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FROM THE SPECIES PROBLEM TO A GENERAL COVERAGE
PROBLEM VIA A NEW INTERPRETATION

By SHaw-Hwa Lo
Columbia University and Harvard University

A basic interpretation is given which provides a new way of under-
standing the structure of the species problem and which leads to the
popular Turing-Good-Robbins estimator. Through this interpretation we
provide an explanation why the Turing—Good-Robbins estimators are
always biased. An iterative procedure is suggested and applied to these
estimators, which leads to new estimators whose biases are reduced. Using
this basic construction we are able to generalize our discussion to a much
broader class of coverage problems with the species problem as a special
case. Three examples are studied in detail: the species problem, the prob-
lem of estimating the volume of a convex set and the missile-coverage
problem. Furthermore, we derive general (new) estimators and study their
properties by applying the interpretation to the framework of the general
coverage problem. It is pointed out that, as in species problem, the general
estimators derived from the interpretation are usually biased, we then
apply our construction together with the iterative procedure to the previous
three examples to produce new estimators whose biases are reduced.
Finally, we extend our construction to the conditional cases.

1. Introduction. The problem of estimating the total probability of un-
seen species goes back at least to A. M. Turing according to Good (1953). To
describe the problem comprehensively, we use the notation of Robbins (1956,
1968). Let e;,e,,... be the possible distinct species with probabilities
D1, P, - - -, Of being selected in a single trial. In n independent trials suppose
that n, species appear r times, r = 1,2,... and so L5_,rn, = n. We also use
n, to denote the number of species which are not present in the sample. It is
clear that n,, n,,... are observable but n, is not. In fact n is infinite if there
are infinitely many species. Let X; =j if and only if the ith trial results in
outcome e;. For r > 0, let ¢;(r; n) = 1 if the number of species e; appearing in
the sample is r and 0 otherwise. The sum of the probabilities of all species that
are each represented r times in the sample is C, = £5_,p;¢,(r; n). It is clear
that C, is a random quantity. To estimate C,, Turing and Good [see Good
(1953)] suggested the formula

(1.1) g-’-_?_n_’i_l

Using a uniform prior, Good (1953) gave a derivation of these estimators
from a Bayesian point of view. Since then several interpretations of these
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estimators have appeared in the literature. These include Robbins (1956, 1968)
and Diaconis and Stein (1983) among others. It should be noted that Robbins
(1968) constructed an unbiased estimator for C, which is very similar to (1.1).
Here an estimator is called unbiased for estimating a random variable if
E(estimate) = E(random variable). The problem continues to attract the at-
tention of many researchers. To name a few: Starr (1979), Clayton and Frees
(1987), Esty (1986), Bickel and Yahav (1986), Cohen and Sackrowitz (1990)
and Banerjee and Sinha (1985). As an important application, the species
problem is currently of great interest to researchers in automated speech
identification [Bahl, Jelinek and Mercer (1983), Jelinek (1976) and Katz (1987)
among others].

The objective here is to introduce a basic derivation of these estimators
which leads to interesting applications other than the species problem. We
consider the estimation of a random quantity 6,(£,) which can be expressed in
the form E{(H,(¢,; X,,)I¢,), where ¢, = ¢,(X,,...,X,) is the observed
sample, X,,, is an additional independent observation and H,(¢,; x)
is a real-valued function of ¢, and x, typically an indicator function. When
H, is an indicator function, we can interpret 6,(¢,) as the conditional proba-
bility of some event regarding X,,, given the sample ¢,. In the species
example, C, =0,(¢,) = E{I(X,,, € S,(r)I¢,} = P(X,,, € S, (¢}, where
H,(¢,;2) =I(x € S, (r)) and S,(r) = {j; y,(r; n) = 1}—a function of the ob-
served sample &,.

The key idea of this approach is to create information about the unknown
random quantity 6,(¢£,) by deleting one observation from the sample at a time
and comparing the deleted observation with the remaining n — 1 observations.
The deletion method of constructing estimators can be made precise as follows:
Let £, ; be the sample with the jth observation deleted. An estimator of

0,_ 1(§n J) that is conditionally unbiased given &, ;, is H,_,(¢, ;; X;); call this
Ty ; The final estimator is defined to be T** = avg(Tn*_ L) =
a /n)): ;T_1 ;. Since the final estimator directly estimates a probabilistic
phenomenon 1nvolving n — 1 observations, it will be named (n — 1)-estimator
hereafter.

