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ON GLOBAL PROPERTIES OF VARIABLE BANDWIDTH
DENSITY ESTIMATORS

By PETER HALL

Australian National University

It is argued that mean integrated squared error is not a useful measure
of the performance of a variable bandwidth density estimator based on
Abramson’s square root law. The reason is that when the unknown density
f has even moderately light tails, properties of those tails drive the formula
for optimal bandwidth, to the virtual exclusion of other properties of f. We
suggest that weighted integrated squared error be employed as the perfor-
mance criterion, using a weight function with compact support. It is shown
that this criterion is driven by pointwise properties of f. Furthermore,
weighted squared-error cross-validation selects a bandwidth which gives
first-order asymptotic optimality of an adaptive, feasible version of Abram-
son’s variable bandwidth estimator.

1. Introduction. A drawback to traditional methods of kernel density
estimation is that fast rates of convergence can only be achieved using kernels
which take negative values. This means that a classical kernel density estima-
tor which enjoys a particularly fast rate of convergence must necessarily take
negative values over part of its range, usually out in the tails. That feature can
be disconcerting, to say the least, to a practical statistician.

The variable bandwidth method introduced by Victor [18], Breiman, Meisel
and Purcell [3] and Abramson [1] overcomes these difficulties to a large extent.
It provides many of the advantages of a fourth-order kernel estimator, without
the disadvantage of negativity. One drawback is the difficulty of computing an
appropriate bandwidth, and in this paper we address that important practical
problem.

Our contributions are twofold. First, we show that unless the underlying
density function has extremely heavy tails—so heavy that in one dimension
the sampling distribution must have infinite third moment—then unweighted
mean integrated squared error is not a useful measure of the performance of
Abramson’s variable bandwidth estimator. The reason is that if the unknown
density f has even moderately light tails, then tail properties of f drive the
bias contribution to mean integrated squared error. Indeed, tail properties
dominate to such an extent that properties of f within any finite region are
virtually overlooked if integrated squared error is used as the performance
criterion. For example, these problems can arise if the tails of the univariate
density f decrease like |x|™* as |x| — «, where a > 1. We shall show in
Section 2 that in this circumstance, the bandwidth which minimizes integrated
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squared error of Abramson’s estimator equals a constant multiple of n =A@,
where B(a) = 1/9 for a < 7/2 and B(a)11/5 as a@ - «. Now, n~1/? is the
size of the optimal bandwidth for variable bandwidth density estimation at any
fixed point, and n~/% is the optimal bandwidth size for a traditional fixed
bandwidth estimator. Therefore, the operation of minimizing integrated
squared error will drive Abramson’s variable bandwidth estimator away from
its pointwise optimum in the direction of its traditional fixed bandwidth
counterpart as the tails of f become lighter.

Second, we argue that in view of these results, one should consider weighted
integrated squared error as a measure of performance, and one might use a
weight function which vanishes outside a compact set. We show that in this
circumstance, a version of squared-error cross-validation may be used to select
the appropriate bandwidth for a practical, adaptive version of Abramson’s
variable bandwidth estimator and that this method produces a data-driven,
asymptotically optimal estimator. This result will be discussed in Section 3.

Some discussion of the pros and cons of cross-validation is appropriate here.
In the case of fixed-bandwidth density estimation, the disadvantages of cross-
validation have been noted by several authors (e.g., [10, 13]). Those disadvan-
tages include slow convergence rates and high sampling variability, and may be
alleviated by using more recent plug-in methods (e.g., [10, 13, 15])). However,
the latter approach requires explicit estimation of the integral of at least the
dominant term in an asymptotic formula for squared bias. The analogue of
that formula is highly complicated in the context of variable bandwidth density
estimators. There, bias is proportional to the fourth derivative of the inverse of
the density when data are univariate, and is even more complex in higher
dimensions. This complexity is compounded by the need to estimate the first
four derivatives of the density, and that is an awkward problem in itself. By
way of comparison, cross-validation achieves this goal implicitly, without the
complexity of an explicit approach, see also Jones [11]. Thus, it is not clear that
plug-in rules offer a compelling alternative to cross-validation in variable
bandwidth problems.

