The Annals of Statistics
1992, Vol. 20, No. 2, 675-694

EFFECT OF BIAS ESTIMATION ON COVERAGE ACCURACY
OF BOOTSTRAP CONFIDENCE INTERVALS
FOR A PROBABILITY DENSITY

BY PETER HALL

Australian National University

The bootstrap is a poor estimator of bias in problems of curve estima-
tion, and so bias must be corrected by other means when the bootstrap is
used to construct confidence intervals for a probability density. Bias may
either be estimated explicitly, or allowed for by undersmoothing the curve
estimator. Which of these two approaches is to be preferred? In the present
paper we address this question from the viewpoint of coverage accuracy,
assuming a given number of derivatives of the unknown density. We
conclude that the simpler, undersmoothing method is more efficacious.
Undersmoothing also has advantages from the standpoint of minimizing
interval width. We derive formulae for bandwidths which are optimal in
terms of coverage accuracy and also give formulae for the coverage error
which results from using those bandwidths.

1. Introduction. The bootstrap can be a notoriously poor estimator of
bias in problems of nonparametric curve estimation (e.g., [5]), and this fact
should be taken into account when using bootstrap methods to construct
confidence intervals. Bias is usually significant when a curve estimator is
constructed so as to minimize mean squared error, but decreases as the
amount of statistical smoothing is reduced. Therefore, one way of alleviating
bias is to smooth the curve estimator less than would be appropriate for point
estimation (as opposed to interval estimation). A statistician must either
estimate bias explicitly, or allow for bias by undersmoothing the curve estima-
tor. Which of these two methods is to be preferred? In this paper we address
this problem in the case of nonparametric density estimation and from the
viewpoint of coverage error. We use the percentile-f approach to confidence
interval construction, and show that, in a sense which we shall make precise
two paragraphs below, the undersmoothing method produces confidence inter-
vals with greater coverage accuracy than those obtained by explicit bias
correction.

To define the basic estimators, let 2°={Xj,..., X,} denote a random
sample from the distribution with density f and write

x—X,-}

R 1 n
(1.1) F(x) = — EIK{

for the density estimator based on kernel K and bandwidth A. Let b and &2
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denote estimates of the bias b and variance o2, respectively, of f. Let u, be
the a-level quantile of the distribution of S = (f — Ef)/&, that is, the solution
of the equation P(S < u,) = a; and let &, denote the bootstrap estimator of
u,. Then a one-sided a-level confidence interval for f has the form (f-
oh, — b, »). By combining two such intervals, we obtain a two-sided interval
(f - a'ﬁ(1+a)/2 -b,f- &ﬁ(l—a)/Z - 8)-

We are now in a position to illustrate our main results. Assume that f has
four derivatives and that K is a second-order kernel. Then the bias b of f is
approximately proportional to h2f”, where h denotes bandwidth. If we esti-
mate f” using the second derivative of a second-order kernel density estima-
tor with a new bandwidth h,, say, then we need the full force of our
assumption of four derivatives of f. It turns out that the minimum coverage
error of a two-sided bias-corrected bootstrap confidenee interval constructed in
this manner is in general of size n~'2/!7 and is obtained with k, h, of sizes
n~=5/17 n=1/17 respectively. An alternative way of solving the same problem,
which also makes full use of the assumption of four derivatives, is to employ a
fourth-order kernel (and bandwidth h) to estimate f and control bias by
undersmoothing the estimator. In this approach it is optimal to take A to be of
size n~1/5, in which case the coverage error is of size n~*/°, which is of
smaller order than n~2/17. (We should stress that we are using a fourth-order
kernel here and so the familiar quantities n~/® and n~%/% should not be
interpreted in the usual manner for second-order kernels; compare, e.g.,
Silverman [14], pages 40 and 41.)

In the example discussed above and in other cases, both the minimum
coverage error and the squared width of the confidence interval are (asymptoti-
cally) proportional to constant multiples of (nh)~!, using either explicit bias
estimation or the undersmoothing method. Therefore a method which is
preferable on the grounds of minimizing coverage error, is also advantageous
from the viewpoint of minimizing width.

