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STATISTICAL INFERENCE FOR CONDITIONAL CURVES:
POISSON PROCESS APPROACH

By M. Faik anp R.-D. REiss
Katholische Universitdt Eichstitt and Universitit GH Siegen

A Poisson approximation of a truncated, empirical point process en-
ables us to reduce conditional statistical problems to unconditional ones.
Let (X,Y) be a (d + m)-dimensional random vector and denote by F(-|x)
the conditional d.f. of Y given X = x. Applying our approach, one may
study the fairly general problem of evaluating a functional parameter
T(F(-1x,), ..., F(-|x,)) based on independent replicas (X,,Y)),...,(X,,Y,)
of (X, Y). This will be exemplified in the particular cases of nonparametric
estimation of regression means and regression quantiles besides other
functionals.

1. Introduction. Influenced by the articles of Nadaraya (1964) and
Watson (1964), the nonparametric estimation of the regression function
E(Y|X = -) aroused an increasing interest. Since E(Y|X = x) is the condi-
tional mean, that is, the mean value of the conditional d.f.

F(-lx) =P(Y < "X = x)

Qf Y given X = x, one may write
E(YIX =x) = [yF(dylx).

For estimating the mean and the conditional mean one may utilize the
sample mean and, respectively, certain conditional sample means as, for
example, those defined in (4.3). Other functionals of the conditional d.f. are of
interest as well, even if one is only interested in the question of evaluating the
conditional mean. Recall that the median is another measure of the center of a
distribution. Moreover, in robust statistics one studies trimmed means or
solutions of certain equations to obtain estimators of the mean that are robust
against errors and the deviation of the actual model from certain parametric
models. The sample median is a robust statistic of that type in a limiting sense.
Notice that an unconditional statistical procedure always has its conditional
counterpart.

For a detailed discussion of such statistical topics we refer to Huber (1981)
in the unconditional setup and, in the conditional case, to Stone (1977), as an
early important reference, and Stute (1986), Hérdle, Janssen and Serfling
(1988), Samanta (1989), Truong (1989) and Manteiga (1990) to cite the most
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recent contributions. Our approach enables a unified treatment of such condi-
tional questions to some extent. The primary aim of this paper is not to discuss
various specific applications, but to present the new method.

The basic tool of our approach is a Poisson approximation of truncated,
empirical processes. The line of research taken up by Falk and Reiss (1992)
will be crucial for the present paper. Apart from replacing the original point
process by a Poisson process with the same intensity measure [see also
Deheuvels and Pfeifer (1988) and Reiss (1989)], we adopt the machinery
available for Poisson processes to achieve a further simplification of the
statistical model. The final Poisson process only depends on our target
‘““parameter,” namely, the conditional d.f. F(:|x).

In Section 2 the basic method and basic theorems are developed in the case
of conditioning at a single point. The extension to several points is the topic of
Section 3. Our examples in Section 4 will primarily concern the conditional
(= regression) mean and the conditional median where the second parameter
will be studied within the more general framework of conditional quantiles.
Other functional parameters that are dealt with are the conditional d.f. itself
and the functional parameter related to U-statistics. Finally, the relevance
and importance of the projection pursuit technique is indicated in another
example.

2. Approximate Poisson model. Let (X,,Y)),...,(X,,Y,) be indepen-
dent replicas of the random vector (X,Y), where X is R%valued and Y is
R™-valued; that is, (X, Y) is (d + m)-dimensional. Let x = (x,,..., x;) € R? be
fixed. Our results will concern the conditional d.f. F(-|x) of Y given X = x.

Suppose that (X,Y) has a Lebesgue density, say f(z,y), for z near x and
that the marginal density of X, say g, is continuous at x with g(x) > 0.

We consider only those observations from the sample (X,,Y,),...,X,,Y,)
where the first coordinate lies in a small cube in R? with center x; that is, the
statistical inference is based on (X;, Y;) such that

X, e n [x —al/d/2 x; + al/d/2] = [x al/?/2 x + aln/d/Z]

witha, = (a,,,...,a, ) €0, ®)? converging to zero as n — .
Speaklng in terms of empirical point processes, we investigate the perfor-
mance of the process N, defined by

N.(B) =¥ e xyavixy(BNS), BeB™,
i=1

where S i=[—1/2,1/2]® X R™, £,(-) denotes the Dirac measure with mass at
z and the operation (X; — x)/al/? is meant componentwise; that is, with
X;,=(X;,,...,X; ;) we have

X; - x)/ay? = ((X; ; - J)/al/d)
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Put
v(n) = H al/d.

