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USING STOPPING RULES TO BOUND THE MEAN INTEGRATED
SQUARED ERROR IN DENSITY ESTIMATION!

By Apam T. MARTINSEK
University of Illinois

Suppose X;, X,,..., X,, are i.i.d. with unknown density f. There is a
well-known expression for the asymptotic mean integrated squared error
(MISE) in estimating f by a kernel estimate f,,, under certain conditions
on f, the kernel and the bandwidth. Suppose that one would like to choose
a sample size so that the MISE is smaller than some preassigned positive
number w. Based on the asymptotic expression for the MISE, one can
identify an appropriate sample size to solve this problem. However, the
appropriate sample size depends on a functional of the density that typi-
cally is unknown. In this paper, a stopping rule is proposed for the purpose
of bounding the MISE, and this rule is shown to be asymptotically efficient
in a certain sense as w approaches zero. These results are obtained for
data-driven bandwidths that are asymptotically optimal as n goes to infin-

ity.

1. Introduction and summary. Assume that X;, X,,... are ii.d. ran-
dom variables with unknown continuous-type density f on the real line. Based
on the random sample X, ..., X,, of size n, one can estimate f by the kernel
estimate

£ elh 1 x — X
(11) fn(xl n) nhn iglK( hn )’
where K is the kernel function and %, is the bandwidth. It will be assumed
throughout that K is nonnegative and A, > 0, £, = 0 as n — «. A popular
measure of the global performance of the estimate £,(-|k,) is its mean
integrated squared error (MISE), which is defined as

(1.2) Efi(f‘,,(xlh,,) ~ f(x))’ dx = f:E[(fn(xlhn) ‘f(x))z] dx.

Under certain regularity conditions, the following asymptotic expansion for
the MISE holds:

Ef” (fualh,) - f(x)) dx

— 0o

(1.3)

1 kY, > 2
— [ K2(t)dt + —4—h¢,[_ (f"(x)) dx+o(

nhn —

4
_ +h,,),

n
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where
ko= [ K (t)dt

[see Rosenblatt (1956, 1971), Nadaraya (1974) and Prakasa Rao (1983), Theo-
rem 2.1.7]. Put

o= [ (f(x)"ds.

It follows from (1.3) that the best asymptotic rate for k, is n~Y°. If h, =
cn~1/% where ¢ > 0 is fixed, then (1.3) becomes

kict

0}n_4/5 + o(n=%%).

(1.4) {% f_:Kz(t) dt +

A calculus argument shows that the best choice of ¢ [i.e.,, the one that
minimizes the leading term in (1.4)] is

- 1/5
(1.5) c*=k;2/5{j K2(t)dt} 9=1/5,
with corresponding MISE
- 4/5
(1.6) ([T KA de) 0o 4 o(n ).

In practice, of course, ¢* is unknown and must be estimated from the data.

Suppose that we wish to estimate the unknown density f with MISE no
larger than w, where w is a preassigned positive bound. In other words, the
goal is to achieve sufficiently good global fit, where lack of fit is measured by
the MISE. If an asymptotically optimal bandwidth is used [i.e., one for which
the MISE behaves as in (1.6)], a reasonable way to proceed is to require

- 4/5
(1.7) %k§/5{ ] K2(t) dt} 01/5n=4/5 < w.

This yields the sample size n*, which is the smallest integer greater than or
equal to
4/5 g1/5 5/4

(1.8) [gkgﬁ{ j:K2(t) dt} —

However, if @ is unknown, this sample size is also unknown. The expression
for n* suggests the following sequential procedure. Define the stopping rule
T, = first n such that

5/4
5 - 509, +b,)"
—bL2/5 2 n n
(1.9) n> [4k2 {f_mK (t) dt} ],

where 6, is an estimate of 6 based on X,..., X,, and b, > 0, b, — 0. Once
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sampling is terminated, f will be estimated by

A 1 L x—X;

(1.10) fwamT = ) K( l),
( W) ) ..,TwﬁTw i=1 i;’Tw
where
- /5 1
(1.11) h,= k2‘2/5{f K3(t) dt} {bpw,, +b,}) T nVP
is an estimate of the optimal bandwidth that is in turn based on an estimate
()BWn of 6.
The estimate 0 used in the stopping rule T, will be either