A more obvious advantage of the undersmoothing method is that it requires
choice of only one bandwidth. Furthermore, it does not involve explicit estima-
tion of high-order density derivatives, a task which can be quite awkward.

The exact size of different bandwidths, such as n=%/!7 or n~1/% is not the
most important conclusion to be drawn from this work. The main point is that
methods based on undersmoothing can offer important improvements in cov-
erage accuracy, both theoretically and empirically (see the simulation study
summarized in Section 4), as well as providing narrower confidence intervals.
These advantages have not, hitherto, been recognized by statisticians working
on the problem of confidence intervals for a curve.

We shall give formulae for asymptotically optimal bandwidths and for
asymptotic coverage error. In the case of a two-sided confidence interval
constructed by explicit bias correction, employing second-order kernels and
using bandwidth % in the estimation of f and bandwidth %, to estimate f”,
the choice h = Hn~%/'" and h, = H;n~'/'" (for constants H and H,) results
in an asymptotic coverage error of W(H, H,)n~'?/1". Here W is a function not
depending on n, whose formula we give explicitly and which depends on f and
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f®. Depending on the choice of kernels and the value of f®, it is sometimes
possible to select H and H, so that W(H, H,) = 0. There exist examples of
quite reasonable second-order kernels where this is not possible and also
examples where it is always possible. If the equation W(H, H;) = 0 can be
solved, then in theory, judicious choice of 2 and h, will result in a coverage
error of o(n~12/17), However, achieving this objective requires estimation of
f® (in addition to estimation of f”). Such a procedure would be difficult to
implement in many practical problems.

There are philosophical as well as practical difficulties in determining the
appropriate number of derivatives to assume for curve estimation. However, it
is common to ask that an unknown density have at least two derivatives, and
simulations in Section 4 will treat this case.

Section 2 describes our methods for estimating density and bias and for
constructing confidence intervals. Section 3 states our main theorem and
discusses its consequences, which include the conclusions outlined above.
Section 4 summarizes a simulation study which confirms the advantages of
undersmoothing. Finally, Section 5 outlines the proof of the main theorem.

Our results are framed for confidence intervals, not confidence bands, since
our method of proof does not extend to the case of bands. However, it would
seem plausible that the advantages of undersmoothing would also be available
for bands.

Although Edgeworth expansions for density estimators have been studied
before [12], there appears to be no previous work on the effect of bias
estimation on coverage accuracy of two-sided bootstrap confidence intervals.
The influence of smoothing parameter choice on coverage accuracy has been
discussed [7], but in a very different context. Hiirdle and Bowman [10], Hérdle
[8, 9] and Hirdle and Marron [11] have analyzed properties of bootstrap
confidence intervals in nonparametric regression, but were concerned only
with the problem of consistency—that is, of ensuring that the coverage error
converged to zero. They did not address the effect of bandwidth choice on
coverage accuracy.

2. Constructing the estimators and intervals.

2.1. Summary. We begin in Section 2.2 be defining our estimators of
density, bias and variance. Then in Section 2.3, we describe the percentile-t
bootstrap method, and combine these ingredients to produce bias-corrected
bootstrap confidence intervals (either one-sided or two-sided).

2.2. Estimators of density, bias and variance. Let f denote the estimator
defined at (1.1). We assume that K is an rth order kernel, which means that

. -1, ifi=0,
[yE(y)dy{ =0, ifl<i<r-1,
#0, ifi=r.

For example, a symmetric density function is a second-order kernel. The bias
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of f is given by
b(x) = Ef (x) — f(x)
= [EOD){f(x = h9) = f(x)} dy = x,kF(x) + o( k)

as h — 0, assuming f is bounded and continuous. In this formula,

k= (=1)"(r) 7" [y'K(y) dy.

To estimate bias one would typically estimate the dominant term in the
expansion (2.1) and that would be achieved via a kernel estimator of £, say,

1 - X,
MO h’“ELm{ hy }

where L is an sth order kernel having at least r derivatives. (Throughout this
paper, excepting the last paragraph of Section 3.4, K and L denote kernels of
orders r and s, respectively.) Thus, our estimator of bias would be

(2.2) b(x) =k, W fO(x).