Notice that y(n) =cn)ifa,,= - =a,q4=cn).

We will prove in the followmg that, under certain regularity conditions on
the density f, the truncated, empirical point process N, may be approximated
(in Hellinger distance H) by the Poisson process

(n)
Ny = Z Ew;,w,)

i=1
where 7(n) is a Poisson r.v. with parameter ng(x)y(n), U; is uniformly
distributed on [—1/2,1/2]¢, W, is distributed on R™ according to the condi-
tional d.f. F(:|x) of Y given X = x and 7(n),U,, U,,...,W;,W,,... are inde-
pendent.

Given random elements X and Y we will write

1/2
H(£(X),2(0) = ([ (¥ - )" du)

for the Hellinger distance between the distributions .#(X) and £(Y) of X
and Y where py and py are u-densities of the distributions of X and Y.

THEOREM 1. Suppose that for 8 = (8, ...,8,) in a small neighborhood of
0 € R? the following condition holds:

(2.1) f(x+38, )% =f(xy)"*{1+0(Ir(y)}, yeR™

for some real-valued function r satisfying [r*(y) fx,y)dy < .
Then if |a,| is sufficiently small,

H(Z(N,), Z(N¥)) = 0(y(n) + (ny(n))*|a}?|).

The crucial point of the preceding approximation is that the random vectors
Y; belonglng to the X; in a neighborhood of x may approximately be replaced
by some i.i.d. random vectors W, that are distributed according to the condi-
tional d.f. F(-|x) that is central to our investigations. This opens the way to
tackle the estimation of functionals of F(-|x) by means of standard arguments.

Remargs. () If @, ;= -'* =a, 4= c(n), then the bound in the preced-
ing theorem reduces to O(c(n) + (nc(n)(d+2)/ a)1/2),

(ii) Condition (2.1), which is suggested by the mean value theorem, is
closely related to the Hellinger differentiability of the path of conditional
distributions

P,=P(Ye X=x+38} »>P,=P(Ye-X=x}, [§->0,
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namely,

(f(x +3,) )”2 _ (f(x,y) )1/2{1 , 3ne)
&(x +3) &(x). 2

for some real-valued remainder function r; satisfying

+ 0(siry())|

[ri) f(x,y)dy ~ 0 asls| -0,

and (z,y) = L¢_,2,y; denoting the inner product on R?. Moreover, the R?-
valued function h is called the Hellinger derivative of the path P;.

Hellinger differentiability, which was introduced by Le Cam (1966), is one of
those differentiability concepts useful in connection with general asymptotic,
statistical theory [see also Pfanzagl (1985)]. We particularly refer to Theorem 2
where a refinement of condition (2.1) will be utilized.

Finally, notice that |al/¢| may be bounded away from zero, but ny(n) - 0

as n — o,
The following two auxiliary results are crucial for the proof of Theorem 1.
The first one is taken from Falk and Reiss [(1992), Theorem 2].

LEmMa 1. Let N, be a Poisson point process on R%*™ with the same
intensity measure ., as the empirical point process N, ; that is,

pa(B) = E(N,(B)) = E(N,(B))
=nP{(X-x)/aY/%Y)eBnS}, BeB™.
Then,
H(£(N,), Z(N,)) < 8'/2P{((X - x) /a/?,Y) € S}

= 32P(x — a/?/2 <X < x + al/%/2}.

The next result is immediate from an inequality given by Liese and Vajda
[(1987), proof of Corollary 3.31].

LeEmMA 2. Let N,, N, be Poisson point processes on R* with intensity
measures having densities p,, p, w.r.t. some dominating measure v. Then

HY(LN), £(N) = 2(1 - exp( =3 [ (012 - p¥?)" )|
< [(pY? - pY?) dv < [Ip, — poldv.

