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ASYMPTOTIC NORMALITY OF THE ‘SYNTHETIC DATA’
REGRESSION ESTIMATOR FOR CENSORED
SURVIVAL DATA

* "By MaI1 ZHou

University of Kentucky

This article studies the large sample behavior of the censored data
least squares estimator derived from the synthetic data method proposed
by Leurgans and Zheng. The asymptotic distributions are derived by
representing the estimator as a martingale plus a higher-order remainder
term. Recently developed counting process techniques are used. The results
are then compared to the censored regression estimator of Koul, Susarla
and Van Ryzin.

1. Introduction. The linear regression model has been successfully used
as a statistical model in many areas. A well-developed theory and many
computer software packages are available today. However, difficulties arise
when regression models are used to analyze lifetime data in practice. Lifetime
data are often censored, making ordinary least squares procedures inapplica-
ble.

Suppose the lifetimes are Y; = X;B + ¢;, where the X,’s are observable, B is
the parameter we want to estimate and the error terms ¢; are ii.d. with
Es; = 0, Var(g;) = 02 < «. However, we only observe (T}, §,,X;), where

lemin(Yl;Cl) =Yt/\Cl and 6l=I[Y,SC,]’ i=1,2,...,n.

Here the C;’s are censoring times, i.i.d. random variables independent of Y;.
This model will be called the censored linear model in this paper.

Recently, several methods that can accommodate censored data in regres-
sion analysis have been proposed. The Buckley-James (1979) method relies on
the i.i.d. assumption of the ¢;’s but requires few assumptions on the censoring
times C;. On the other hand, methods due to Koul, Susarla and Van Ryzin
(1981) and Leurgans (1987) rely on the i.i.d. assumption of the C,’s [although
this can be relaxed somewhat—see remark of Leurgans (1987)], but impose
less stringent assumptions upon the ¢,’s. Also the latter two methods are
computationally much easier.

Leurgans transforms the censored observations (T}, §;) into synthetic data,

® IT- s
(1'1) Yz* =j ( é&:)] - I[s<0]) ds’

— 0

and applies the usual least squares procedure to (Y;*;X;). Here G(@) is the
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Kaplan-Meier estimator of the survival function G(¢) of the i.i.d. censoring
times C,’s, defined in (2.6). From a somewhat different point of view, Zheng
(1984) suggested a class of transformations which includes (1.1) and (1.1) is
the one he recommends. Zheng showed strong consistency of the estimator.
Leurgans’ (1987) paper contains 4 statement of the asymptotic distribution of
the estimator in the two-sample case. However, asymptotic theory for the
general case is lacking. In particular, the asymptotic variance is still unknown.

In this paper, counting process and martingale techniques are used to show
that Leurgans’ synthetic data method yields estimates that are asymptotically
normally distributed and the asymptotic variances of the estimates are de-
rived. In particular, we represent the synthetic data estimator as a martingale
plus a high-order term (see 3.6-3.10). We then compare the variance with that
of the Koul, Susarla and Van Ryzin (1981) result.

2. Notation and counting process preliminaries. Counting process
techniques have been widely used in the analysis of lifetime data since Aalen
(1978). Reviews of this approach include the books of Gill (1980) and Jacobsen
(1982) and the article of Andersen and Borgan (1985).

First we introduce some more notation and establish some simple facts. For
i=1,2,...,n,let

Fi(t) =P(Y, 2t),G(¢) = P(C; 2 t) and H,(t) = P(T; 2 t) = F(£)G(¢).
For simplicity, we suppose that the survival functions F; and G are continu-
ous, although we do not need this assumption throughout. Let

(2.1) Hi(t) =Iir, 50 R*(t) = ¥ Lp,on= > ﬁi and T" = max{T}}.
i=1 i=1 i

Also, let
dH;(s dFy(s
HOERS| ) ey - - )
0,1 H;(s —) 0,1 F(s —)
dG(s
A°(t) = - [ (&)
0,00G(s =)
It is well known that the three processes
¢
(2:2) M (8) = Ig,en = [ Tz, 4A7 (5),
¢
(2.3) MiD(t) =I[T,-st;s,-=1] - _[OI[TiZs] dA?(s),
¢
(24) Mic(t) = I[Tist;8i=0] - j(;I[Tizs] dAC(s),

are square-integrable martingales on [0, «] with respect to the filtration
-9; = U{TkI[TkSS]; SkI[TkSs]; k = 1, 2, ceey n]
= o{everything observed up to time s}
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and
(28) (MDXO) = [[Tr20 dN), (M) = [Tro dALCS),

where (M) denotes the predictable variation process of the square-integrable
martingale M. .
Clearly M}= MP + MF, since Aj= AP + AC. Further, define

M¢= Z Mic'
i=1

The Kaplan—Meier estimator of the survival function G(¢) of the C,’s is
given by )

ANC(s)
(26) G(t)=s 11 "{I—R—_'_(';)—}.