Construction of a practical variable bandwidth estimator entails a two-step
procedure. The first stage produces a pilot estimator using a fixed bandwidth
and the second stage yields the variable bandwidth estimator. To more clearly
explain the way in which the two bandwidths operate, we must define both the
pilot estimator and the variable bandwidth estimator. Let X,,..., X,, denote a
sample of p-vectors from the distribution having p-variate density f, which
we wish to estimate. Let K, the kernel function, be a known p-variate density
which is symmetric in each variable. The traditional form of kernel estimator
based on kernel K and bandwidth A, is

_ 1 » - X,
(L) ) = g LK

i=1

see, for example, Silverman ([16], Chapters 3 and 4). Abramson [1] argued in
favour of a variable kernel estimator in which the bandwidth for computations
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involving X, is taken inversely proportional to the square root of the density
at X;; thus, the estimator is

R 1 2 2 - X)) f(X)"*
(1.2) F2) = — Z’l.f(.fx")p/ K{(x )hf( ) }

where & is the constant of proportionality. Of course, the ideal estimator fis
not feasible because it depends on the unknown density f. A practical version
would have f replaced by the pilot estimator f defined at (1.1), giving

o no _ X)) F(X)?
(1.3) f(x)= f(x|h) = _l_p Z f(Xi)p/2K{ (= z)hf(X,) }

Construction of f demands ch01ce of two bandwidths—selection of h, for
the pilot estimator f and selection of & for the final estimator f.

We note that minor, but important, modifications should be made to the
definitions at (1.2) and (1.3), to ensure that the estimators enjoy the excellent
bias properties claimed for them by, for example, Abramson [1]. These modifi-
cations prevent very large X,’s, that is, X,’s a long way from x, from adversely
influencing the bias formulae. Details are given in Hall, Hu and Marron [8]. It
is sufficient to introduce an indicator function I{jx — X;| < (1 + |x|log ™1}
into the definitions, obtaining

{(x —Xi)f(Xi)”}
(1.4) h
xIf|x — X;| < (1 + lxl)log B™1),
1 (- X) F(X)"*
(1.5) F) = nh? 2y K{ h }

xI{|x — X;| < (1 + |x|)log B™1}.

Abramson [1], Silverman ([16], page 104f) and Hall and Marron [9] showed
that the advantage of f over f is that bias is reduced by an order of
magnitude, from A2 in the case of f to h* in the case of f, with relatively
little impact on variance. Hall and Marron proved that these advantages
extend to the feasible for f. Indeed, asymptotic bias formulae for f and f are
identical, provided A, is chosen reasonably close to the bandwidth which
optimizes performance of f. While the variance of f is a little larger than the
variance of f, both are of the same order of magnitude. General formulae exist
([6] for the bias of one-dimensional variable bandwidth curve estimators.

2. Mean integrated squared error of the ideal estimator. In this
section we show that in the univariate case, unless the underlying distribution
‘has particularly heavy tails, asymptotic properties of mean integrated squared
error (MISE) of the estimator 7, defined at (1.4), are driven by tail behaviour
of f. Therefore it would be most inappropriate to use MISE as a global
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criterion for measuring the performance of f. Similar results may be proved
for the p-variate case.

It turns out that for univariate distributions with densities whose tails
decrease like |x| ™%, where a > 1, the condition @ < 7/2 is necessary and
sufficient to ensure that MISE is not driven by tail behaviour of f. This
condition is equivalent to E(|X|®/®*¢) = w for all £ > 0 and fails (for example)
for the t distribution with v > 3 degrees of freedom. If a > 7/2, then the
bandwidth which minimizes MISE is of size n~©@~2/62-% and the minimum
MISE is of size n~2@«~D/6G2~9 [The exponent (o — 2)/(5a — 4) was formerly
called B(a).] As @ — o, n~@~2/Ga=9 _, n=1/5 gpq p~22-D/Ga=4) _, p=4/5
which is, of course, the size of MISE for an ordinary, nonvariable-bandwidth
kernel estimator. Thus, as the tails of the distribution become lighter, the
optimal global performance of 7 (as measured by MISE) converges to that of
an ordinary kernel estimator.

A key step in verifying these and other results is to develop a formula for
MISE. To that end, let us assume the usual bandwidth conditions » — 0 and
nh — . The variance contribution to MISE is easy to describe; it is

_ 1/2
fjarf= ;:l—zfvarlf(X)l/ZK{ (= X)hf(X) }

(2.1) XI{lx — X| < (1 + |x|)log h'l}]dx

/=7

A sufficient regularity condition is that K be bounded and compactly sup-
ported and f be bounded.