Now we are ready to establish the proof of Theorem 1.
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ProOF oF THEOREM 1. The intensity measure u, of N, is determined by (if
la,| is small)

Mn([_l/z’ti]?=1 X (—oo, sj]_',:l) = ENn([_l/z’ti]‘i:l X (_°°’ sj]:ll)
=nP{Y<s,x—al/%/2<X<x+ al/t},

where s =(s,...,5,) €R™ and t =(¢,...,¢;,) €[-1/2,1/2]%. The last
term equals

n z,y)dzd
‘/(‘—oo,s]jgx—ah/d/Z,x+aL/dt]f( y) y

= ny(n) [

x + al/%z,y)dz dy;

( —o,8] f[— 1/2,t]f( y) y

that is, u,, has the Lebesgue density

(2‘2) pn(z’Y) = n'Y(n) f(x + ah/dz,Y)l[—l/Z, 1/2]d(z)’ z € Rd’ y € Rm'

Let now N;* be a Poisson process with intensity measure u,. Lemma 1
implies

H(L(N,), £(N;*)) < CPx - /2 s X < x + a/%/2)

=C z)dz
'/[‘x—al,,/d/2,x+al,{d/2]g( )

(2.3)
=Cy(n)[

x + a/%z) dz
[—1/2,1/2]"g ( <°2)

= 0(y(n)).

Denote again by F(-|x) the conditional d.f. of Y given X = x. The intensity
measure u* of N is determined by

d
#a([=1/2,8] X (==, 8]) = ng(x)y(n) F(slx) [T (£ + 1/2)
d
=re@y(m) [T+ 1/2) [ fxy)/8(x)dy

=ny(n) f( o f[ V) A2,

where t € [-1/2,1/2]%, s € R™. Consequently, u* has the Lebesgue density

(24) pr(z,y) =ny(n)f(x, Y)l[-l/z, 1/2¢(2), ze Ry € R™.
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Lemma 2 yields

HY(L(N), Z(N)) < [ (polz9) - pi(z.y)"?) dzdy
= n'y(n)/:g( f(x+ aln/"’z,y)l/2 - f(x,y)l/z)2 dzdy

(2.5) _
()L )
x O(|aY?z[*r(y)*) dz dy

- 0(ny(n)|a/?[’)

by condition (2.1). The assertion of Theorem 2 now follows from (2.3) and
(2.5). O

According to Theorem 1 we know that those X; falling into the cube
[x — al/?/2,x + al/?/2] can asymptotically be replaced by random vectors
that are uniformly distributed on [—1/2,1/2]%. As a consequence there is
asymptotically no loss of information if we consider, in place of the empirical
point process N,, the marginal process N,(:|x) in the second component;
compare this with the technical remark made in Section 4, Example 3. We
have

n
N,(Alx) =N, (R¢x A) = Y eYi(A)exi([x —al/é/2, x + a{{"’/z])
i=1
K(n)
=Y ez(A), AeB™,
i=1

where
K(n)=Y exi([x —al/?/2, x + aln/d/Z])
i=1

and the Z; are defined by the Y, values pertaining to those X, lying in
[x — al/?/2,x + al/9/2].

Clearly, N,(:|x) may be approximated by the corresponding marginal pro-
cess NX(-|x) of N¥. We have

(n)
Ni(-lx) =Ny (R X ) = ¥ ey,
i=1
By passing from the original process to the marginal one, the dimension of
the involved space is reduced. This will enable an improvement of the bound
given in Theorem 1 by imposing a stronger condition on f. This condition
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comes more closely to the Hellinger differentiability of the path
=P{Ye - X=x+3}, |3 small,

mentioned above.

THEOREM 2. Suppose that for 8 = (5,,...,8,) in a small neighborhood of
0 € R? the following condition holds:

(2.6)  f(x+3,y)"" =f(x,y)"?{1 + (3, h(y)) + O(I31"**r(y))}

for some B > 0, where h and r satisfy the conditions

J(B®I* + r)*) f(x,y) dy < .
Then, if |a,| is sufficiently small,

H(L(N,(-%)), Z(N}(:%))) = O((r) + (ny(n))"*alye|" ™7,

REMARK. If we choose a,;=a,,= """ =a,,=c(n) and if g =1,
which is a typical value, then the preceding bound equals O(c(n) +
(ne(n)@+4/4)1/2) compared to O(c(n) + (nc(n)@*+2/4)1/2) in Theorem 1.