<tAT

Here N°(s) = L7_1Ii1,<55,-0) and AN(s) = N°(s) - N(s — ). Thus the
processes

G(t) - G(t)  iarnG - . .
(2.7) O =f0 deMc(S), te[0,T"],
Hi t _ﬁi t t 1
(2.8) -—(—)ﬁzt—)_ﬁ = LEde(s), for ¢ such that H;(t) > 0,

are local martingales. For simplicity, we shall assume that H,(¢) > 0 for any
t < » in this paper, so that (2.8) holds on [0, »).

LemMa 2.1. MP and M are orthogonal martingales, that is, their pre-
dictable covariation process vanishes.

Proor. Since we have assumed continuity of the underlying distributions,
this follows from Theorem 2.3.1 of Gill (1980). O

3. Main theorem. We first consider in detail the case of simple linear
regression E(Y|X;) = a + BX,. Recall that the Leurgans estimator is based on
the synthetic data defined in (1.1). For simplicity we assume 7" > 0 for large
n [otherwise make some changes in both (3.1) and (3.2) so that (3.3) below
always holds]. It is not hard to see that in this case

I[Ti = 5]

(3.1) y* =fT:( G(s) _I[s<0]) ds.

The least squares estimators & and B based on the synthetic data are [cf.
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Leurgans (1987) or Zheng (1984)]
A Z (X, - X)K* - -
B=——"Z5, &=Y*-pX,
(X, -X)

where Y* = (1/n)LY*, X = (1/n)L X,. Here and in the sequel, we suppress
the index in the summation sign whenever there is only one subscript in the
summand.

For easy comparison with Koul, Susarla and Van Ryzin’s (1981) result, we
adopt notation similar to theirs:

a.=a. .= l__X(X—’__X_) and b.=b .= X -X
i ni n E(XJ _ X)z i ni E(XJ _ X)2

With this notation the estimators above are simply
&=Ya¥* B=YbY"

For T" > 0, the correct centering quantity turns out to be o* and B*,
defined as follows

(32) o =Ta,[ (F-Lo)dt; "= Lo f" (F~I,oy)de.

Notice that if we replace the upper limit of the integrals T'" by « in (3.2) we
will obtain exactly the expressions of @ and B. In general it is impossible to
center &, B by a, B without additional assumptions—see Remark 4.4 of Koul,
Susarla and Van Ryzin (1981). Intuitively, though, it is clear that we can only
hope to estimate the mean up to where the data are available, T ™.

ReEMARK 3.1. If we need to center the estimates by o and B, as we
do in practice, we have to guarantee that the bias Vn(a — a*) =0 (D),
Vn(B-B*)=o0 »(1). A set of sufficient conditions that will guarantee thls is:
(i) F, has bounded mean residual life function; (ii) G(¢) > KF(¢)?, Vi for some
constants K > 0, B < 1; and (iii) either X; are bounded or max,(X,) — o with
G(») = 0. See also Remark 3.3 of Gill (1983) in the i.i.d. case. Notlce that (i) is
also implied by assumption (ii) of Theorem 3.1 [cf. (3.20)].

Thus the centered estimators are

- ([TZ”—E(t))dt,
&—a*=Ya f (([;T(z)t] Fi(t))dt.

For easy formulation of the theorem, we assume Y; > 0 from now on; thus the
integration in (3.3) starts at 0 rather than — . The general case can be treated
similarly at a cost of some more conditions on the left tail of the distributions.

(3.3)
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For technical simplicity, we restrict ourselves to the case of a random
design; that is, we assume that the observable X,’s in the censored linear
model are actually random, independent and identically distributed according
to some distribution with a finite, nonzero variance. We also assume that X,’s
are independent of everything else. Then all the definitions and proofs hold
conditionally on the observed X,’s. The case of a fixed design can be treated
using the same method, but the conditions are tedious to formulate and will be
presented elsewhere. Also, the i.i.d. assumption of the ¢,’s is not essential for
the validity of the following theorem; we make this assumption for ease of
presentation.