The bias contribution is more difficult to describe. Indeed, Silverman [16]
used a computer algebraic manipulation package to calculate the bias of f(x)
in the case of fixed x, and in the present instance we need to compute the
integral of the square of this formula. It greatly simplifies our proof if we
suppose that f is an analytic function, and so we shall make this assumption.
We ask that there exist constants C;, C,, C3 > 0 such that

(22) f(x) ~Cilel™,  |(d/dx)* f(x) 7 | ~ Colal*™* as lxl — o,
and for all integers s > 1 and all x,
(2.3) (s) 7Y (d/dx)= 2 f(x) ~°| < €21 + )@ P2

Condition (2.3) is typically satisfied by an analytic function enjoying the
property (2.2); consider for example the function f(x) = C,(1 + x2)~*/2. We
assume in addition that K is a bounded symmetric, compactly supported
probability density.
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The bias contribution to MISE assumes three different forms, depending on
whether a < 7/2, a = 7/2 or a > 7/2. Define

a(x) = { fuK(u) du}(4) "(d/dn)* ()™
if @ < 7/2,
a(x) = 2C;a~ %@ [ [K{Cu(1 + 2@/ 01y 2/
+K{Cru(1 — x@/ 071y~ %)} 42~/ dy — Cyx~,
if @ >17/2,

| a(x)ds, Cifa<7/2,

— 00

b= (8/3){]u4K(u) du}2(41)‘2c§, if a =7/2,

2[ a(x)" dx, if a > 7/2,
0

18, ifa <7/2,
H= hSlogh_l, if a = 7/2’
h2(2a—1)/(°l_2), if a > 7/2.

[The convergence of [a? in the case a > 7/2 follows from arguments in steps
(i) and (ii) of Case (b) in the proof of Theorem 2.1.]

THEOREM 2.1. Under the stated conditions, [~ (bias f)? ~ bH as h — 0.

REMARK 2.1. In the case a > 7/2 we have H = p2Ze~D/(@=2) —
h8h~22a=D/(2=2) implying that H decreases at a slower rate than A8 Hence,
it is only in the case a < 7/2 that h decreases at rate h®; the rate is slightly
slower than A® when a > 7/2.

REMARK 2.2. When a > 7/2, the constant b appearing in the asymptotic
formula [(bias)? ~ bH depends on f only through C; and «, which describe
only the extreme tails of f. Therefore, except for the case a < 7/2, asymptotic
properties of the bias contribution to MISE are driven by tail behaviour of f.

ReMaARk 2.3. Combining Theorem 2.1 and expansion (2.1) we see that
MISE admits the formula

MISE=[E(f—f)2=]varf+f(bias 7Y
~ (nh)_l(sz)(ff3/2) + bH.
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This formula, and elementary calculus, may be used to deduce the bandwidth
which asymptotically minimizes MISE to first order; it equals a constant
multiple of 7,, where

n-1e, ifa<17/2,
m={(nlogn)™?, ifa=1/2,
n=@-2/Ga=8  if 4> 7/2.

The minimum MISE equals a constant multiple of 7,, where
n=879 ifa<7/2,
ng = { (n"%log n)l/g, ifa=17/2,
n~2@a-D/Ga=b - if o >.7/2.

REMARK 2.4. There exist analogues of all these results in the case of a
density f whose upper tail decreases like x™* and lower tail decreases like
lc|~*2, where a;, a; > 1. Asymptotic properties of MISE are determined by the
larger of a; and a,. In particular, the minimum value of MISE is of order
n~8/% if and only if max(a;, ;) < 7/2, and in this case the bandwidth which

minimizes MISE is of size n~1/%.
Proor oF THEOREM 2.1.

CasE (a). a < 7/2. It is known (Sllverman [16], pages 104-105 and Hall
and Marron [9]; see also [6]) that Ef(x) — f(x) = h%a(x) + O(h®) for fixed x.
Since @ < 7/2, then by (2.2), fa? < ». Therefore the formula [(bias)® ~ h®a®
is at least plausible. Rigorous verification is along lines outlined in step (i) of
Case (b).