ProoF oF THEOREM 2. With the notation of the proof of Theorem 1 we
have

H(Z(N(:1x)), £ (N (- 1x)))
< H(ZL(N,(+[x)), L (N;*([x)))
+ H(Z(N(o[x)), Z (N (- [x)))
< H(Z(N,), Z(N;*)) + H(L (N> (- %)), LN (- [%)))

by the monotonicity theorem due to Csiszar (1963) [see also Liese and Vajda
(1987)] where N**(-|x) denotes the marginal process in the second component
pertaining to N**.

From the proof of Theorem 1 we know that H(_#(N,), Z(N;*)) = O(y(n)).
Moreover, the densities of the intensity measures pertaining to the Poisson
processes N*(-|x) and N}(:|x) on R™ are given by

(2.7)

Pu(¥1%) = ny(n) [ f(x +aY?z,y)dz, yeR"

[-1/2,1/2)¢

and
pr(ylx) =ny(n)f(x,y), yeR™
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Consequently, by Lemma 2 and by condition (2.6) we obtain

HA(L(NX*(+[x)), L(N¥(+[x)))

/2 (1/2\2
< [ (Pa(31)"* = pX(vix)""?) dy
1/2 2
=ny(n) [ { ( f[ Lo 1o 5 BL2.Y) dz) - f(x, y)“z} dy

(2.8) ny(n)mef(x, y){[[[—l/z,l/zld(l * <a;/dz’h(‘y)>
2 1/2 2
+0(|aln/dz|1+ﬁr(y))) dz] - 1} dy

(1 + (al/?z, h(y))
-1/2,1/21 "

< nv(n)mef(x,Y){f[

+O(|aln/¢7lz|l+ﬂr(y)))2 - 1] dz}2dy,

where the last inequality follows from [a'/2 — 1| < |a — 1], @ > 0.
The inner integral is of order

0| ay*"Ih(y) [ +|al <[ **r(y)®
+lal/ )| +|al 4P () l|r(v) )
by the fact that

f[—l/z 1/2]¢<aln/dz’h(y)> dz = 0.

Consequently,
(2.9) H(Z(N*(-|x)), L(NX(-|x))) = 0((ny(n))1/2| aln/dll+min(l,ﬁ)).
Combining (2.7) and (2.9) the proof is complete. O

3. Extension to several points. Next we will generalize the preceding

results for a single point x to a set {x,,..., x,} of several points where
p = p(n) may increase as n increases.
Consider now only those observations from the sample (X,,Y)),...,(X,,Y,)

where the first coordinate lies in one of the cubes with center x,V=1,...,p;
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that is, we consider only those (X;,Y,) such that
P
Xi € U Iv’
.o v=1

where

I =1

v v

= [xv_alrt<(3/2’xv+ah<g/2]’ v=1""’p’
and

X, =(%,1,---,%,4) €R?

d
av,n = (av,n,l"“’av,n,d) € (O’ °°)

forv=1,...,p.

In this sequel, we suppose that I, 1 < v < p, are pairwise disjoint and that
the marginal density of X, say g, is continuous at x, with g(x,) > 0 for
v=1,...,p.

We therefore consider the vector (N, ,..., N, ,) of truncated, empirical
point processes on S? = ((—1/2,1/2]% X R™)? where

n
Nn,v(B) = Z s(mi-xu)/at/;‘,’,Yi)(B N S), B (S Bd+m.
i=1 ‘
The random vector (N, y,..., N, ,) will be approximated in Hellinger

distance by the vector (N,*;, ..., N,* ) of independent Poisson processes where

T,(n)

* . p—
N, =Y fu,.W,» V=1...,p,
i=1

7,(n) is a Poisson r.v. with parameter

d
ng(xv) ]._.!.a];){g,i =t ng(xv)YU(n)’
ie
U, ; is uniformly distributed on [-1/2,1/ 214, W, ; is distributed according to
the conditional distribution F(:|x,) of Y given X =x, and 7,(n),U, ,,
U, W, 1,W,5,..., v=1,..., p, are mutually independent. This result is

v

the content of the next theorem.