If we apply this method to the question of estimating C, in the species
example, we end up with

(1.2) T* , = I(X,€8,_, ()
and
(1.3) T** — avg(T¥, ;) = Q—Jr—?—nii

exactly the formula suggested by Turing and Good [Good (1953)], where
S,_1,/(r)={i;¢;}(r;n —1) =1} and ¢;; =1 if and only if i appear ex-
actly r times in the ,jth deleted sample ¢, ;. Note that the rela-
tion I(X;€S,_, (r)=1iff X;€S,(r+1) is used in deriving (1.3). By
taking expectations, we obtain EC, = P{X,., € S(r)} and E(T**) =
E(r+Dn,.,/n)=PX,€S,_(r)
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Although the quantity to be estimated 6,(¢,,) is random, it is still reasonable
to evaluate an estimation T,(¢,) by mean square error of the estimator
averaged over the sampling distribution of E; that is, E(T(E) — 6,(F))?,
where = denotes the random variable correspondmg to the sample ¢,. As
usual, the mean-square error can be broken into variance and squared bias,
where now bias is defined to be E[T, — 6, ]. From this viewpoint the estimator
T, ; is an unbiased estimate of E(I(X €8, (r)I¢,_, ;) and T** is an
unbiased estimate of avg(E(I(X; € S, _,, J(r)|§,, L)), a probablhstlc state-
ment based on n — 1 observatlons As an estimator of C,, T** is biased. This
bias is slight [O(n ~1); see Section 3.1 for details] because C, changes little as n
changes. In Section 3 we shall show how to reduce the bias which could be
substantial in other problems for which this approach applies.

In Section 2 we shall introduce a general coverage problem and show how to
apply the deletion method to this problem. A key issue is the bias of the
estimator, as it is clear that the (n — 1)-estimator is biased for 6,(¢,); instead,
it unbiasedly estimates 6 (¢,) = avg(6,_,(¢, ;). The deletion construction
will not be useful unless the bias E(6,(E,) — 6X(E,)) is small. In Section 2 it
is shown how to evaluate the magnitude of this bias; it will be shown in
Section 3 how bias corrected versions of the (n — 1)-estimators can be con-
structed.

Section 3 presents three special examples. The first example is a further
discussion of the species problem. The second example concerns the problem of
estimating the volume of an arbitrary convex set V in the Euclidean space R*.
The data in this problem consists of n independent random observations
X, ..., X, uniformly distributed over V. By applying our construction to this
problem, we obtain our estimator which is the volume of V,, the convex hull
formed by the n points, multiplied (enlarged) by a factor n(n — # of vertices
of V)7 ! [see (8.2.2)]. Figure 1 shows a case when n =25, k = 2. (The
connection between the interpretation and the problem of estimating the
volume of a convex polyhedron was pointed to me by Diaconis in a conversa-

-

Fic. 1. k=2, n =25 P(Xyq & Vy5|Vys) is estimated by (9/25), where 9 is the number of
vertices of V,5. The volume of V is estimated by (25 /16)vol(Vy5).
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tion.) In the special case when k = 2, our estimator together with a recent
result due to Groeneboom (1988) leads to interesting large sample results
(Theorem 3.1). The last example deals with the following missile problem:
Suppose n missiles are delivered and landing at a certain target area which is
usually larger than the effective area caused by the explosion of a single
missile. The typical questions we are interested in are: (i) if the (n + 1)th
missile is fired, what is the chance that this additional missile would involve an
area which was not previously covered? (ii) How large is the newly covered
area? (iii) How many more missiles are needed to cover 90% of the target area?

Section 4 returns to the species problem. The issue of concern here is to
estimate a conditional parameter associated with the observations, such as the
mean or median of those values associated with the unobserved species. The
principles involved for a more general situation (other than the species prob-
lem) are also outlined.

2. A general coverage problem. In this section we shall introduce a
framework where a general coverage problem can be defined. Let (Q, &, P) be
a certain probability space, where () denotes a collection of a certain subset of
a fixed set A in R*, k>1, & and P are an appropriate o-field and a
probability measure defined on %, respectively. Let X,,..., X, be n iid
random elements defined on the usual product space (", %", P") such that
each X; is the jth coordinate variable; that is, X, (wy,...,w,) = w; for all
1<y < n, where (w,,...,,) € Q". Typical sample outcomes of Xl, X,
are n subsets of A. Let g be a measurable function from Q to R*. Some of the
problems we are interested in are: Given a specified subset S, = S,(£,) of A,
where ¢, = £,X,) denotes the observed data and X, = (Xl,..., X,), esti-
mate, for a new independent observation X, ,,, (i) the probability that
g(X,.) €8, given S,. Furthermore, if all elements in () are Lebesgue-mea-
surable, we are interested in estimating (ii) the expected volume of S, N X, ,,
given S, and (iii) the expected volume of S, ,; N S, given S,,.