CasE (b). a > T7/2. Let 0 <& <A < », where ¢ is small and A large. Put
1 = h=%2/(2=2 and write

" (bias)? = + + bias)?
(2-4) ’[—w( laS) ("I‘xlsd sl<|x|<al |x|>).l)( )
=A +A, +A,

say. We estimate A,, A, and A, separately, showing first that for any é > 0,
we may choose ¢ so small and A so large that for sufficiently small A,
A, <8h81%*~" and A, < 8h®12*~7. Then we prove that for a constant b, =

b(e, A), whose limit as ¢ — 0 and A > s b, we have A, ~ b,h81%*~ 7. Note
that h8l2a 7 _ h2(2a 1)/(a— 2)

(i) Bound for A;. In the range |x| < e/ we compute a bound for bias by using
Taylor expansion. Techmques in [6] may be used to show that the coefficient of
h® in a Taylor expansion of Ef(x) — f(x) is zero for odd s and is bounded in
absolute value by c§(1 + |x|)~**©@~23/2 for even s, where ¢, c,,... denote
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generic positive constants. Therefore,
|Ef (2) = f(x)| < L h¥es(1 + lal) "7
(2.5) s=2
= R4c3(1 + Ixl)* {1 — hZey(1 + lx1)* 7%},
assuming that h2c,(1 + |x])*~2 < 1/2. The latter inequality is satisfied if
lx| < el and ¢ is sufficiently small. For such an &,

A /lxlsEz{Ef(x) ~f(x)) dx < c3"8[:(1 +x)% % dx < ¢ h®(el)* .

Since a > 7/2, then given 6 > 0 we may choose ¢ > 0 so small that A; <
F) h8l2a—7-
(ii) Bound for A;. In the range |x| > ¢l, we use the inequality

Ef(x) < [ f(x — hy)*K{yf(x — by)"*} dy

= 2a—1h—(2/a)—1|x|2/a
(2.6) x[‘”[ f(Ix/hulz/"‘)a/zK{h‘l(x _ Ix/hulz/"‘)f(lx/hulz/“)l/z}
0

(= b/l )R R+ b/l ) (e Rl ) )|

X u=@/9~1dy,

(To obtain the second identity, change variable in the first integral, from y to
u > 0, where y = h~ % + A~ lx/hul**)

Let L(x,u)u~% "‘) ! denote the integrand of the second integral on the
right-hand side of (2.6). Assume that |x| > Al. If in addition |x/hu| < 1, then,
since K is compactly supported, there exists a constant ¢, > 0 such that

L(x,u) < 2(sup f3/?)(sup K)I(lx| < c,h).

But I(Jx| <c,h) =0 for x > Al and h sufficiently small, and so we may
assume throughout our estimation of L(x, u) that |x/hu| > 1.

Define K, (x, u) = K{h~x — lx/hul®*) f(x/hul® )3, Ky(x,u) =
K(h~Yx + |x/hul®>®) f(—|x/hu|>’*)'/?}. Since x| > Al, then |x| =~ 2/2p~1 <
A~@= /2 If in addition |x/hul>/* > |x| /2, then

u < 2a/2|x|—(a—2)/2h—1 < 99/2) ~(a=2)/2

On the other hand, if |x/hul** < |x| /2, then, since |x/hu| > 1,

R Y £ /bl |F(F le /Rl ) 2 cphMxl hu /2l = cqu.

Therefore K (x,u) < (sup K )I(u < c3); here we have used the fact that K is
compactly supported If A is so large that 2¢/2A~(*~2/2 < ¢, then K (x,u) <
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(sup K)I(u < c,) regardless of the value of |x /hul®® — x| /2. It follows that
L(x,u) < cyglhu/x’I(u < c;) and so by (2.6),

C
Ef(x) < c5h“2/"‘)‘1|x|2/“f :jxlhku/;vcl?’u‘(z/“)‘1 du < cgh?~@/D|x|®/D73,
0
Trivially, f(x) < ¢;lx|™* and so

= [ o) 1

< cs(h“(“‘l)/“f

°°x2(2—3a)/a dx + f°°x—2a dx)
Al

Al
< cg( A&/ 4 \1720)(pA=(4/ DA/ D5 4 1-2a)

But A%~ @/0]@/@-5 — J1-2a — p8]j2a-7 and ¢ (XW/0~5 4 A172%) < § if A is
sufficiently large. For such a A, we have A; < §A812*77.