The explicit bias correction method uses this estimator of bias, whereas the
undersmoothmg method takes b = 0 and relies on choosing A so small that b
is negligible.

If b is defined as at (2.2), then the variance of b admits a simple asymptotic
formula:

(2.1)

ar(b(x)) ~ (nr 1) "2{ ) (20,

assuming h, — 0 and nh? *! - o, The bias of b is more complex. It has two
components, which derlve from the bias of f as an estimator of f and
from the error in «,A"f as an approximation of b, respectively. Our main
theorem will be framed in terms of Eb — b (see Section 3. 2), but a subsequent,
refined analysis will discuss the effects of the individual components (Section
3.3).

The variance of f equals

o(x)* = (nh?) " [K{(x - y)/h} f(y) dy

-0 K —y)/h}f(y)r,

of which an estimator is
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2.3. Bootstrap confidence intervals. We first describe the construction of
bootstrap confidence intervals for Ef. Let {X},..., X*} denote a resample
drawn randomly, with replacement from 2= { Xl, .., X,}. Put

P = o (55,

- 11 2 (x-X\% .
& (x)2=ﬁ[n_hi§1K{ n } — hf (x)},

(=) ~ (%)

o*(x)
We shall usually drop the argument x and write f, f.&,... for f(x),
f(x),8(x), ..., respectively.

Note particularly that E(f*|2°) = f. This identity helps explain why bias is
a significant problem in curve estimation. In general applications of the
bootstrap, where an unknown 6 is estimated by 0 it would be common to
regard b = E(6*|2°) — 6 as an estimator of b = E(8) — 6. The latter quantity
equals bias, and while it is usually negligible in finite-dimensional problems [it
equals O(n~1!), compared to an error-about-the-mean of size n~1/2] it is
usually nonnegligible in infinite-dimensional problems (here, bias and error-
about-the-mean are often of the same order). On the other hand, & vanishes
identically in many curve estimation problems.

To construct a confidence interval for Ef, we would ideally wish to know the
distribution of S = (f — Ef)/&, from which we would compute the quantile
u, defined by P(S < u,) = a. An ideal one-sided confidence interval for Ef
would then be I L =(f- &ua, ®). The bootstrap estimate of u, is @ ,, defined
by

S*(x) =

P(S*<2,|Z) =a,

and the corresponding percentile-¢ bootstrap confidence interval ([1], [4], [13])
for Ef is
jl = (f_ &ﬁa,w).
These intervals may be corrected for bias and thereby converted into
confidence intervals for f, by subtracting the bias estimator 6. The latter may
either be given by (2.2) (in the case of explicit bias correction) or be identically

zero (in the case of undersmoothing). The one-sided bias-corrected bootstrap
interval is

Its two-sided counterpart is

j""": (f_ 6'&(1_,,“)/2 - 8, f_ a'ﬁ(l_a)/z - 8).
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Both the intervals [ and J have nominal coverage probability a. The
respective exact coverages are

B(a) =P(fef) =P{S<u,+ (b-b)/5},

y(a) =P(fed)=p{(1+a)/2} - B{(1 —a)/2},

and the respective coverage errors are B(a) — a, y(a) — a. Note that B(a) and
v(a) depend on x. Our main theorem will provide an asymptotic formula for
B(a), which in turn leads to a formula for y(a).

3. Main results.

3.1. Summary. Section 3.2 states our main theorem. Section 3.3 examines
properties of two-sided intervals when bias is estimated explicitly and Section
3.4 describes the case of bias correction by undersmoothing, comparing this
approach with that in Section 3.3. In Section 3.5 we show that the interval
type which has smallest coverage error also has smallest width. Section 3.6
discusses analogues of these results in the case of one-sided confidence inter-
vals.

3.2. Main theorem. We assume the following regularity conditions. The
kernels K and L are both bounded, and both vanish outside an interval
[c, d]. There exist numbers ¢ = vy <u, < -+ <u, =d such that, for each
1<j<m, K and L“*" are both bounded on (x;_;, u;) and each is either
strictly positive or strictly negative there. The kernel K is of order r and L is
of order s. The density f has r + s continuous derivatives in a neighbourhood
of x, and f(x) > 0. For some ¢ > 0, the bandwidths 2 = h(n) and h, = h(n)
satisfy

(3.1) né{h + (nh)~' + (nhy) ™" + (h/hy)} - 0.