The key idea can best be described as a one-step backward procedure as
follows. Let X; be removed from the observed sample £, and let ¢, ; denote
this sample. Let S,_, ; = S(§, ;) be the specified subset of A based on this
Jth deleted sample &, ;. Let

1, ifg(X;)eS
0, otherwise.

n—1,j»

I(g(X;) €8,1,,) = {

Instead of estimating the probability P(g(X,.,) € S,I|S,) in (i), the (n — 1)-
estimator estimates avg[ P(g(X;) € S,_, ;IS,_y ;)] unblasedly The construc-
tion can be described as follows: Smce the probablhty that g(X;) € S,_, ; can
be estimated unbiasedly by I(g(X;) €S, _, ;), our final (n — 1) estimator is
thus n7'E7_, I(g(X;)) €S, _; ;).

L1kew1se in (i) and (m) the (n — 1)-estimators are n~'L%_vol[S,_, ; N
X;]and n -1y 7_wollS,_; ;N S,], respectively.
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If S, = S,(£,) does not depend on X, it is easy to see that our construction
will lead to a naive estimator which is the function of the empirical measure.

As estimators of (i), (i) and (iii), these (n — 1)-estimators are all biased. In
many applications the biases are slight because (i), (ii) and (ii) changes little as
n increases. However, in the géneral framework, this property is not automati-
cally guaranteed. As a result, just how well these (n — 1)-estimators estimate
(), (ii) and (iii) depends upon the forms of S, and S, _,. Let X be randomly
selected from (Q, &, P) with Evol(X)? < ». Let g be a measurable function
from (Q, &, P) to R* such that g(w) € w for all @ € Q. We use A(A, B) to
denote the set (A \ B) U (B \ A), the symmetric difference of sets A and B.
Notice this the notations S, = S, (¢,(X,)) = S(X,,) are used throughout the
paper. The following proposition tells us that the bias of using (n — 1)-
estimates to estimate (i), (ii) and (iii) depends on the closeness of S,_; to S,,.
Since the proof of this proposition is elementary, we state it without proof.

ProposITION 2.1. Suppose that X is independent of
S,_1=8(X,,X,,...,X,_4),S, and S, ,=S(X,X,,....X,,X,.1),
and set
P{XNA(S,,S,.1) #2}=6,20 foralln>1.

Then

(1) |P{g(X,.1) €8,} — Plg(X,) €8,_1}| <35,
and

(2) E(vol[S, N X, ,,]) — E(vol[S,_; N X,]) = 0(61/2)

If we further assume vol(A) < «, where A is a fixed set in R* described in the
beginning of this section, then (2) becomes

(2) E(vol[S, N X,,,]) - E(vol[S,_, N X,]) = O(5,).

To calculate the biases, we pretend that the additional observation X, is
taken. The (n)-estimates obtained by applying (i), (ii) and (iii) to the (n + 1)
observations should be unbiased. The biases of (n — 1)-estimates can be
evaluated by comparing these (n — 1)-estimates with (7 )-estimates. For exam-
ple, as in (i), the bias of (n — 1)-estimate is
n+1

(21) E % Z:L: I(g(Xj) €8,_1,;) (g(Xj) €8,,;){

where S, S(X,,+1J)anan+lj (X, X2, . XJ 1 Xjreo Xoy X0,
the Jth-deleted sample of size n. The bias term (2 1) can be calculated once the
knowledge of relationship between S,_; and S, is given and this is possible
only if the nature of the problems is specifically given. In this case, as we shall
see in the next section, some bias-reduced estimators are always available.
The key idea of construction these estimators is to create (n)-estimates
pretending the additional observation X, ,, is taken. These (n)-estimates are
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not real since their forms depend on the unobservable X, ,; and the relation-
ship between S, and S, ,,. However, we can replace the quantities involving
X, .1 by their conditional expectations given the data (notice that, at this
stage, the relationship between S, and S, ,; is needed in calculating the
expected value of those quantitié€s); since underlying distribution depends on
unknown parameters, we will plug in our (n — 1)-estimate obtained via the
interpretation. The resulting estimators are usually bias-reduced as we shall
see in Section 3.