(iii) Formula for A,. Take x = Iz in the analogue of (2.6), with the indicator
function included, obtaining the following relation uniformly in & <z <A:
Ef(x) ~ I7%C,y(x), where

y(x) = 2a7z|®/03 fw[K{Clu(sgn z— Izl(z/“)_lu‘z/“)}
0

+K{Clu(sgn z+ Izl(z/"‘)_lu‘z/"‘)}]uz‘(z/“) du.
Trivially, f(x) ~ C,l7%|z|“. Therefore,

A, =1 (Ef (Iz) — F(I2))" dz ~ 1'-2b,(&, 1) = h31% Tby(e, M),

e<|zl<A

where

bi(e, ) = CEf | {v(z) =7} dz.

Cask (¢). a = 7/2. The argument is virtually identical to that in Case (b).
In particular, we divide /(bias)? into three parts as in (2.4). The estimation of
A, and A, carried out in steps (iii) and (ii), respectively, proceeds as before. It
yields A, + Az < const. h®. The contribution from A, dominates both A, and
Aj. To determine a formula for A,, observe that in place of (2.5),

|Ef(x) - f(x) - h4a(x)| < i hzscs(l + |x|)(a—2)s—a
s=3

— ROA(L + Ix)>* %1 — h2e(1 + k)™ %,
where a(x) has the definition from Case (a) (a < 7/2). Thus it may be proved
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that
A=k [ a(x)"dx + O(R®)

lx|<el
l -
~ 2¢2h® f C2x28 dy

~ 2¢2C2logl = (8/3)c2C3ilogh7t,
where ¢, = {/u*K(u) du}(4!)~'. The desired result now follows from (2.4). O

3. Cross-validation for an adaptive estimator. In view of the results
noted in Section 2, integrated squared error is not really a valid criterion for
assessing the performance of variable bandwidth density estimators. A viable
alternative is weighted integrated squared error,

WISE = [(F-f)’w,

where w is an appropriate bounded, nonnegative function and f denotes the
p-variate adaptive estimator defined in Section 1. [Because we shall be treating
only a compact set of values x, we may on this occasion replace the indicator
function in (1.5) by I(|x — X;| < A) for arbitrary A > 0. Thus,

no o (2= X)F(X)Y?
f(X;) K{ -

This definition is assumed throughout the present section.]

A thorough, detailed analysis of appropriate w’s involves trade-offs between
tail behaviour of f and tail behaviour of w. In the case p = 1, this study could
be conducted along the lines of Section 2, but would be too specialized and
intricate to have much practical bearing. Therefore, we shall instead assume
that w has compact support, which allows us to work with quite general
densities f and general p > 1.

One choice of w would be

}1(|x - X,| < A).

1, for|$2x- )l <2,

(3.1) w(x) =
0, otherwise,

where fi and ¥ denote, respectively, the sample mean and variance, || - | is
Euclidean distance and z, is the upper (1 — y)-level critical point of the
chi-squared distribution on p degrees of freedom. Appropriate y’s are y =
0.1,0.2. This particular w averages the performance of f over that ellipsoid,
centered at the sample mean, which contains a proportion 1 —y of the
distribution. Strictly speaking, the analysis which we shall give does not allow
for a random w, but the random component in the definition at (3.1) is easily
disposed of by a second, subsidiary argument

In the prescrlptlon (1.1) for f in Section 1, we shall take k; to be a
bandwidth of size n~1/?*%, the optimal size for estimating f using the usual
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kernel estimator f. It is convenient in proofs to take h, to be nonrandom and
satisfy

(3.2) Cin V@ < hi(n) < Cyn~V/P*D

for n > 1, where C,,C, are fixed constants. However, a minor refinement of
our proof permits h,; to be data-dependent, satisfying (3.2) for all sufficiently
large n with probability 1. In particular, %, could be taken to be the band-
width chosen by the equivalent normal kernel method (e.g., Silverman [16],
pages 45ff, 86f), or by other plug-in methods, or by ordinary cross-validation
(according to the prescription suggested by Rudemo [14] and Bowman [2]), or
by a weighted version of cross-validation (Marron [12]); see Hall [4, 5],
Silverman [16], pages 48ff, page 87f and Stone [17] for accounts of ordinary
cross-validation. If h; were chosen empirically, thén the cross-validation
procedure which we shall propose would be purely automatic, once the weight
function w had been selected.