(1.12) b(Ra)= [ (Fr(xlh,)) da,

where f(-|k,) is a kernel estimate of f using the kernel K but with a
bandwidth £, that is wider than & ,, or else

(1.13) 82°K(k,) = (n/(n - D){X(k,) — n"'h;°K D+ K2(0)},

where * denotes convolution. §3C%(% ) is in effect a bias-corrected version of
0K based on the work of Hall and Marron (1987). Both estimates assume of
course that K is at least twice differentiable. The estimate OBW . used to
estimate the optimal bandwidth will be either 8X(% gy, ,,) or 85°K(h 5y, ). The
construction of the plug-in bandwidth £, follows the ideas of Woodroofe
(1970) and Nadaraya (1974); for more sophlstlcated versions and a comparison
of them with least squares cross-validation, see Park and Marron (1990). The
constant b, is added to the estimate of 6 for technical reasons that will be
apparent in the proof of the following theorem.

THEOREM 1. Assume f is bounded and twice differentiable, that f" is
uniformly continuous and square integrable and that K is a symmetric proba-
bility density function with compact support and continuous third derivative.
Assume further that h, = c;n™* forc; > 0 and 0 < a < 1/10,

(1.14) b, = c,n(10a=1/2+8

for some ¢, >0 and 0 <B < (1 —10a)/2, and hgy , = c;,,n‘“BW for some
c3>0and 0 <agy <1/50. Then as w — 0,

(1.15) T,/nt -1 a.s.,
(1.16) E(T,)/n% 1,

(1.17) [ [_:( frxlhz,) - f(x))2 dx]% -1 a.s.,
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and
00 A 2 1
( ) [/_w( frw(xl Tw) f(x)) dx] — 5
where the estimates of 8 are those given above.

RemARk. The assumption that K has compact support is not necessary,
but it simplifies the conditions that must be placed on K. The conclusions of
the theorem also hold for normal kernels, for example.

The proof of Theorem 1 is given in the next section. (1.15)-(1.18) assert
that the sequential procedure with stopping rule T, is asymptotically efficient,
in the sense that its MISE (and also ISE) are asymptotically equivalent to the
desired bound w, and this is accomplished with a sample size that is asymptot-
ically equivalent to n¥,. All asymptotics are for the case when the bound on the
MISE approaches zero, that is, increasingly better fit (in the limit, infinitely
good fit) is desired.

The sequential procedure given above requires a great deal of computation,
in part because the estimate of § must be completely recomputed after each
new observation. This suggests the desirability of using a recursive kernel
estimate of f” [see, for instance, Wolverton and Wagner (1969) and Yamato
(1971)]. Unfortunately, results parallel to (1.15)-(1.18) have yet to be obtained
for sequential procedures based on such recursive estimates. An alternative
method for cutting down the amount of computation is to resort to two-stage,
rather than fully sequential, procedures. In view of (1.9) and the assumptions
of Theorem 1, define m,(w) to be the smallest integer greater than or equal to

w—10/(9-10a-2p)
and my(w) to be the smallest integer greater than or equal to

. n 1/5 5/4
/8 {Oml(w) + bml(w)}

w

gkg/f'{ [:KZ(t) dt} — my(w)| ,

and estimate f by

fml(w)+m2(w)(x|;;’ ml(w)+m2(w)) ’

where A, is given by (1.11). Results analogous to those in Theorem 1 may be
obtained for this two-stage procedure. For details, see Martinsek (1990), which
also contains theoretical and simulation results for bandwidths &, = cn='/5,
where ¢ > 0 is fixed (nonrandom).

2. Proof of Theorem 1. We begin with a series of lemmas for nonran-
dom sample sizes. Assume throughout this section that the assumptions of
Theorem 1 hold.
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LEMMA 1. Asn — o,

(2.1) 0X(k,) >0 a.s.,
and .
(2.2) 05¢%(h,) >0 a.s.