REMARK 1. It is clear that one can produce new estimators by repeatedly
applying this procedure to the current estimators recursively. The biases of
new estimator are usually further reduced and the typical order of the biases
after the kth iteration is O(n~*+D),

REMARK 2. In general, there is no guarantee that the mean square errors
of these new estimators will be smaller than that of the ones before the
iteration. The issue of MSE is certainly important and deserves further
investigation. However, Example 3.1 below shows that the MSE of the new
estimator is indeed smaller than that of the (n — 1)-estimate.

REMARK 3. The idea of this recursive procedure has similar flavor to the
EM algorithm [see Dempster, Laird and Rubin (1977)] and to the concept of
self-consistency due to Efron (1967). The major difference between our proce-
dure and the EM is that the M-step of the EM is replaced by our backward
procedure of constructing the required estimator here.

3. Examples.

3.1. Species problems. In this section we shall continue our discussion of
species problems introduced in Section 1. Let A denote the set of all positive
integers. Let Q = A, &= 2% and P{X =i} = p, for i € A. The collection of
unseen species can be expressed as S, = S(X,,...,X,) =1{j;j ¢
{X,,...,X,}} c A. Let g be the identity map from A to Q, that is, g(i) = i.
The problem of estimating the total probability of unseen species is thus
equivalent to estimating the probability of g(X,.,) € S, given S,. More
precisely, C, = P{g(X,,,,) € S,I|S,}. According to the previous section, the
(n — 1)-estimates of C, and C, are n,/n and

(r + l)nr+1

1 n
(8.1.1) n EII(XJ €8,.1,,(r)) = —

where S, _; (r) = {i;; X}, ;Ix(@) =r, i € A}).

THE BIASES OF (n — 1)-ESTIMATES. From (2.1) and (8.1.1), the bias of the
(n — 1)-estimate in estimating P{X,., € S,|S,} is E{(n,/n) — (n, + 8)/
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(n + 1)}, where
1, ifX, ,¢{X,...,X,},
8= 0, if X, ,, occurred at least twice among { X, ..., X},
-1, if X,,, occurred once among {X;, ..., X,}.

It follows trivially that |bias of (n — 1)-estimate| < 2/(n + 1) = O(1/n). The
knowledge between the relationship of S,_; to X, enables us to construct a
better estimate of which the bias is of order O(n~2) in contrast with the order
of O(n~1!) provided by the previous (n — 1)-estimate. The construction can be
described heuristically as follows.

Let n, denote the number of species appearing once in the sample
{X,, X,,...,X,, X,, ). Since n/; is not observed, we will fill in its expected
value given the data; since this distribution depends on unknown parameters,
we will plug in our (n — 1)-estimate. Let 7', denote this estimate which is
defined by

. n
Ay =n, + 1, with probability 71

a . - ny  2n,
f'y = ny, with probability |1 — — )

o . ey 2N
'y = n, — 1, with probability -

The expected value of 7', given (n,, n,,...) is E(#l(n,n,,...,)) =n,; +
n,;n~! — 2n,n~1. The final estimate of estimating the total probability of
unseen species in the sample is (n + 1) E(#l(n,,...,) =(n + D) Yn, +
nn~' — 2n,n"1). The fact that the bias of this estimate is of order O(n~2)
can be seen by noticing that

1 2n, n; 2n, n 2n,

n
3.1.2 E__'———a =E__ — + ,
( ) (n n ) (n n n+1 n+1

where n', is the number of species appearing twice among {X;, X,,...,
X,, X, 1) It is clear that |n, — n')| < 1 and |2n, — 2n/,| < 2 with probability
1. It follows from (3.1.2) that the absolute bias of the final estimate is bounded
by (8/n(n + 1)), which is of order (n~2).

One can mimic the above idea to find an estimator which has smaller bias
than that of (3.1.1) in estimating C,. The bias-reduced estimator is
[(r+Dn,,;+(+ X+ Dn,,.;, —(+2n,,.)n"n+ 1", which has
smaller bias.

3.2. Estimating the volume of a convex set in R*. The problem of estimat-
ing the volume of a certain convex set can be described as follows: Let V
denote a certain unknown convex set with finite volume in R*. The data in
this problem consists of independent random samples Xj,..., X, uniformly
distributed over V. The first question we want to ask is: Having observed
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X,,..., X,, how do we estimate vol(V)? The joint likelihood of Xj,..., X, is

1 " n
7| T

Lik(X,,..., X,IV) = [
(3.2.1) C

1 n

[vol(V) ] IV, V),
where V, = V(X,,..., X,) is the convex hull formed by {X,,..., X,}.