THEOREM 3. Suppose that for & = (8,,...,8,) in a small neighborhood of
0cR?andv=1,...,p,

(3.1) f(x, + 8, = f(x,,y)*{1 + 0(8Ir(y))}, yeR™,

for some real-valued function r, satisfying [r2(y) f(x,y)dy < . Then, if the
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bandwidth |a, ,| is sufficiently small,
H(./(Nn’l, e N, L) (NS, N,:'ip))
p

p 1/2
_o| ¥ y,,<n>+(z ny(n)|al/? ) ]
v=1

v=1

According to Theorem 3 the original processes may approximately be re-
placed by independent Poisson processes, a fact, that considerably simplifies
further statistical analysis. The independence of N,,..., N, originates
from the property of a Poisson process that the process evaluated at pairwise
disjoint sets yields a sequence of independent r.v.’s.

REMARK. If we choose @, , ; = ‘- =a,, ;= c(n), then the bound in the
preceding theorem reduces to O( pc(n) +( pnc(n)(‘“z)/ 4)1/2),

Proor oF THEOREM 3. Denote by 1\7,,’ , the nonstandardized empirical point
process pertaining to x; that is,

n
N, (B) =Y ex, v,(BN(I,xR™)), BeB*™v=1,..,p,
i=1

and put for B € B4*™,

P n p
N,(B) = Z_:ll\'fn,v(B) = ;ls(xi,Yi)(B N ( Ul x R’")).

v=1

Let now N** be a Poisson process with the same intensity measure as N,,. In
analogy to the proof of Theorem 1 we obtain from Lemma 1,

(3.2) H(£(N,), £(N;}*)) = o( éyv(n)).

Moreover, for v =1,..., p put
N¥*(B) = N*(Bn (I, xR™)), BeB*™.

Then N** v =1,...,p, are independent Poisson processes since I,, v =

n,v?

1,..., p, are pairwise disjoint and, moreover,
i~ p o~
*k _ ok
N¥* =Y N3

Next observe that

(3.3)
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Finally, denote by N} the standardized version of Nn"j’,'j. We have
H(-Z(N,1,..., N, ), Z(N}1,..., N¥.)
<H(A(N,,...,N,, p),./(Nn*"{, o NF%Y)
+H(ZL(N,...,N%), £(NFy, ..., NY.)
<H(Z(N,,,....N,,), ,/(N,zﬁ, o N:*))

+ H(./(N,;'i"{,. o NE), L(NF e N,;"’p))

» » 1/2
< 0( Z y,,(n)) + ( Z Hz(-/(N:,t)"/(N:,v)))
v=1 v=1

p P o |72
=0 gln(n)’r gl(nn(n)|a¥d| )) }

by the arguments in the proof of Theorem 1. O

Now let N,(:|x,) and N}(-|x,) be defined as in Section 2. Notice that
Ny(-|x,),..., NJ(-Ix,) are independent. The following extension of Theorem
2 is now straightforward by using the arguments of the preceding proof.

THEOREM 4. Suppose that for & = (8,,...,8,) in a small neighborhood of
0cR?andv=1,...,p,

(34) f(x,+8,)" =f(x,,5)""*{1 +(3,h,(y)) + O(3]"**r,(y))}

for some B, > 0, where h, and r, satisfy [(|h,W|* + r,»H f(x,,y) dy < .
Then, if |a, ,| is small,

H(Z(N,(:%y), ..., Ny(-[x,)), Z(NF(-Ix1), ..., N (“Ix,)))
1/2
Z v,(n) + (Z (ry(n)|ald 2+ mind, B”»)) }

v=1

Remark. If we choose a,,,= - =a,,4=c(n), v=1,...,p, and if
B = 1, then the preceding bounds equals O(pc(n) + ( pnc(n)“”“)/ d)1/2),

4. Applications to conditional curve estimation. We are interested
in the performance of functionals of the empirical processes N, or N,(-|x) as
estimators of functional parameters of the conditional d.f. F(-|x). In Sections 2
and.3 we calculated the error that is made when the empirical processes are
replaced by the Poisson processes N} and N;*(:|x). It remains to deal with
iid. random variables W; with common d.f. F(-|x) and a random sample size
given by a Poisson r.v. Making use of a further reduction (cf. Theorem 5
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and Lemma 3), classical results for nonrandom sample sizes can be made
applicable.