Proor. This follows from Silverman (1978) and Lemma 1 of Nadaraya
(1974). O

Define

a,(xlh,) = flhle((x —9)/h,) f(y) dy = E(fo(xlh,))

dn(xlﬁn) = E( f;[(x|ﬁn))

LEMMA 2. For every positive integer m,

2m
(2.3) E{ bK(R,) — [ @i(xlh,)dx }=O(n_’"(1‘1°“))
and
P 2m
(4 E{[io8(h) - [ @ik ]| - 0(nmmion),

ProoF. This is immediate from the proof of Lemma 3 in Nadaraya (1974)
and (1.13). O

LeEmMA 3.  For every positive integer m, if h,n'/® — ¢ > 0, then
© . 2
E{l [* (Fatha) - analh,))’ do

(2.5) -
} = O(n=m/5).

—{(nhn)_lf:oKz(t)dt}n“‘ﬁ

Proor. This follows from Lemma 8 and the proof of Lemma 4 in Stone
(1984). O

LEMMA 4. For every positive integer m, if h,n'/® — ¢ > 0, then

(2.6) E{l[_w(f‘n(xlhn)—an(xlhn))(a,,(xmn)— f(x))dx }

= 0(n=om/5).
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Proor. By Bernstein’s inequality [cf. the proof of Lemma 2 of Stone
(1984)], if (+) denotes the absolute value of the integral in (2.6), for positive ¢
we have

(2.7 P[(*) = tn=*/%] < Zexp(—n'/%2/(2¢' + (2/3)c't)),

for some ¢’ > 0. It follows that

E{(n4/5( * ))2'"} < 4mf1t2""‘1 exp(—3n'/%t2/(8¢")) dt
0
(2.8)
+ 4m[mt2"“1 exp(—3n'/%t/(8¢")) dt.
1

The second term on the right side of (2.8) is boundéd by

4mI‘(2m)(8c’n‘1/5/3)2m = 0(n"2m/%),

The first term on the right side of (2.8) can be shown by a change of variable to
be O(n~™/%) and (2.6) follows immediately. O

Proor or THEOREM 1. We have the inequalities

1/57%/4

2/5 2 w w
(2.9) T, > |7k {[ K*(t) dt} e el

— 0o

and

A 1/575/4
/5 {OTW—1 + b'.r,,,-1}
w

5 ©
(2.10) T, -1< Zkg/ﬁ{ f_wKz(t) dt}

Moreover, from (2.9),

10/(9—10a—28)
] —> 00

5 1/512/5) [~ 12 e
(211) T, 2| ey} f_wK (t)dt)  —

as w — 0.

(1.15) for both estimates of 6 is an immediate consequence of Lemma 1 of
Chow and Robbins (1965), Lemma 1 above, (2.9) and (2.10). (1.16) will follow
from (1.15) if

(2.12) {w**T,: w < 1} is uniformly integrable,

and in view of (2.10) it suffices to establish uniform integrability of é%/w 4, for
both estimates of 6. By Lemma 2 and the Cauchy-Schwarz inequality, for
positive integers m > 1/2(1 — 10a), if LB(w) denotes the lower bound (2.11)
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)

for T,

d

éT,,,—l - f_:dsz—l(x|ilTw—1) dx

o ~ 2m
= Z E{ én - f di(x|hn) dx I(Tw~1=n)}
n>LB(w)-1 —o
® _ 4m
< ¥ El/z{ 6, — [ a2(xlh,) dx }Pl/z(Tw - 1=n)

(213) n>LB(w)—-1
— 0(1) E n~m(1—10a)P1/2(Tw - 1= n)

n>LB(w)—1
1/2 1/2
< 0(1)( Yy n‘z’”“‘lo"‘)) ( Y P(T,-1= n))
n>LB(w)—-1 n>LB(w)—-1

= 0(1)( Y n*zmﬂ—wa))l/2 = o(1)

n>LB(w)—-1

as w — 0, since LB(w) — ». Moreover, by Lemma 1 of Nadaraya (1974),

2m
(2.14) supE{l[ dszq(mewq) dx — 0’ } < oo,
It follows from (2.13) and (2.14) that all positive powers of éTw_l are uni-

formly integrable, proving (1.16).
Define

- s
(2.15) ™=k {f_wK (t) dt}

- ~-1/5
X {f E?( f;(xlhpw,,)) dx + bn} n-13,

To establish (1.17) and (1.18), we will first prove analogous results for £,(-|r,).
Write