To develop our cross-validation procedure, consider expanding formula (3.1)
for weighted integrated squared error:

(3.3) WISE = ff2w - 2jffw + ffzw.
The last term in this expansion does not depend on % and so plays no role in

any procedure for minimizing WISE; and the first term is known. Therefore it
is only the integral

I= [ffw,
which requires attention. Minimizing WISE is equivalent to minimizing
J=dJ(h) = [frw - 2L

To effect an estimate of I, define

~ 1 x—-X;
b= o B

7 1 7 2 _Xi fJ Xi 12
fi(xlh) = mgjﬁ(&)p/ K{(x )h (X:) }I(Ix—XiIsAh),
A a 1
=1(h) = — ¥ F(X,lh)w(X;).
j=1

We take the cross-validatory criterion to be
(3.4) J =J(h) = [F?w - 2f.

Choose A to minimize J and take f(x|A) to be the estimate of f.
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Theoretical support for this rule is provided by Theorem 3.1. Before stating
that result, we briefly discuss the basic properties of WISE. Hall and Marron
[9] showed that there exist a function g and a constant ¢ depending only on p
and K, such that ,

(35)  f(xlh) — f(x) = (nh?) " %cf(x)P*2/*N(x) + h*g(x) + o(h?),

where N(x) is asymptotically normal N(0, 1). For distinct values x,,...,x,,,
the variables N(x;) are asymptotically independent. In the case p = 1,

£(x) = (1/26){ [u'K(w) duf(d/dn)* () 7

the formula for g is more complicated in higher dimensions. It follows from
(3.5) that from the viewpoint of minimizing mean squared error, the optimal
h is of size n=/®*®_The techniques developed by Hall and Marron [9] may be
used to establish the following intuitively obvious consequence of (3.5) and of
the fact that the N(x)’s are asymptotically independent:

(3.6) f(f_ f)zw = (nhp)_lcsz("+2)/2w + hsfgzw +o{(nh)™" + R?)

with probability 1. [Sufficient regularity conditions for (3.6) are stated below.]
Our claim is that, except for terms which either do not depend on % or equal

o{(nh)~1 + h8), J is identical to WISE. Indeed,
o 2 2 n 1
(31 J=[(F=N'w - 5 L AXK)uw(x) + [fhw s of 2 +#°)-

This formula follows from (3.3), (3.4), (8.6) and (38.7). It is the key to the
efficacy of <f as a criterion for minimizing WISE: Minimizing of is asymptoti-
cally equivalent to minimizing WISE.

These results are valid under ther following regularity conditions. Let w be
a measurable function vanishing outside a compact set ZC RP, let %, =
{x € RP: for some y € £, llx — yll < ¢}, and assume that for some £ > 0, f has
four bounded, continuous derivatives on 4%, and f is bounded away from zero
on Z.. Let K be a compactly supported density function, symmetric in each
variable and having at least (p/2) + 2 bounded derivatives. (The condition of
compact support may be relaxed at the expense of a longer proof; for example,
we may take K to be the p-variate standard normal density function.) For
constants B, > B; > 0, put #={h: Bn~V/?+® < b < B,n~1/*8} [Note
that n~/®*® js the size of the asymptotically optimal h.] Assume that
h, = hy(n) satisfies (3.2). Then we have:

THEOREM 3.1. Under the above conditions and with probability 1,

: 1n 1

) 1 _— = — . . - 2 — 8
(38) (k) ~1(k) = = L f(X)w(X) [frw + o{ —+h }

uniformly in h € #.
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REMARK 3.1. The analogue of (3.8) in the case of ordinary cross-validation
is
n 1
r (X))~ [+ o{— + h‘i};
i=1

1
n nh,

n

S| =

L (%) = [ff=
see [5].

REMARK 3.2. Let h,= B,n Y?*® denote the bandwidth which mini-
mizes the sum of the two dominant terms on the right-hand side of (3.6), and
choose B,, B, (in the definition of #) such that B, < B, < B,. Write A, A
for the bandwidths which minimize WISE, of, respectively, over h € #. We
may deduce from (3.6)-(3.8) that A,/h, — 1 and % /h, — 1 with probability
1. This establishes first-order optimality of the cross-validatory bandwidth .

Proor oF THEOREM 3.1. For the sake of brevity, we shall assume that the
distribution of X is compactly supported. The sole purpose of this assumption
is to allow us to ignore the indicator function in the definitions of f and fj,
thereby simplifying notation.