THEOREM 3.1. For the simple linear model E(Y;|X,) = a + BX,, the syn-
thetic data least squares estimates are asymptotically normally distributed,
that is,

B - pB*

provided the following conditions are satisfied: (i) the entries of the covariance
matrix 2(7) = (0,4(7)) [see (3.4) below] are well defined for v € [K,x] for
some K < © and 0;,(1) >, 0;;() < o; (ii) sup, Ele; — tle; > t] < oo; (i) the
tail conditions (5.10) and (5. 14) hold.

The components of the covariance matrix %(7) = (0,4(7)) are

Uaa(T) = 011(7)

Vn (“_ )ap N(0,3(=))

2dAD

=limn) a f[des H

IEaJ tTEI ds _ ak[ftTI;‘i dS] ]2Hi dAC,

+hmn2[ GLF, H(t)

i=1°0

(3.4) "'aﬁ(T) =015(7) =09(7)

=limn} a; bf [f
Xc;[[F;ds «¢;[/F,ds

n T
+limn J - = H; dAC,
igl'/; 0i=l:!» b; GEF; Hi } '

]2dAD(t)

0ps(7) = 09(7) = same as oy, witha,, a; replaced by b;, b;.

REMARK 3.2. By the random design assumption it is easy to see that X,
1/n)Z g(X;), (1/n)X X;g(X,) and (1/n)X X2g(X;), where g(-) is a bounded
real function, have limits as n — «. This, in turn, guarantees that the above
limiting covariance matrix exists for 7 < «, as can be seen by looking at the
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alternative variance expression (4.1) and recalling the definition of b,.

Proor oF THEOREM 3.1. By (3.3), we have

(35) B-p*=Lh[ (‘“” )dt-zbj [—__1

[recalling that H; = F,G and H, i{(t) = L1, 4]. Some simple algebra gives

N S e

i Rl
_ H(t) - H(t) G(@)-G() Hi -H,G-G

F, dt

H; G

+
H(¢) G(¢) - H, G

+ A A
H ¢ "TH & 76 ¢

13

Plugging this back into (8.5), we obtain
A-H G-G
B-p=Lbf ( =5 )

= p(T")+SSB(T") (say).

In Section 5 we show that vn S8,(T™) is negligible. It remains to establish
the asymptotic normality of Vn SB(T") Clearly,

F, dt + aremainder term
(3.6)

— H;
“F. dt +

(8.7)  Sg(T" )—j ):b

We first show that Vn SB(T) (replacmg the upper limit 7" by an arbitrary but
fixed constant 7 < ») is asymptotically normally distributed. Noticing that

0

F(t)dt = d[—f F,.ds] fort <7,
t

integration by parts yields [in view of (2.7) and (2.8)]
dM;(t r - G
ﬂ(f)-zb[[[Fd )

_ 1
Azbi];EdSFFdMg(t)'

Using the fact that M (s) = M,-D(s) + MS(s) and M{(s) = ZME(s) (cf.
Section 2), we can show that

- dMP
0 = £ ] - ([8.0) gy

noo. e b, F, d
+Z](;[([Zdes)C; ;+_IH(t)s AME(2).

i=1

(3.8)



1008 M. ZHOU
In very much the same way (with a; instead of b;) we can show that
(3.9) a—a*=S8,(T") +S8S,(T") (say).

Again, using integrating by parts, M;"= ML + MP and M} = £ MF, we have,
for 7 < oo,

A dMP(t)
.0)= L [[|- [akoo|
(3.10)

L T G_ 1 f,’aiFi ds
+l§1/(‘) [(‘/t‘ Z ajl'} ds)F—R—_', - _———Hi(t) dMiC(t).

If we change the upper limit r of the outermost integrals to v € [0, 7] (but
keep the 7 in the inner integrals) in the two terms of (3.8) [or (3.10)], then
each of them becomes a martingale in v for v €[0,7]. Let us denote the
martingales by Sg(v) and S,(v).

To establish the joint asymptotic normality of S,(7) and S,(r), it suffices to
show that the two martingales, S,(v) and S,(v), converge Jomtly in D[0, 7]
To prove this latter (and stronger) result according to the martingale CLT, we
need to show that

(3.11) (Vn Sg,Vn Sg)(v) =, G4(v),
(3.12) (n'S,, Vn S, )(v) -, G, (v), vel0,7],
(3.13) (Vn 8,, Vn Sp)(v) =, G,4(v),

where G,, G; and G, are nonrandom continuous functions, and the following
Lindeberg conditions hold:

Ve>0, T [(¥) .5 qdC MP)(t)
(3.14) °

+T [ "(8)2L 5 qd<MEN(t) >, 0,

where * and A denote the two integrands in (3.8) and (3.10).