Let us recall some basic concepts of standard statistical inference. Denote by
F,, the empirical d.f. based on 7 i.i.d. random variables with common d.f. F. To
estimate a real-valued functional parameter T'(F) we may utilize a statistical
functional T'(F,) or T,(F,). We give a list of examples:

T(F) T(F,)or T(F,)

F(®) empirical d.f. E,()

F1(q) empirical g-quantile F;(q)

f z2dF(2) empirical mean f zdF,(2)

[ [r(z,5) dF(z) dF(y) U-statistic [ [z, y) dF,(2) dF,(y)
F(t) kernel estimator F, gy ®)

F~1(q) kernel estimator F; L),

where given a kernel u with [u(y)dy = 1,

1 t—y y
Fn,ﬁ(n)(t) =fB(n)u(B(n)) n(y)dy fU(B( )) Fn(y)

and

1 q-y
-1 _ -1
Fn,ﬂ(n)(q) ‘/(‘) B(n)u(ﬁ(n) )Fn (y) dy
with U(z) = [% , u(y) dy. In the conditional setup we replace:

(a) the d.f. F by the conditional d.f. F(-|x);
(b) the functional T,,, if depending on n, by Tx,,, where again

n
K(n) = Z 1[x—a,,/2,x+a,,/2](Xi)§
i=1

(o) the empirical d.f. F,, by the conditional empirical d.f. F,(:|x) defined by

1
F(tlx) = Z 1o, t](Y)l[x —a,/2, x+a,,/2](X)
K(n) ;=

K(n)

=Koy L, YemaZ)

where the Z; are defined by the y-values pertaining to those X, lying in the
interval [x —a,/2,x + a,/2]. Put F,(-|x) =0if K(n)=0

Notice that there is a one-to-one correspondence between the empirical
point process N,(:|x) in Section 2 and the conditional, empirical d.f. F,(-|x)
(or, alternatively, the pertaining empirical counting process). The use of
empirical d.f.’s instead of empirical measures merely acknowledges traditions
in statistics.

In the following considerations the standard normal distribution is taken as
the limiting distribution because this is perhaps the most important case.
Other examples may be obtained by treating sample extremes and conditional

(4.1)
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sample extremes where the limiting distributions are different from the nor-
mal one.

THEOREM 5. Suppose that, with o > 0, § € (0,1) and C > 0,

< Ck79, keN,

pl/2
(4.2) sup P{ (TW(Fe) —T(F(:x))) < t} - ®(2)

g
where the empirical d.f. F, is based on k i.i.d. random variables with
common d.f. F(:|x); it is implicitly assumed that the r.v.’s T,(F,) are
measurable.

Then, with F,( |x) denoting the conditional empirical d. f. in (4.1), we have

p P{ (na,g(x))"*

(TK(n)(Fn('lx)) - T(F( |x))) = t} - q)(t)

< D(na,g(x)) ™" V*® + H(L(Ny(-|x)), Z(N;}(-|x))),

where D > 0 only depends on C [with the convention that Ty, is replaced by
T if (4.2) is formulated for T in place of T, ].

Proor. Recall that F,(:|x) is the empirical d.f. pertaining to N,(:|x). In
analogy to this notation one may write

(n)

Y L (W)

m(n) 2y 0

for the empirical d.f. pertaining to N;(-lx) = L]®ey,. Recall that
W, W,, W, ... are iid. r.v.’s with common d.f. F(-|x). If F, denotes the
empirical d.f. based on the sample W, ..., W, of size %, then, obviously,

Er(n) = Fn*(’x)