Define 6,(x) = {f,(x) — f(x)}/f(x). It may be proved by standard argu-
ments, using the Borel-Cantelli lemma, Bernstein’s and Markov’s inequalities
and Holder continuity of K, that with probability 1,

sup max |6J(x)| = O{n—2/(p+4)(10g n)1/2}.
xeP, 1sj=n

(3.9)

In consequence, there exist constants c,,...,cg [with R > (p/2) + 1] such
that

Fi(2)P% = F(2)P {1+ ¢18,(x) + -+ +epdi(x)")
+ O{n~*R+D/@+9(]og n)(R+1)/2}.

This formula and Taylor expansion give
R
Fi(x) " K{ufy(x)""?) =f(x)"/2{ Zoaj(x)’z,}

+ O{n —2R+1)/(p +4)(10g n )(R + 1)/2} ,

where I, = L {uf(x)'/?} and each function L, is even in each variable. In
particular, L, = K. Thus,

B 5(X;)
PE L G TR

¥ f(X)"°L,

i#j

1-

(X; - X;) f(X;)"*
(=)

S| =

J

+ O{n—Z(R+1)/(p+4)(log n)(R+1)/2h_p}.
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A similar expansion may be developed for I. Indeed, if we define 8(x) =
{f(x) — f(x)} /f(x), then we have

R - 1 g - X, X, 1/2
I= rgofw(x)ﬁ(x) f(x)[m ZL F(X,)? Lr{ (x )hf( ) }}dx

+ O{n 2B+ D/ +4)(Jog n ) B+V/2p-p),
To combine these formulae, put
no(x) = E[hPf(X)P*L{(x - X) f(X)"/*/h}],
Bey(®) = (n = D7 L [BPAX)TPL (% = X) F(X)2/R) = ()],

i#j

A,(x) =n ' L [RPA(X)PPL(x - X) £(X) V2 /R) = ().

Then

0 % X:l: w(Xj)aj(Xj)’{A,j(Xj) + (X))

M:u

=1

r=

3.10 r
(8.10) — [w(x)8(x) F(2){B,(x) + i, (x)} dx
+ Ofn~%R+1/(+4)(Jog n) B D/2p—p),
The next step is to deal individually with the contributions to (3.10) from
the cases r=0,..., R. Put A, = [L,. Since L, is even in each variable, then

Ju®L,(u) du = [uPutDuboL, (u)du = 0

for each i,i,,i,,i;. This fact and the square root law imply that u,(x) =
A+ O(h4) It may be proved by standard methods that, analogously to (3.9),

max [A,;(x)| +]4,(x)[} = Of(nh?) ™*(log n)""*}.

sup {
1<j

xE€R,

Hence

sup { max |4,,(2) + (%) = A, +]4,(x) + .(2) = A, |}
xeR \1=j=<

= O{n ~4/(>+8)(log 1) 1/2}

uniformly in & € Z#. From this formula, (3.9), the analogue of the latter for §
rather than §; and the fact that A, = 0 for r > 1, we see that terms in r > 2
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make a contribution to (3.10) which equals o(n ~8/?+®), Therefore,
1 1 n -
A EP I CALICAYWERRINES)
r= j= :

(3.11)
+ O(n_s/(p+8))

— [w(x)8(x)" F(2){A,(x) + u,(x)} dx

with probability 1.
We claim that with probability 1,

]_ n
; E‘,l{w(Xj)Bj(Xj)Alj(Xj) - fw(x)ﬁ(x)f(x)Al(x) dx}

1 n
7 X {(X)5,(X)un(X,) = [w(x)(x) f(x)(x) d

j=1

(312)

= o{(nh)_l}

uniformly in A € J#. This claim may be verified by applying the Borel-Cantelli
lemma, Markov’s inequality and Holder continuity of K, once it is shown that
for some n > 0, the 2mth moment of each of the quantities within absolute
value signs above is dominated by C(m){(nh)~'n~"}?™ for all integers m > 1,
where C(m) is a constant. This may be accomplished by a rather lengthy
argument which we now give in outline.