Let us now prove (3.11). First notice that by the independence assumption
and Lemma 2.1, MP@),..., MP(t), ME(),..., ME(t) are mutually orthogo-
nal martingales. Thus the predlctable varlatlon process {Vn nSg, Vn Vn Sp)(v) is

of oo Lpay dF,
_nZ'/;)(’/; b"F"ds) [fzt)l]z?

(3.15)
6.1 [pFds| dG

% ([ Toma) G - Hay | e
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The first term above is easily seen to converge in probability to
I[E ds |* dF,
G
by assumption (i) and by the fact that the variance of this term tends to zero:

of ot 2 Ip., dF.
[([mas) men 2
0\t [Hz(t)] F,
dF, |’

IRTEE ) [;(j)ﬂ] T

[[Fds]* (  dF)*
$n22 b;1 sup Hi(t) E j(;I[TithFi'

—lim nz b2

n?Y b* Var

<n?®) biE

O<t<r
K* T dF(t)
3.16 n?Y bt—— | (1,
( ) Z [G( )] (/(‘) [T;=¢] E(t) )
K4

(3.17) < n|maxd?|n) b} ——

( J ) ‘a1t
The reason for the inequality (3.17) is that

. dR()
“J e g

is stochastically less than a unit exponential random variable and therefore the
second moment is less than 2. The reason for (3.16) is essentially assumption
(ii) and is spelled out in (3.20). Finally, (3.17) goes to zero since n max; b? does
and the rest is bounded.

As for the second term of (8.15), by squaring out the big bracket and
summing inside the integral we can show (by invoking Lemma 5.1) that it
converges in probability to

X SR T Rw | @6

Thus we verified (3.11) by showing that {Vn Sg, Vn Sg)(v) converges in proba-
bility to

[zbjf;Fjds b,/7F,ds |’ F, dG

of J;F, ds 1* dF,
- — 1 2 d
Gy(v) = —limn ¥ b,.[o 5| @

~limnY | TF(?) F(t) | G G-

.,Iij/;I«;. ds b,//F,ds]*F, dG
0



1010 M. ZHOU

Similarly, we can show (3.12) and (3.13) with

G (v)=1lmnY a f[desrdAD

i

La,/;F;ds a,[/Fds] .
+ hmnlzlj(;[ GLF  H(D H;dA
and
2dAD(¢)
G.5(v) —hnga b[ [[Fds] i
r ciftTFi ds
+1 H, dAC.
lmnlzl 0 ¢,=a,,b, [Z ‘/t‘ GZF HI‘ i

Now, let us check the Lindeberg condition (3.14) for S,(v). We have to show
that

(3.18) )y [ [»f" fhde

and

I, dA? >, 0

'K ds1?
L5 e

s & Vn  VajbFds]’
(3.19) gljo[(ft ijl’}ds)?ﬁ? - _}t'zT

By assumption (ii), sup, E[¢; — tlg; > t] < », we see that
E[Y, - 4|Y; > t] = E[e; (¢ — a = BX))|e; > (t — @ = BX))]

is bounded, and thus

C
Lyay> iz, 20 AA” =, 0.

3.20 T ds v, Vi
( . ) E:(t) ’ l’
which implies that
'F, ds |?
sup nb?| —— < max nbK?——— —
i,tel0, 7] H(¢) [G(7)]*

Hence, every integrand in (3.18) vanishes for sufficiently large n and (3.18)
holds. For (3.19), first apply the inequality (a + b)? < 2a® + 2b> to the big
square bracket to get the upper bound

2| 2nb2[ [, ds]* -6
Elfo[ [H,(1)]? 2(Ebf[thds) [ G

As we have just seen, the first term in the big square bracket above is tending

2
n

R+2 I[lAI >€]I[Ti 2t] dAC.
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to zero. As for the second term, by the Schwarz inequality,

(EbjfTF}ds)z ﬂ %
is bounded by o
v [ G 1 1
LN [ G n(R*/n)?
1 [J7F;ds 6] 1
Z ;Z[ F(t) ] [ J'(")] [F (R+/n)2

<K2):b2 Y [Fi(®)] [ (R*/ el

where the last inequality follows by (3.20). For ¢ € [0, 7], the above is bounded
by

1 ] K?n¥L b? n
G ] R*(n)*  [6(M]* [R*(DN]*

The first part of the above is clearly bounded and the second part goes to zero,
s0 (3.19) holds.