Check that Ty, (F,(:lx)) may be replaced by T, (F*(:|x)) =T, (F,,,)
within the error bound H(.Z(N,(:|x)), Z(N(-|x))). Now the asserted in-
equality is immediate from Lemma 3 applied to V, = T),(F},), 7 = 7(n) and
p =T(F(|x). O

Fr(-lx) =

LEMMA 3. Let 0> 0, 6 €(0,1), C >0 and u €R be such that for the
sequence of r.v.’s V;,V,, Vs, ...,

<Ck™%  keN.

sup
¢

Let v be a Poisson r.v. with parameter A > 1 that is independent of V,,V,,
Vi, ... . Then,

k1/2
P{ (V, — ) < t} - O(t)

ag

< DA —min(1/2,8)’

P{?(V, ~ ) < t} X0

where D only depends on C. (By convention we have V. = 0 if 7 = 0.)

sup
¢
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Proor. We have

sup P{;—/z(vf ) < t} ~ (1)

= sup
t

S

S[(Sl:p

+[N(sup|cp(tk1/2) - CI>(t/\1/2)|) d£(r)(k) + e,

AL/2
f(P{—a—(Vk —u) < t} - @(t)) d-£(7)(k)

P{ k:_/z(Vk —p) < t} - d)(t(%)l/z)

E1/2
P{ — (Vi — 1) st} — ®(t) )d/(f)(k)

sup
¢

)d_/(r)(k)

Applying Lemma 4 below we conclude that the first term is bounded by

DE(max(r,1))"%) < DA%, where D denotes here and in the following a generic
constant.

For the second term we have, by the mean value theorem,

J(suplo(ee®) — o(er/2)]) a2 () (k)

= fN(SLtlp{tp(f)ltl |k1/2 — Al/zl}) dZ(7)(k),

where ¢ is between tk'/2 and ¢A1/2. From the monotonicity properties of ¢ we
deduce that the preceding term is bounded by

Jsup {(o(t8172) + o(ext/%))el}lRV2 = 2721 d£ (1) ()

1/2 _ )1/2

< [Ns.jp{fp(t)ltl} —r— d-L(7)(k)

1/2 _ )1/2
+fs1t1p{qo(t)lt|}~7172——-d—/(7)(k)

|71/2 _ /\1/2|
<

B E( (max('r,l))l/2

sDE(

D
) + Al/zE“"'l/z - A1/2|)

1/2

1/2 \ D
1/2 _ 172 1/2 _ 172
max('r,l)) E(IT A/2| ) + Al/2E(|‘r A2))

1/2
D lr = A \2 / D |7 — Al
= /\1/2E 7172 1 AL/2 + AI/ZE 7172 1 )12
D on1/2 D
S‘I\_E((T—/\)) ='/\T/'§,

which completes the proof. O
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The following lemma has been crucial for the derivation of the preceding
auxiliary result.

LeEmMMA 4. Let 7 be Poisson distributed with parameter A > 1. Then
E((max(r,1)) ") < 24
for any & € (0,1).

Proor. We will prove that
2
E((max(,1))°) < ~E('")
and, hence, the Cauchy-Schwarz inequality yields

2 2
E(rA1)°< XE(T)H = TAT =207,

Check that
s a1 pL
E((max(f,l)) ) =e k{:lﬁ—! +1
Ceof§ L]
£
i 1 E+1
— p—A k 1—8+ 1
¢ {EIA TEN }
e—A © Ak+1
_ - pl-0
<2 3 {gl(k+1)'k +A}
- © Ak+1 s
k+1)
{kz=:1 (k+1)'( ) +/\}
2
< ;\'E(Tl_‘s).

The proof is complete. O

In order not to overload the present paper, we will merely treat some simple
examples to some extent where the statistical functional is given by T'(F,). A
more extended account of applications will be given somewhere else.

ExampLE 1 (Conditional distribution function). Put T(F) = F(y) where y
is fixed. We have

p { na,g(x)

sup
t

F(ylx)(1 - F(ylx))
= O((na,) %) + H(L(N,(*[x)), Z (N3 (" [x)))-

1/2
} (F,(ylx) — F(ylx)) < t} - O(t)
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ExaMpLE 2 (Conditional quantiles). Put T(F) = F~1(q), q € (0,1) fixed.
Assume that F(-|x) is continuously differentiable near F(:|x)~(q) with
f.(F(-1x)"%q)) > 0, where f,=F(-|xy. Then (4.2) is satisfied with u =
F(-lx)"Yq), 0? = ¢(1 — @) /f(F(-1x)""(g))? and & = 1/2.