A word of explanation about these conditions is in order. The conditions on
K are used to ensure a version of Cramér’s continuity condition for vectors of
kernel estimators [see Step (vi) of the proof in Section 5]. The standard normal
kernel, which is not compactly supported, is also admissible although our proof
will be framed for the case of compact support. When bias is not estimated
explicitly, that is, when b = 0, it is permissible to take s = 0 in the regularity
conditions and assume that f has r + s = r derivatives. The assumption that
h — 0 at a faster rate than h,, implied by the regularity condition (3.1), is
quite reasonable since one would typically use a larger order of bandwidth for
derivative estimation than for density estimation.

Assume that either & is given by formula (2.2) or b = 0. Define n = (Eb —

.b)/o, a function of x which we assume converges to zero. This entails
(nh)Y/2h"hs - 0 if b is defined by (2.2) and (nh)'/2h" — 0 if b = 0, which
conditions are imposed in addition to (8.1). Let ¢, ® denote the standard
normal density, distribution functions, respectively, write z, for the a-level
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quantile of the standard normal distribution [so that ®(z,) = @] and put
A= (K7,

w, = f(x)_lé %A2_3A23 - A1_2A4)za(2z§ + 1)¢(za)’
Wy = KrAZ_IL(r)(O)za(b(za)’

(3.2) wy = —32,8(2,),
wy = 51(2) A5 N 52,0(2,),
w5 = (vb(za)‘

These weights do not depend on &, h, or n. Note that w,, w, are functions of
x and a, whereas w,, w,, w; are functions of a alone.
The coverage probability of the interval [ is

B(a) =P(fel)=P(f>f-520,-b).
Our main theorem is an expansion of Edgeworth type for g(«a).

THEOREM. Under the stated conditions and for fixed x,
B(a) = a + (rh) 'wy(a) + (h/hy) " wy(a)
(3.3) + n*ws(a) + n(nk) " w,(a)
+ nwg(a) + o{(nh) ™" + (h/hy)"" + 72

uniformlyin 0 <a <lasn — o,

In the case b =0, it is to be understood that we take h, = » on the
right-hand side of (3.3).
The analogue of (3.3) for two-sided confidence intervals is

y(a) =P(fed)=a+2{(nh) 'wye) + (h/hy) wy(a)
(3.4) +n*wg(a’) + n(nh) " wy(a'))
+o{(nh) ™" + (h/hy)"" + 92},

where o' = (1 + a)/2. This formula may be obtained directly from (3.3) on
noting that (a) y(a) = B(«’) — B(1 — o), (b) 2, = —2z,_, and (c) of the weights
defined at (3.2), w,,...,w, are odd functions of z, whereas wy is an even
function of z,,.

The values of the weights w;, in particular their signs, can be important in
determining the size of coverage error, as we shall show in the next section. By
way of example, if we take K = L = ¢, the standard normal kernel, then
r=s=2 A, =23 2 =2m) 137 V2 A, =2w)" %227 L"0) =
—(27)~V2. 1t follows that for a > 1/2, the weights w,, w,, w5 are positive
whereas w,, w; are negative.
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3.3. Two-sided confidence intervals with explicit bias estimation. Assume
that we estimate b explicitly, using the estimator & defined at (2.2). Our
analysis begins by considering the size of 7 in formula (3.4). Here and in
Section 3.4, write w; for w,(a’). Now

Ef{"(x) = k3 () (=1)°(s) " [y*L(y) dy + o(h})
and so
(35) = (Eb-b)/0=(nh)"*h"h3wg + n; + o{(nh)"*h"h3},
where 7, = (Eb — x, h'f) /o and

(3.6) wg=wg(x) =fT+(x) f(x)_1/2:<,)\2‘1/2(—l)s(s!)_lfysL(y) dy.