For the Lindeberg condition on S,, notice that the same proof, with b,
replaced by a;, carries over. The conditions on b, used in the proof, max; nb?
— 0 and nX b? bounded, are also valid with a;. Thus, we have shown that
Vn S (7) and Vn 8,(7) are asymptotically jointly normal.

Now, similar to an argument in Section 5 [cf. (5.12) and (5.13)], Ve > 0,
P(/n|S(T™) — 8,(7)] > &) and P(ﬁISB(T") — S4(7)| > &) can be made arbi-
trarily small when n — « by first choosing 7 sufficiently large. Thus the
convergence of (Yn S, (1), Vn Sp(7)) is still valid with 7 replaced by T'", by the
fact that the distribution of a normal r.v. is continuous in its variance,
T" —»,, » and assumption (i). Thus the limiting normal distribution has
covariance matrix (3.4). O

KZZb}xlx[

Clearly, estimation of the covariance matrix Y () is possible. Based on our
alternative asymptotic variance formula (4.1) and Lemma 4.1, we suggest
using

2
nZ bz([ % -—a - BX )
3.21 2
(3.21) o[22 /G (s)) ds]” ane(e)
N ”/0 R*(t) - 1 R*(2)

as an estimator of 0,,(»). Estimators of o,,() and 0,,() can be constructed
similarly.
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REMARK 3.3. To see that (3.21) is consistent, notice that

T, dt T; dt
ly@@ " a o) end &A= et pXro D).

Therefore, the first term of (3.21) equals
2

anz(f m—a—-ﬁX +0,(1).

By the law of large numbers, this converges to the first term of (4.1). As for the
consistency of the second term of (3.21), Lemma 5.1 gives that

n
-1 @ Ll

are convergent (uniformly on compact intervals). The desired conclusion then

follows from the consistency of the weighted Nelson—Aalen estimator:

dN°¢
Jw@) e ((tt)) - [W(2) dA(2).

where W(¢) is a continuous weight function.
The extension of the above theorem to multiple regression involves nothing
new. The least squares estimate is given by

B=(XTX) 'XTY*,
where Y* = (Y},...,Y*)T, X is the design matrix and (X7X)~' is assumed
to exist.
It is clear that the estimate /3 is a weighted average of Y;*. In fact,
[3 =Y ,u;;Y*, where u; are the jth row, ith column element of the matrix

(X TX ) 1X T Hence the technique used in proving Theorem 3.1 also works
here.

THEOREM 3.2. In the censored linear model with random design, suppose
that: () the covariance matrix 3(7) [see (8.22) below] is well defined and finite
for T € [k,©] and 3(7) > 3(») as T - »; (i) sup, El¢; — tle; > t] < »; and
(iii) (5.10) and (5.14) hold with ¢; =uj;, j =1,2,...,p

Then

Vn (B - B*) »p N(0,3(x)) asn — =,
where B* = (B, ..., B} with B} = T,uj; [q~F; dt and 3(7) = (0y,(7)) with

2dAD(t)

(1) = hmnx uk,u,,f [[F ds
(3.22)

Xc;f/F;ds B c,J/F;ds H, dA°.
GLF; H;

n
+ limn Y,

i=1"0 c;=up;,uy;
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4. Discussion and comparison. In this section we take a closer look at
the asymptotic variance of the synthetic data estimator derived in the previous
section and compare it with that of the Koul, Susarla and Van Ryzin (1981)
estimator.

We begin by rewriting our variance formula (3.4). This can be done in a way
that makes the comparison of the two estimators easier, and offers another
way of looking at the sources of variance. Specifically we shall focus on the
asymptotic variance of Vn (8 — B*), namely o,,. First expand the contents of
the big square bracket in the second term of o,, to get

lmn Y fw ():bjf,‘”F} ds )2 +(b,.f;°F,. ds )2 ~ 2>:bjf;°p; ds b; [°F,ds | F, de.
0 LF;@®) F,®) LFi(?) F(t) G
By summing the above three terms, the first and third terms combine to give

= bZ[ [F, ds]* [Lb;/7F; ds]* dG
2]0 (] L " FdG(¢t) + hmnj —IE o

This, together with the first part of o, yields

. ooFd 2
2y = -nmnzjb?[f‘ : s] (GdF, + F, dG)
f [be,“F ds]* dG

G’

As the following lemma shows, the ﬁrst term in (4.1) is just the limit of
Var(Vn £ b,Y*) = nX b? Var(Y;*), when the true G is used in (1.1). The second
term, which is negative, represents the effect of replacing the true G by the
Kaplan—-Meier estimator

(4.1)

+ llmn

LEMMA 4.1.

d o th;d 2
(ITG(Z))=“fO IH,S}{GdFﬁFidG}.