Consequently, C

1/2
sup P{ (nangix))

t

(F.(-lx) "(q) — F(-lx) "(q)) = t} - @(t)
= 0((na,) %) + H(L(N,(*[x)), L(Nx("|x)))-

ExampPLE 3 (Regression function). Assume that (4.2) holds for T(F) :=
[2F(dz), u = [zF(dz|x) and o2 := [(z — u)?F(dzlx). Then

an| | 280”

(/an(dzlx) - sz(dzIx)) < t} - ®(¢)

= 0((na,) %) + H(L(N,(*|x)), Z(N("|x)))-
Notice that

n S —x n X —x
@D [emde) - ¥ Yo ] / £ uol 2]

an n

is the Nadaraya-Watson estimator with particular kernel uy, = 1,_,; 5 9. If
u, is replaced by some arbitrary kernel « with fu(z) dz = 1 vanishing outside
of [—1/2,1/2], then it is well known that the asymptotic normality holds with
o2 replaced by o%/u?(z) dz. Applying the Cauchy—Schwarz inequality we get

[uz(z) dz > (fu(z) dz)2 =1= fu%(z) dz

showing that the asymptotic variance is minimized by taking the uniform
kernel u,,.

ExaMPLE 4 (Conditional V-statistics). Let h: R2 - R be a symmetric kernel
such that [[lh(z,y)*F(dz|x)F(dylx) < », [|h(z, 2)|*/?F(dzlx) < © and o =
J(fh(z, y) F(dylx) — ny)?F(dz|x) > 0, where

wo = [ [h(2,y) F(dzlx) F(dylx) = T(F(:|x)).
Then the Berry—Esseen theorem for V-statistics [cf. Serfling (1980), Sections 5
and 6] implies that (4.2) is satisfied and, therefore,
1/2

pl (12.8(x))
%o

(f [1 ) Futdelo) Fulayla) = o) < t} 0

sup
t

= 0((na,) %) + H(L(N,(-|x)), L(N3(:[x)))-
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ExampLE 5 (Projection pursuit technique). The trouble with high-dimen-
sional data X; is that local areas of the sample space are almost empty
and, consequently, we will not be able to pick up local features such as
P(Y < 'IX = x) unless the sample, size is gigantic. To bypass this curse of
dimensionality, it is therefore reasonable to reduce the dimension of the
observations X; by applying projection pursuit techniques [see, e.g., Huber
(1985) and Hall (1988)]. One may estimate the conditional d.f.,

Fy(-|x) = P(Y < -K9,X) =x),

of Y given X in direction 9 where ¥ = (9;,...,9,) is a d-dimensional unit
vector.

Fix a unit vector 9 € R? and x € R. We consider now only those observa-
tions from the sample (X,,Y)),...,(X,,Y,) where the projection of the first
coordinate in direction 9 lies in a small interval in R with center x; that is, we
consider the empirical process

n

N,o(B) = ¥ &qo,xy-n/anxo(BNS), BeB™™,

where
S:=[-1/2,1/2] X R™.

It is clear that the results of Sections 2 and 3 are applicable with (X;,Y;)
replaced by ({9,X,),Y,).

For further applications of the preceding result to M, L and R estimators
one may apply Berry-Esseen theorems for the respective functionals as, for
example, given in the monograph by Serfling (1980). Since our results are
formulated with bounds on the remainder term of the approximation, we are
also able to investigate second order efficiency (deficiency) of kernel estimators
in the conditional framework [see Reiss (1989) for results in the unconditional
case]. One of the advantages of our approach is that highly technical investiga-
tions have merely to be carried out for the unconditional problem of i.i.d.
random variables [e.g., Falk and Reiss (1990)]. Several modifications of the
present approach are possible and have still to be explored in detail.
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on leave at the Philipps-University Marburg. He is indebted to Volker
Mammitzsch for providing a stimulating atmosphere.
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