Let &; — & denote the jth summand in either of the sums over j on the
left-hand side of (3.12). For example, in the case of the first series we have

(3.13) a; = w(Xj)Bj(Xj)Alj(Xj), &= fw(x)a(x)f(x)Al(x) dx.
We wish to bound

(3.14) T=E{n'5(& - &))" =n""3, - 3, t(jn- s Jom)>

where
. . A AN\ A A\T2m
t(Jl,“"J2m) =E{(a1 _a) T (a2m _a) ? } = u(r1’~-°,r2m)’
say, for integers ry,...,r,, depending on j,,...,j;, and satisfying r1

© 219, =20,3r, = 2m In the range 1 <j < 2m, approximate to &; — & by
an analogous term g, — ! B in which sums over i # j are replaced by sums over
i+1,2,...,2m. For example, if &; and & are given by (3.13), then we define

B, = w(X;)80(X;)A0(X;), B = [w(x)d(x) F(x)Ao(x) dx,
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where

8(x) = {(n —2m)rf}" X K{(x - X,)/hi} - f(2),
So() = (n=2m) " E (R L(e = X) VR ()]

Note that v(ry, ..., ry,) = E((B; — B)* -+ (By,, — B>} = 0 if any one of the
integers r; equals unity, on account of the fact that EQB X, i j}) =B.
Arguing thus, it may be proved that if t(j,...,j,) = u(ry,...,ry,) is re-
placed by v(ry,...,rs,,) in formula (3.14), then T changes to a quantlty T
whose order of magnitude equals that of

_ A A 2m _ -m -_m )
n""E(f, - B) = 0{n " (nk?) "(nh?) ™"}
— 0{(nh?) " (nh2h ) V" = O{(nh?) n7)",
where 1 > 0. The difference between 7' and T’ may be handled by a sub-

sidiary argument.
Results (3.10) and (3.12) together give us the simplified expansion

f-1=n"" i w(X;){Aq,;(X;) + po(X;))
(3.15) -1
_fw(x) f(x){Ao(x) + po(x)}dx + o(n~%®+®)

with probability 1.
The next step in the proof involves rearrangement of the right-hand side of
(3.15). Define

M(u,v) = h?f(u)”*w(v)K{(v — u) f(u)"*/R},
M(u) = E{M(u,X)}, My(u)=E{M(X,u)}, pn=EM(X,X,)
A(u,v) = M(u,v) + M(v,u) — My(u) — My(v) — My(u) — My(v) + 2p,

i—1 1n
2; = Z A(Xi’ Xj), S, = " Z {Ml(Xi) - “}’
j=1 i=1

1 n
8o = — §1{M2(Xi) - uh

1 -5
So= 23 £ T {M(X,, X,) ~ My(X) = My(X)) +p} = 5 2 2

i#j
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Then
n 1

% §lw(Xj){A0j(Xj) + mo(X;)} = 2(n=1) Z Z M(X;, X;)

=8, +8,+(1-n"1"8; +u,
1 n
Jw(@) F{8o(x) + po()}dx = o F My(X) =81 + .

Hence by (3.15),
(8.16) f-I=8,+(1-n"1)"'8;+0(n¥®*®),

By dint of the square root law, My(u) = w(u) f(u) + O(h*), whence it may
be proved that for each n > 0, :

(3.17) Sy =n"' ¥ {f(X)w(X,) — Ef(X)w(X)} + O(n~V/2""h%)
i=1

uniformly in h € #. We claim that for each n > 0 and with probability 1,
(3.18) S; = O(n~1*"h"P/?)
uniformly in A € #. The theorem follows from (3.16)—(3.18).

We conclude by outlining the proof of (3.18). This formula may be derived
via the Borel-Cantelli lemma, Markov’s inequality and Hoélder continuity of
K, once it has been shown that for each integer m > 1,

(319)  E(S3") < Cy(m){(n 7P/ + (n=%2h=7)""nh?},

where C,, C,, C5 are constants not depending on n or h. To establish (3.19),
observe that the Z;’s are martingale differences. Hence by Rosenthal’s inequal-
ity (Hall and Heyde [7], page 23),

E{ Yy E(Z,-2|X1,~~,Xi—1)} + ) E(Zizm)
i=2

i=2
Put U, = E(Z2X,, ..., X;_,) and note that

.

(3.20) n*mE(SZ™) < Cy(m)

n

E(ZU)"; 5 ZE(U U

i=2

IA

zn: anz{E(Ul;n E(Ui':)}l/m < {Z'Z(Ezi?m)l/m} .

=2 i=
Conditional on X;, the variables A(X;, X;), 1 <j<1 -1, are independent
with zero mean. Arguing thus we may prove that

[ é‘,IE{A(X,., X%} + f E{A(X,, Xj)z'"})

Jj=1
< Cy(m)(i™h™™P + {h~@m-DP),
Formula (3.19) follows on combining the results from (3.20) down. O

E(Z2) < Cy(m)
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