Proor. The mean of the random variable IFi(dt /G(¢)) is, by Fubini,
© EI
[

T; dt [T~zt] T;>t] *®
: = dt = | F.dt.
Ef G(t) fo G(¢) f G(¢) f t
Centering the random variable by its mean, we have
T.dt ) © I[T~zt] dt ©
— — dt= | ——— — | F,dt
e [Ea=f =G LF

I
_[[[th] ]F;dt

[ A, « A, -
=L[E—1Edt=];[

H;
F, dt.
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It is well known that the ratio in the square bracket is a local martingale.
Integrating by parts, we get

fw(fmﬂds)dﬁ’_ =[°°(j°°F,.ds)i M (2),
o \J o\t H;
which has predictable variation process

] ([ F, ds ) [“" 1 dA;(2).

The expected value of the predictable variation process gives the desired
variance. O .

The Koul, Susarla and Van Ryzin (1981) estimator of 8 has an asymptotic
variance formula [their (3.6)], which in our notation (when T, are nonnegative)
is

8T, Iz, M, [JMsdTb,F,]* dG
. 2 = li 2 itit[T; <M,) nllJt i )
(4.2) ogsy mn[z b; Var(————(Ti) +/; TF, -

It again consists of two terms, the second being negative. Notice that the
negative term should have an extra n factor in (3.6) of their (1981) paper, [see
Zhou (1989)]. Therefore their Remark 4.5 needs to be revised and in this
connection see our Remark 4.1 below. The next lemma furnishes a comparison
of the first part of the two variances, with M,, replaced by « in (4.2).

LEMMA 4.2.

T, dt aiTi
Var(fo 567) Sva"( (T )

Proor. Because the means of the two random variables are the same, as
shown in the proof of our Lemma 4.1 and Koul, Susarla and Van Ryzin
[(1981), (2.2)], it suffices to show that their second moments satisfy the same

inequality.
To this end, we integrate by parts to get
T, dt 2 t ds ¢ ds
. e dt.
4w 5[ 5| - L G(s)] an, - (w2 ) o

On the other hand,

8,T; 2 © t2 ®© At dS
Pt = - F.
E[G(Ti) [0 dF, > fot dF,,
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since
t d d:
- gt = ko
G(t) 0 G(t) 0 G(s)
Integrating by parts and using the latter inequality again, the right-hand side
above becomes
) dt

L) t ds t L t ds
F, dt + dt) > | F.2| | -
h ‘{/o ORI } =P ([0 G(s)
which is (4.3). O

We now compare the negative parts of the two variances. Again replace the
M,’s in (4.2) by «. It is easy to see that the only difference is in the squared
numerator in the integrand, namely

(4.4) [Zbi/;mFidsr versus [Zbi/;mdei]

The two terms in (4.4) are both continuous functions of ¢ and are equal at
t =0 (=% and ¢t = » (= 0). Comparison of the two expressions in (4.4) is
provided by the following lemma.

2

LEMMa 4.3. Ift > 0, we have

(4.5) [Zml%ﬁkrs[xb%%dﬂr
Ift < 0, then
(4.6) [Z bifth,. dsr > [2 b,.ftwdeir.

Proor. First, we integrate by parts to get
(4.7) — [(sdFy(s) = tFy(¢) + [ F,ds,
t t

then proceed to show that both ¥ b, F.(¢) and T b, [°F; ds have the same sign
as B.

Without loss of generality, assume B > 0. Notice that for any constant C,
L b;C = 0 which implies
(4.8) Y b, Fy(t) =0,

+ where Fx(t) is the survival function of « + BX + . Now let us compare
L b, F(t) with (4.8). Since X; > X when the b,’s are positive,

a+BX,>a+BX and F,(t) = Fx(¢)
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for positive b,. For negative b,’s,
a+BX,<a+BX and F,(¢t) < Fx(t).