It is easy to see from (3.2.1) that V,, the convex hull formed by {X|, ..., X},
is a sufficient statistic of vol(V') according to Neyman’s factorization theorem.
This suggests that a reasonable estimate of vol(V') should be a function of V,,
the sufficient statistic of vol(V). To construct an estimate of vol(V'), we first
consider the problem of estimating the conditional probability P(X, ., €
V,IV,). Let O =V = A and let & be the usual Borel field on V. Let P be the
probability measure uniformly distributed over V. Define g(w) = w, the iden-
tity map from V to V. If we define S, = S(X;,..., X,) = V(X,,..., X,), the
(n — 1)-estimate of P(X,,,, € V,[V))is n7'L?_I(X; € V,_, ;), where V,_, ;
is the convex hull formed by the jth-deleted sample. Since ‘

1 vol(V,
P(Xn+leVn|Vn)=/V(vol(V)) L /Y

vol(V)’
it follows that the (n — 1)-estimate of vol(V) is

—_— 12
(3.2.2) vol,_(V) = vol(Vn)[; Y I(X; e Vn_l,j)],
j=1
and the (n — 1)-estimate of P(X,, , € V,|V,)is
1 # of vertices of V,
(3.2.3) - Y [1-I(X;eV,_,;)] = .
n iy n

Let vtx(U) denote the set of vertices of a convex polyhedron U in R*.
Applying the similar idea of Section 3.1 to the current situation, we end up
with a bias-reduced estimate [of P(X,,, & V,|V,)]

#{vtx(V,)} + (1/n) L2, [#{vtx(V,)} — #{vtx(V,_, ;)}]
n+1

where #{vtx(U)} = number of vtx(U) for a convex polyhedron U. The bias-

reduced estimates of P(X,,; € V,|V,) and vol(V) are thus

#{vtx(V,)} + (1/n) T3 [#{vtx(V,)} — #{tx(V,_1,,)}]
n+1

(3.2.4)

I

(325) 1- ,
and

#x(V,)) + (1/n)E 0 [#{vx(V,)) — #{vtx(V,_; )}] }'1

(3.2.6) vol(V,,){l— i
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It is not difficult to check that the biases of estimates (8.2.4) and (3.2.6) are
of smaller order [O(n~2), in fact] than those of (n — 1)-estimates provided by
(3.2.3) and (3.2.2). Since the arguments to verify this fact are very similar to
those given in Section 3.1, we omit it. The problem of estimating the volume of
newly covered area if an additional observation X, ,, is taken can thus be
estimated by the (n — 1)-estimate n™'L%_, vol[V, \V,_, ;] = (vol(A,)/n)
(say), where vol(A,) = £%_; vollV, \'V,_, ;1. A bias-reduced estimate, using
the similar idea again, can be expressed as

vol(A,) + (1/r)E"_[vol(A,) — vol(A,_ 1Jﬂ
n+1

where vol(A,,_; ) =X, ;vollV,_; i \V,_, ;] and V.—2, ;> the convex hull
formed by {X,}, w1th X, X; deleted

(3.2.7)

ExampLE 3.1. Suppose X,,..., X, are iid from U(6,,6,), with unknown
parameter 0, and 6,. The volume (length, in fact) of the current convex
set is 6, — 0,. Let X,y < -+ <X, be the ordered values of {X,}' ;. It
follows from previous discussion that the (n — 1)-estimate of P(X,,, €
Xy Xl Xay X)) is

n—2

(3.2.8) —ZKXEVIJ—

In fact, from (i) of Section 2 this (n — 1)-estimate is an unblased estimate of
P(X, € (X, X,_1) based on n — 1 observations {X;}?_;'. The bias-reduced
estimates of P(X,,; € (X, X, )I(X,), X,,) and 8, — 01 are [from (3.2.5)
and (3.2.6)] thus

2 n-—1 n+1
and (X(n)_X(l))n —1

n+1 n+1

and both become unbiased.
If an additional observation X, ,; is taken, the length of newly covered area
can be estimated by the (n — 1)-estimate: [, = [(X )~ Xin-1y) t (Xg) —
X))l/n. A bias-reduced estimate is

. 2
ln=1,~ m{[x(n—l) = Xin-n) + X~ Xp)]}-

In this example, one can show that the bias-reduced estimator is indeed a
better estimator. This can be seen, for example, from the fact that the MSE of
the (n — 1)-estimator in (3.2.8) can be expressed as

4
n¥(n + 1)%’

n—1 ?
E n+1 B P{Xn+1 € (X(l)’ X(n))l(X(I)’ X(,,))} +

which shows that the net gain of the bias-reduced estimator is (4,/n%(n + 1)2),
in terms of MSE. Simple calculations show that the MSE of the bias-reduced
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estimator is
2(n—-1)
(n+1D*(n+2)

The relative decrease (gain) in MSE is thus 4[n%*(n + 1)21"!/[2(n — 1)
(n+ 1) %n+ 271+ 4n%(n + 1)%] ~ (2/n?).

