposition 2.1, Vincent’s averaging procedure
is seen to obtain, up to a scale factor o > 0, as soon as the pooling operator
considered is taken to be local in the sense of (1.2) and shape-preserving for a
single location-scale family with continuous, strictly increasing cumulative
distribution function L. However, in circumstances such as described by
Ratcliff (1979), where the synthetic probability distribution should be thought
of as representing the behavior of an average subject, the presence of the
multiplicative factor o in formula (2.1) might be perceived as undesirable. The
situation can then be remedied easily enough, by imposing an additional
assumption on the average quantile function. One could demand, for example,
that the inequality

min{F; Y(a),..., F; (@)} < F7'(a) < max{Fy '(a),..., F, Y(a)}

be checked for all 0 < @ < 1, which is a basic expectation on any notion of a
mean. Alternatively, one could require a form of wunanimity preservation,
namely,

FiY(a)= -+ =FY(a) =t=F(a) =t.

3. Extension and discussion. It is clear that a characterization of
Vincent’s averaging procedure could not be achieved without some kind of
regularity condition such as (1.2). For, the shape-preservation property formu-
lated in the introduction does not restrict the behavior of an abstract pooling
operator beyond location-scale families. Naturally, the regularity condition
used here is verified by many combination rules besides (1.1), including the
generalized Vincentizing method of Thomas and Ross (1980), in which

Fl(a)=9¢! g:lwi¢{ﬂ_1(a)}], 0<acx<l,

for some strictly monotone, continuous mapping ¢. In that sense, assumption
(1.2) is much weaker than the locality conditions of the kind used, inter alia,
by McConway (1981), Wagner (1982) and Genest (1984a). In the latter paper,
for instance, it had been noted that a combination rule T essentially reduced
to a linear opinion pool, namely,

n

T(fi,--sf2) = L w;f;, wu-ae.,

i=1
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if a measurable function h: #Z" —» £ could be found such that

T(fi- s £,)(0) = R{£i(0),..., f.(8)), m-ae.

for all f,,..., f, and T(f,..., f,), density functions with respect to some
dominating measure u on an abstract space (0, #).

What Vincentization shares with other pooling recipes satisfying condition
(1.2) is the assumption that all group quantiles should be computed in the
same way, that is, from the values of the F."'(a)’s alone, irrespective of the
identity of 0 < @ < 1 itself. This, of course, is a very strong requirement. For,
in addition to the fact that individual probability distributions may be based on
varying amounts of knowledge and/or data, it is generally admitted that
certain quantiles are more difficult to assess than others. While the former is
recognized by Vincent’s procedure through the introduction of weights w;, the
latter is not. In an attempt to escape this limitation, one might consider
relaxing condition (1.2) by assuming that

FY(a) = H{F{Ya),...,F; (@)}, 0<acxl,

for some family H, of functions from %" to Z. The introduction of such
quantile dependent aggregation rules is much in the spirit of the weak setwise
function property of McConway (1981), also considered by Aczél, Ng and
Wagner (1984) and Genest (1984b). Unfortunately, a direct application of the
shape-preservation property with different choices of L readily implies that
H,=Hj for all 0 < e, B < 1, so that Vincent averages are again found to be
the only shape-preserving pooling operators of this sort. In particular, any
recourse to quantile dependent weights w;(a), to account for biases in the
estimation of extreme quantiles, is strictly ruled out. Consequently, if the
elicitation or estimation of latent quantiles is suspected to suffer biases,
the subjects’ individual distributions should most certainly be corrected before
a Vincentized average is computed. In such cases, some might prefer to
abandon all axiomatic considerations based on shape-preservation or any other
requirement and resolve to develop a full Bayesian model, perhaps along the
lines sketched by Good (1979) or West (1988).
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