7 (nten) - 1o | &
- {Zkg/s(fle(t) dt)4/591/5} leu‘f/f’

T2 [ (frfxlrn,) - F(x)) dx

— o0

(2.16)
+

5 . 4/5
— —h2/5 2 1/5
4 {f_wK (1) dt} 0

wT25"
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From (1.15), the first term on the right side of (2.16) converges almost surely
to 1. From Lemmas 2 and 4 of Stone (1984) and Lemma 1 of Nadaraya (1974),

5 - 4/5
nt® [~ (fulalr) - F(0)) d {;kéﬁ(/_;@(t)dt) 01/5}40

and in view of (1.15), this implies that the second term on the right side of
(2.16) vanishes almost surely, proving

(2.17) [[ (Fr(xlrr,) - f(x)) ]——»1 a.s.

An argument similar to (2.13) shows that all negative powers of w®/*T,, are
uniformly integrable (the rate on b, plays a crucial role here). Hence from
(1.15), the expectation of the first term on the right side of (2.16) converges to
1. Using Lemmas 3 and 4 above, an argument similar to (2.13) and Lemma 1
of Nadaraya (1974), it can be shown that all moments of

9 - 4/5
T4/5 /_ (fT (x|1'T ) _ aTw(thw)) dx — k§/5{f_ Kz(t) dt} 91/5

and

T4/5f (fT (x|7'T ) T,,,(x|7'T,,,))(aTw(x|7Tw) - f(x)) dx

vanish as w — 0. Moreover, since
01/5

o o 4/5
S [ (an(xlr) = f())" dx > kg/5{f_ K*(t) dt} -

as n — « [this is part of the proof of (1.3)], an easy argument shows that all
moments of
01/5

9 w 4/5
TA/5 [_ (ar(xlrr,) — F(x)) dx—k§/5{ f_sz(t) dt} -

vanish as w — 0. Combining these observations with uniform integrability of
all negative powers of w5/“T, and the equality

f_:( frfxlrs,) — F(2)) dx
= [ (frdaler,) = anetrn,))’ ds
+ 2[ ( (xl7r,) aTw(x|7Tw))(aTw(x|q-Tw) - f(x)) dx

® 2
+f (anfalrr,) - F(2)) dz
shows that the expectation of the second term on the right side of (2.16)
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vanishes as w — 0, and this shows
o, . 9 1
2.18 E — dx|— 1.
(2.18) | netrn) 1) a5

By a slight generalization of the proof of Theorem 2 in Nadaraya (1974), we
have for all positive integers m,

(2.19) E[{ S (Fu(xlh) - f,,(x|-r,,))2dx} ,,,] — O(n-2m+20many).

Because agy < 1/50, it follows from (2.19) that for all positive integers

E (Tw)am/s{f

— 00

o0

(fTw(mew) - fTw(xlTTw))z dx} '"]

® . . . 2m
= E El:nsm/5{f_m( fn(xli;’n) - fn(xh'n))2 dx} I(Tw=n)]

n>LB(w)
o 4m
(220) . ¢y E1/2[n16’"/5{ [ (Fu=lk,) - f,,(xlf,,))zdx} JPI/Z(Tw=n)
n>LB(w) -

— 0(1) E n8m/5—2m+20manP1/2(Tw =n)
n>LBw)

1/2
< 0(1)( y n16m/5—4m+40ma,,w) 2 o(1)
n>LB(w)

as w — 0. Because all negative powers of w®/T, are uniformly integrable, by
the Cauchy—-Schwarz inequality and (2.20),

@2y LB|{[ (Frlelhn) - Frlolrn) d)] - o)

as w — 0. (1.18) now follows from (2.18) and (2.21).
To prove (1.17), note that from Silverman (1978),

(2.22) n/5(h, - 1,) = o(n=*/1%) as.

(recall the assumption on gy ,). Combining (2.22) and an almost sure
version of the method used in the proof of Theorem 2 of Nadaraya (1974)
yields

(2.23) n*/5 f_m (fn(x|ﬁn) - fn(x|rn))2dx -0 as,

as n — «. (1.17) now follows from (1.15), (2.11), (2.17) and (2.23). O
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