It is heuristically clear that the volume of V,, would tend to the volume of V
as n goes to infinity. It is desired to find the rate (and distribution, if possible)
of how fast the volume of V, tends to that of V as n becomes large. In R? we
can go further in this problem and derive the limiting distributions of our
(n — 1)-estimators. Let N, be the number of vertices of V,. If V is a convex
polygon in R? with r edges, it was shown in Proposition 1 of Rényi and
Sulanke (1963) that .

(3.2.9) EN, = 2r(logn + C) + D + o(1),

where C is Euler constant and D is another constant depending on V. It was
also shown in the same paper that EN, ~ n'/3 if V has a smooth boundary in
R2. Since then much work has been done in this direction: Efron (1965),
Geffroy (1959, 1961), Raynaud (1970), Eddy and Gale (1981), Buchta (1984)
and Schneider (1987) among others. When V is a unit disk, Efron (1965) gave
an exact formula for EN,,, from which an asymptotic expression of EN, can be
derived and expressed as

(3.2.10) EN, = 27C.n'/3 + o(n'/®),

where C; is a constant between 0 and 1. The following theorem presents the
limiting distributions of our (n — 1)-estimators.

THEOREM 3.1. (i) If V is a convex polygon with r, r > 3 vertices, then as
n — o

n[(N,/n) - P(X, €V, )] -

(3.2.11) J(10/27)r log » -, N(0,1),
n[(Nu/n) vol(V,) — E[vol(V\V,_1)]]
(3.2.12) V(10/27)r log n vol(V) - N0 1).

(ii) If V is the unit disk in the plane, then as n — «, we have
P(Xn & Vn—l) = (n_2/3)
and '

/ V27C; —_ N(0,1),

(3.2.14) ns/e{% vol(V,) — E[vol(V \ V,,)]]/\/sz2 vol(V) —»_, N(0,1),

N,
(3.2.13) n5/6[7 ~-P(X, ¢V, )

where C,, C, are two positive constants between 0 and 1.
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Proor. It was shown in Groeneboom (1988) that if V is a convex polygon
with r vertices, then

2 logn 10
(3.2.15) n(——- - = 577 logn —_, N(0,1);

if V is the unit disk on the pla.ne, then

N,
(3.2.16) n(7 - 211'Cln‘2/3)/\/21702n1/3 -_, N(0,1).

It follows from (3.2.9) and (3.2.10) that

%) - ez, e v,

3r(logn)/n + o((log n)l/z/n),
= if V is a polygon with r vertices,

2wCin~%3 + o(n=%%), if V is the unit disk.

The results (3.2.11) and (3.2.13) are obtained by replacing the asymptotic
means by their true means. To prove (3.2.12), we first notice that vol(V,) —
vol(V) = O,((log n)n~") since (N,/n) = O,((og n)n""). The result (3.2.12)
then follows from the facts that E(vol(V \ V _J)) =volV)P(X, ¢ V,_,) and
(N, /n)vol(V,) — vol(V)] = 0,(n~1). The result (3.2.14) can be proved simi-
larly. O

ReEMARK. In the case that V is a general convex set with smooth boundary,
the results in (2) still hold, but with C, replaced by Cj =
Cy(mr/vol(V)1/3[,, k(s)*/® ds /2, where 9V is the boundary of V, and k(s) is
the curvature function of arc length. For details, see Rényi and Sulanke (1963)
and Groeneboom (1988).

Some implications deserve further discussion here. From (3.2.3), the proba-
bility that the new observation X, ; will fall outside the convex hull formed
by the sample {X}, ..., X,} is determined by the knowledge about the number
of vertices of the convex hull. This result [i.e., (8.2.3)] holds for any distribu-
tion on R* and any % > 1. However, to estimate the volume of the convex set,
the uniform distribution is used to create the relation like (3.2.2). We do not
have a general theorem like Theorem 3.1 in R* when % > 3, simply because a
more general version of (3.2.16) is not available at the moment. However, from
an applied point of view, we can always estimate the volume of a convex figure
by (3.2.2), and the vertices of V, will provide us with information about
V\V,. It seems to this author that almost all relevant information about
V' \ V, is within the set of vertices of V,. This point will be further justified in
Section 4 in terms of species problem. From previous discussion, it is found
that

vol(VN\V,)

vol(V)
or O(n~2/3) depend on whether V is a smooth convex set in R! or in R% A

= 0(nY)
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question of interest is: What if 2 > 3?