Thus the sum X b, F(¢) inflates-the positive terms and reduces the negative
terms, as compared to the sum (4.8), so

Y b,F,(t) > (4.8) =0 (same sign as B).
A similar argument yields

T bf Fids=0.
t

We have shown that the two sums always have the same sign as (> 0).
Now by summing (4.7),

(4.9) ~ T b, sdF(s) =tL b,F(t) + L b,[ F.ds.
t t
If ¢ > 0, then

b

L6 sar ()| 2| T o[ Fds
t t

since the two terms on the right-hand side of (4.9) have the same sign. Thus,
(4.5) holds. If ¢ < 0, the two terms have opposite signs and (4.6) follows. O

From the above lemmas, it can be seen that the magnitude of the two
negative terms will depend upon how G(¢) is related to the two terms in (4.4).
For instance, if censoring only happens when ¢ > 0, then clearly the absolute
value of the negative term in the variance of the Koul, Susarla and Van Ryzin
estimator (4.2) is larger than its counterpart in the Leurgans estimator (4.1).
If, on the other hand, censoring only happens when ¢ < 0, then the absolute
value of the negative term in (4.2) is less than the corresponding term in (4.1)
and (4.1) < (4.2) in view of Lemma 4.2.

REMARK 4.1. In general, the negative terms [due to estimating G(¢)] in the
variances (4.1) and (4.2) are nonzero, since the respective integrands are
nonnegative, continuous and equal to B2 when ¢ = 0. Notice that we have
already taken into account the factor n in the front of (4.1) and (4.2); it
cancels with T F;(0) = n. This somewhat counterintuitive fact can be exploited
to further reduce the variance in estimation of 8. The idea is deliberately not
to estimate G(¢) as well as we can, but only to base the estimator G on a
subgroup of the data. For details see Fygenson and Zhou (1988).

' 5. Higher-order terms. In this section we show that the remainder
terms in (3.6) and (3.8) are negligible. First, we prove a useful lemma on the
uniform convergence of weighted empirical distribution functions in the case
of nonidentically distributed random variables.
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LemMa 5.1. Let X;, i =1,...,n, be independent random variables with
P(X,<t)= U (¢) and f,,; be arbitrary constants then Ve > 0, for those n such
that ©7_, f2% < (¢2/2) we have

L fui[lix,<e = Ui(®)] ?2—27—]

For the case where f,.; are functions of bounded variation in t with V> _f, () <
K < », K independent of n and i, then Ve > 0 and for all n such that
sup, L7, f2(t) < (¢2/2),

d

82\
<8C - ’
< e(n)exP( 128 sup, X7, rzzi(t))

> a) <8(n + 1)exp[

(5.1) P(sup

P(sttlp ilfni(t)[llx,-«]— U] >

(5.2)

where C(n) = (16K /e)n® + n + 1.

REMARK 5.1. Inequalities (5.1) and (5.2) are most useful when L7?_, f2 or

sup,Z7_; f2(t) = O(log n~1*9) which make the right-hand side tend to zero.

Proor. For the case where f,; are constants, follow the argument of
Pollard [(1984), pages 14-16].

If f,; are functions of ¢, the above proof does not work but the symmetriza-
tion argument still carries though and leads to

P(SuP i fni(t)[I[X,-<t]_ Uz(t)] >5)
(5.3) .
<4P(sup L ful®)odix o] > 4),
i=1

where o; = +1 with probability 1/2. Conditional on X,,..., X,, 0;I;x .4
does not vary with ¢ whenever ¢ is within two consecutive X;’s. The only
variation of L7_, f,,(t)0; I x, ;) comes from f, ().

Since f, 1(t) is of bounded variation, for any ¢ > 0, we can choose no more
than 8(2K/e)n points on the line such that f,(¢) varies by no more than
(e/8n) in any of the intervals between consecutive points. Do the same thing
with the other f,,(¢) to get a total of no more than n X (16 K/e)n = (16K /e)n®
points on the line. They form no more than (16K /¢)n? + 1 intervals.

Now within any of the refined intervals any one of the f,;(¢) does not vary
by more than (¢/8n) and thus L?_,f,;(¢) does not vary by more than

r*_(e/8n) = (¢/8) in any interval. We further refine the intervals by adding
n points X;,..., X,,, making I;x ., constant within each interval. Thus

n £
Z fni(t)a'il[x,-q] Z fm(t )‘7 I[X <t] 8)
i=1

i=1
€
>—
8 ’

i) <p(max

L

P( sup
(5.4) N
Z fni(tj)a'iI[X,-<tj]

i=1

s%P(
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where the points #; are arbitrary except that there must be one in each
interval. There are at most (16 K/&)n? + n + 1) points ¢;. Hoeffding’s inequal-
ity [cf. Pollard (1984), pages 15-16] can be applied to finish the proof. O

There is a remainder term to'bé considered in connection with g — B*, as
with & — a* (cf. Section 3). We only treat the term connected with 8 — B*, the
other being similar.