The quantity n, represents the error in «,.h’f(”’ as an approximation to b,
while the term (nh)Y2h"h3w, in (3.5) represents the bias of 7 in our
formula for 6. Many practical applications of the bias estimation method would
take K to be a symmetric second-order kernel and than n; would be of order
(nh)'/2h%, In this setting, r = 2 and 1, would make a negligible contribution
to (8.5) if A% = o(h3). That would certainly be the case if s = 2; that is, if L
were also a second-order kernel. In the analysis below we assume that 7, is
negligible, so that

(3.7) n = (nh)"*h"hiwg + of(nh)"*h"h3}.

If this condition fails, then the explicit bias correction method is even less
attractive relative to undersmoothing due to the appearance of additional,

dominant error terms.
If n satisfies (3.7), then the coverage error of the two-sided confidence

interval o is, by (3.4),
y(a) —a =2p; +o{(nk) ™" + (h/hy)"" + nh?*1h2),
where
p1=pi(h, k) = (nh) 'wy + (h/hy) " 'w, + nh? A2 ww? + hThSww,,

w; = wa') for 1 < i < 4 and wy is given by (3.6). To determine asymptotically
optimal formulae for ~ and 4 ,, take

(38 h= Hn_(r+s+1)/((’+1)2+S(’+2))’ hy= Hln—l/((r+1)2+s(r+2)),
where H, H, are constants. Then p, = Wyn =+ Xr+)/(C+12+s0+2)} where
W, =W(H, H,)

=H 'w, + (H/Hl)rﬂwz + H 'HPwawi + H Hjw,wg.

" The asymptotically optimal approach to bandwidth selection, in the sense of
minimizing the absolute value of coverage error, is to define &, h; as in (3.8),
with H, H, chosen to minimize |W,(H, H,)|. It will sometimes, but not always,

(3.9)
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be possible to select H, H, > 0 so that W,(H, H;) = 0. However, all the
optimal bandwidths depend on the unknown density f, and so there are
significant practical difficulties in taking these conclusions any further.

The values of h, h; which are optimal (from a mean-squared error view-
point) for estimating f, f” are of orders n~1/@r+D p=1/@r+2s+1) regpec-
tively; see, for example, Gasser, Miiller and Mammitzsch [3] and Hirdle,
Marron and Wand [12]. However, if we define h,h,; by (3.8), then h <«
n~1/@+D and h, > n~1/@r+2s+D Therefore the prescription which mini-
mizes coverage error results in undersmoothing for estimation of f and
oversmoothing for estimation of f(".

If we simply take h, h, to be given by (3.8), without specifying that the
constants H, H; be chosen so that W,(H, H,) = 0, then the coverage error of
the resulting confidence interval will be of size n~C*+DI+)/Ar+1*+sr+2)} For
example, if K = L = ¢, then r = s = 2, formula (3.8) reduces to

h = Hn_5/17, hl = Hln—1/17

and the coverage error equals W,(H, H,)n"'2/17_ If we note that the weights
w,, w, are positive whereas w,, w4 are negative (see Section 3.2), then we may
deduce from (3.9) that in the case K = L = ¢, it is always possible to choose
H, H, > 0 such that W,(H, H,) = 0.

We conclude this subsection with an example where r = s = 2 but the
equation W,(H, H,) = 0 does not admit solutions H, H; > 0. In that event,
the minimum coverage error of the confidence interval o is genuinely of size
n~12/17 and cannot be reduced below this level. To construct the example, take
K to be a symmetric density for which A,A;2A, > 3/2, let L = ¢ and assume
that f®(x) < 0. Then each of the constants w,, w,, w, and w,ws is strictly
negative and so W,(H, H,) < 0, no matter what the values of H, H, > 0. To
construct a kernel K for which A,A;2A, > 3/2, fix p > 1 and define

1, for |x| < 1,
K,(x) ={lx|""%, forl< x| <p,
0, for |x| > p,

c=c(p)=JK, and K =c"'K,. Then A;A;°A, > @ as p - .
3.4. Two-sided confidence intervals with bias corrected by undersmoothing.
Here we take b = 0, in which case
n = (Eb-b)/0=-b/o=(nh)"*hw, + of(nh)"*n"},

where w, = —fMf~1/%¢_A;1/2, We may now deduce from (3.4) with A, = ,
that the two-sided confidence interval J has coverage error

y(@) — a = 2p, + of(nh) "' + nh?*1},
where

ps = pa(k) = (nh) "'wy + nh?  lww? + Kw,w,
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and w; = w,(a’) for i = 1, 3,4. The asymptotically optimal bandwidth is
(3.10) h = Hn~V/(+D,

where H is a constant. In this case, coverage error is asymptotic to py(h) =
W,on~7/0+D with

W, = Wy(H) = H 'w, + H* 'w,w? + H ww,.