3.3. The missile problem. n missiles are delivered and landing at a certain
target area which is usually much larger than the effective area caused by the
explosion of a single missile. The effective area here can be referred to as a
covered area in the present terminology. A similar bombing problem was first
considered by Robbins in the early 1940s during World War II while he was in
the Navy [see Robbins (1985), pages 8-10]. A few years later the bombing
problem finally lead to his important articles published in the Annals of
Mathematical Statistics in (1944) and (1945). The same problem was treated
by Bronowski and Neyman (1945). Unlike their works which solved the
problem probabilistically, here we are mainly interested in the problem from a
statistical viewpoint.

Let A denote the target area where the missiles would fall. Assuming that
the locations of landing for all missiles are 1ndependent of each other and
follow a certain unknown distribution G over A, let Y,,...,Y, denote these n
landing points. Associated with each Y, there is a covered area B(Y,, r;) which
is the intersection of A and a disk w1th center Y; and radius r;. Each r;, may
depend upon Y;, but r; and r; are assumed independent for diﬁ'erent i, j. If we
let X; = B(Y,, r,) and g(X;) =Y, for all 1 <i < n, it is clear that the current
model is within the framework of our general coverage problem described in
Section 2. The chance that the (n + 1)th missile would land at the uncovered
area can be written as P(g(X,,,) ¢ S,lS,), where S, =S(X,,...,X,) =
U{’ {X,;}. From Sectlon 2, the (n — 1)-estimate is n~1% Pl -I(Y; e

S,_1,;)l, where S,_; ;= U,, {X}.

Let us define n(S,) = # of {Y;; Y;&S,_, ;} for brevity, and the previous
(n — 1)-estimate can thus be wrltten as (nl(S ) /n). Applying the similar idea
of Section 3.1 to the current case, we come up with a bias-reduced estimate

ny(S,) + (l/n)2;=l[n1(sn) - nl(Sn—l,j)]
n+1 ’

(3.3.1)

where
nl(Sn 11) #Of{ i $Sn l,ji}’ Sn—l,ji= U {X,}.

h#j, hti

To estimate the size of the newly covered area by the (n + 1)th missile, it is
easy to deduce from (ii) in Section 2 that the (n — 1)-estimate is
1/n)L7_ vollX; \ S, _; ;1= (v(S,)/n) (say), where
vl(Sn) = Z VO].[XJ AN Sn—l,j] .
j=1

Similarly, one can deduce a bias-reduced estimate which is
vi(S,) + (l/n)E;=l[v1(sn) - vl(Sn—l,j)]
n+1
where v(S,_; ;) =L}, ;vollX;\S,_, ;land S,_; ;i = Up .y 5. AKX

I

(3.3.2)
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4. Extending the (n — 1)-construction to the conditional cases. In
this section we shall extend our (n — 1)-construction to the conditional situa-
tion when data consist of n pairs {(X;,Y;), 1 <i < n}; that is to say, associ-
ated with each X; a real Y; (or a real vector) is observed. The issue of concern
here is to estimate the conditional parameter associated with the observations.
The following questions that arose from motor accidents may explain our
concern. Suppose that n motor accidents were experienced by m(m < n)
drivers last year in a city. The insurance company is interested in (i) the age
distribution among those drivers who were accident-free last year, (i) the
average damage loss made by the drivers who had two or more accidents in a
year.

Let S,(¢,) be defined as in Section 2. We are interested in estimating a
random parameter which can be expressed as 8 = 8(Py(:|S,))—a smooth
function of Py(:|S,), where Py(-|S,) is a conditional probability of Y,,,
given X, ,, is in S,(¢,). This conditional probability can be written precisely
as

P{Yn+1 € E and Xn+1 € Sn(fn)}
P{Xn+1 € Sn(fn)}

for every Borel set E. To estimate this probability, we estimate the numerator
and denominator separately, and this leads to an estimator Py(-|S,) which is
defined as

(4.1) Py(EIS,) =

Z;LII(YJ- €Eand X, € S,,,j(g,,,j))
i I(X; €8, j(6n,5))