Recall from (3.6) that
Vn SSy(T )—‘/sz,.[o 7 5 F.dt
G-GG-@
¥ L b g Fat
(5.5) 0 G

T, i i
—A Lb—g Vn 7 dt

0 G

For any fixed 7 < « it is easy to see that the integrals [7(*) dt, where (*) is
one of the integrands in (5.5), tend to zero as n — «, since

sup| ¥ b,(Hy(t) — Bi(t))| », 0 (Lemma5.1),

(5.6) sup|é(t) - G(t)l -, 0,
(5.7) JEM —p B(C(t)) in space D[0,7],

G(2)

and the functions [G(#)]~%, [G(#)]~! and L b, F(¢) are bounded (in probability)
for ¢t < 7. The proofs of (5.6) and (5.7) are simple applications of Lenglart’s
inequality and the martingale central limit theorem. The fact that here the
Y;’s are not identically distributed is of no consequence, as long as (n/R*(t))
has a p-limit for ¢ € [0, 7], with p — lim(n/R*(7)) < «. The latter is in turn
implied by Lemma 5.1 and i.i.d.-ness of the ¢;’s and X;’s. The function C(¢) in
(5.7) is then given by

¢ 1 dG

©8 "z e~ OO

Thus, it only remains to show that the tails [7»(#)dt are asymptotically
negligible (since T" — « a.s., the event {T'" < 7} is asymptotically negligible).
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To this end, first notice that
G(2) G(t) - G(¥)

sup —— and sup x
t<T" G(1) . t<T™ G(t)
are bounded in probability [see Zhou (1991)].

Second, notice that the functions L7, F; clearly have a limit as n — « (in
fact, uniform in #). Denote this limit, with a little abuse of notation, by X 7b, F;.
The following lemma can be proved.

(5.9)

Lemma 5.2. If
(5.10) supfwz c2Y F2dC(t) <», ¢;=a;orb;,
n 70 1 1 ’
then

G(t) - G(t) &

—= ). c
G() i-1

where the function C(t) is defined in (5.8).

(5.11) v F(8) = B(C()) T ¢.F(), inD[0,],
1

ProoF. This is essentially Theorem 2.1 of Gill (1983) with some general-
ization of the weight function A(2) [it takes the form L 7_;c; Fi(¢) here] and the
i.i.d. requirement. The fact that the Y;’s are not identically distributed here
again poses no difficulties (we use van Zuijlen’s inequality). The generalization
of the weight function can be accomplished by writing it as the difference of
two nonnegative, nonincreasing functions. Some of the details of this argu-
ment can be found in the proof of Theorem 2.4 of Zhou (1986). O

REMARK 5.2. Condition (5.10) basically requires that the tail of F; be small
compared to the tail of G. For instance, if KFF(t) < G@), Vi for some
constants K > 0, B < 1, then (5.10) holds. See also Remark 3.1.

Let us deal with the tail part of the second term of (5.5) first. Because of
(5.11),

PUWﬁG_Gimmnw>ﬂ

T 1

(5.12) —eP(fw’B(C(t))ib,-Fi(t)‘dt>e)
T 1

< %Efm|B(C(t)) Y b, F(t)|de.

The latter can be made arbitrarily small, as a result of the assumption (5.14)
below, by choosing a large 7. This together with (5.9) shows the tail part of the
second term of (5.5) is negligible.
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For the tail part of the first term of (5.5), notice that

ol BB ol
1 'ib,.[ﬁ,.(t)—H,.(t)]
S;E]; \/77 G(t) dt
(5.13) b 12
1 o Lo [ A(t) - Hy(2)]
s;j; E(ﬁ 0 ) dt
1 .= nEb2F,\"”
S;f, {_G(t) } dt
Assume
R
—_— S < ©  an
(5.14) 0| G

j,wC1/2(t)| Z ciFildt <o fore;, = a;orb,.
0

Then (5.13) can be made arbitrarily small for large 7. In view of (5.9), this
shows the tail of the first term of (5.5) is negligible.
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