To estimate 8(Py(-1S,)), we simply use 8(P(-|S,)). In the species problem,
suppose we want to estimate the conditional mean of Y among all unobserved
outcomes, that is, 8 = [ydPy(y|S,), where S, ={j; j€{X;...,X.}},
Py(EIS,) = £, c gp;$;(0;n)/Z5-1p;¥,(0;n) and E is any Borel set in R (or
in R* if y is a vector in R*). The conditional distribution of P(E|S,) can thus
be written as F(y|S,) = Py((—x, y1IS,) if {y,} are real-valued. Applying (4.2)
to this example, we end up with an estimator

(4'2) pY(EISn) =

(4.3) b, = [ydPy(1S,) = L I(X; € 8,_,,,)Y;/n1,
j=1

simply the sample mean of the corresponding observations which occur only
once in the sample. Applying a similar idea to the conditional median of {y;;
j & {X,,..., X,}}, we obtain our estimator which is the sample median of Y; of
which the corresponding X; occurs only once in the sample. In general, just
how good 6 is as an estimator of § depends upon the magnitude of P{X,,,, €
-8,(¢,)}, which is estimated by (1/n)L?_,I(X; € S,_, ;). The following two
propositions provide some partial support of these estimators in terms of
species problem. Let F,(y) = F(yIS,) and F(y) = F(yIS,) = # of {e;; e; ap-
pears once in {X,,..., X,,} and y; <y}/n,.
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ProposiTioN 4.1. If EY? <o, n'/%Z,p(l —p,)*"") > © and 6, =
[ydP(y|S,) stay bounded in probability, then 6, — 0, — 0 in probability as

n — o,

ProrosiTiON 4.2. If

n1/2(2 pi(l —pi)n_l) —> o asn — ©,
i
then supylpn(y) — F,(y)| = 0 in probability.

The condition n'/%(X,p,(1 — p;)"~!) - ~ which appears in both proposi-
tions is equivalent to the condition n~!/2En, — o, which simply says that the
unobserved probability can not be too small [smaller than O(n~'/?)] in order

to ensure the validity of the estimator. The proofs of the propositions depend
on the following three lemmas, of which the proofs are omitted.

Lemma 1. Ifk > 2 and E|Y]| < «, then

¥ pH(1-p)" = 0(n"*) and ¥ pk(1-p)"y = O(n~*D),

LEmMMA 2. If n*%T ;p,(1 — p;)") - » and EY? < o, then

(ny/n) — X;p(1 _Pi)n
r;p;(1 —Pi)n
r;piy:(0;n) — r;p;(1 _pi)n
r,p:(1 _Pi)n

= op(l)’

=0,(1).

Lemma 3. If n*/%(X,;p,(1 — p;)") > © and EY? < «, then
2

1 n
E n P I(Xj € Sn—l,j)(Yj) - ZPi‘/’i(O;n)yi = O(n'l)-
Jj=1 i

PROOF OF PROPOSITION 4.1. Rewrite [y dP(y|S,) — [ydP(y|S,) as
b,+é6, b,

" a,+¢&, a,

Where a, = ):,p,l/l,(O, n), bn = Ezpt¢z(0, n)yi7 6n = (1/n)zi\yi,nyi - bn’ é)n =
(n,/n) —a, and

V.

il

_[1, if e, appears exactly once in the sample,
" 0, otherwise.
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Further, we can write D, as
an6n - bnfn 6 bngn

n

4.4 D, - - - _
(44) "= e+ &)a, a,+ &  (a,* &)an

By Lemma 2, we have n'/%(n,/n) — o in probability. Since 5, = 0,(n~'/?) by
Lemma 3 and &, = 0,(a,) by Lemma 2, the proposition follows from the fact
that

6" 1 d éon bn 1
ard D ong e, e

since b,a,' = 0,(1) by assumption. O

PrOOF OF PRroPOSITION 4.2. It is easy to see F (y) can be written as
[Z.¥; ,I(y; < y)IZ;¥; 1. From this, one can check that

1
E(; LY I sy)) =L p(1-p)" (3 <)

and

B £ pa0im)) = £ pi - p)" 10 5 9).
Yisy i
From Lemma 1, it is easy to see

£ 21 - p) 13 59) = T i1 - p)" 13 <3)| = 0(n 7).

1

sup
y

Furthermore, with a similar argument as in Lemma 3, one can show that
2
<M< o

. 1
nE[; Z Y Iy <y) = X pivi(0;n)I(y; <)
i i
for some positive M, independent of y. The proposition is thus proved. O
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