To minimize the absolute value of coverage error we should select H in (3.10)
to minimize |W,(H)|. Now, the equation W,(H) = 0 has solution H = U'/¢*D,
where

U = (65,02 7) " Aq[ (362 + 19 — 120,257 (22% + 1)}/ — 1]

and z = z,. If 1,152\, < 3/2 (which is the case if K = ¢, for example), then
U is real-valued and positive, and so it is possible to choose H > 0 such that
W,(H) = 0. However if A,A;2\, > 3/2, then U is either complex-valued or
negative and in such cases the equation W,(H) = 0 does not admit a real
positive solution. In summary, the asymptotically optimal value of A equals

(3.11) Hyn7/r+D,

where H, > 0 is the minimizer of
|H{£(2) T 3(305%0% — 4572,)(222 + 1))

= $HPfO(x)* f(x) 25T} = H{5FO(x) F(x) oAz 20|
and equals

({GKr)‘zf(r)(x)}_l)ka[{%zz + 19 — 122,152 (222 + 1)}1/2 _ 1])1/('“)

if the latter is real and positive. (Again, z = z,,.)

The value of & which is optimal for estimating f, from the viewpoint of
minimizing mean squared error, is of size n~1/®"*D_If h is given by (3.10),
then h < n~1/@*1 which confirms that coverage error is minimized by
undersmoothing in the estimation of f.

For direct comparison with the case described in Section 3.3, we should
make full use of our assumption that f has r + s derivatives. This demands
that & be a kernel of order r + s, rather than r, and so r should be replaced
by r +s in the argument above. In particular the optimal bandwidth is

h = Hn=1/*s*D gnd the minimum asymptotic coverage error is W(H) =
n—(r+s)/(r+s+1). Since

(r+s)/(r+s+1)>(r+ 1)(r+s)/{(r+ 1)2 +s(r+ 2)},

then an improvement in coverage accuracy may be gained from the under-
smoothing method [unless we deliberately choose H and H, in (3.8) so that
W(H, H,) = 0]. When r = s = 2, the orders of coverage error are n~2/17 in
the case of explicit bias correction and n~*/5 for the undersmoothing method.
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3.5. Width of two-sided confidence intervals. The width of the two-sided
confidence interval o is
6'(&(1+m)/2 - ﬁ(l—a)/2) ~ 2(”"")_1/2()‘2 f)1/22(1+a)/2‘

Two features of this formula should be noted. First, the width of the interval
does not depend on the manner in which bias is corrected, and second, the
width is (asymptotically) proportional to (nk)~1/2. Of the techniques developed
in Sections 3.3 and 3.4, that is, explicit bias correction and undersmoothing,
the latter gives the smaller value of (nk)~1/2 and so is to be preferred on the
counts of both coverage accuracy and interval width.

3.6. One-sided confidence intervals. The problem of one-sided confidence
intervals may be analyzed by paralleling arguments in. Sections 3.3 and 3.4 for
either of the two bias correction methods. We shall give only an outline here.
The starting point for analysis is the following formula for coverage error,
derived directly from (3.3),

B(a) —a=P(f€f)
(8.12) = (nh) 'wy + (h/hy) T wy + nws
+o{(nh) ™" + (h/hy)" " + ),

where w; = w,(a) for i = 1,2, 5. If bias is estimated by b, defined at (2.2), and
if n satisfies (8.7), then (8.12) simplifies to

B(a) —a = 2ps + of(nh) ' + (h/hy) "' + n2/2R A/ Dp3),
3 1 1
where
ps = ps(h, hy) = (nh) 'wy + (h/hy)" w,y + 02RO/ Phiwgws.
It may be shown that the optimal choices of A and h, are
h = Hn—(3(r+1)+2s)/((r+1)(2r+3)+2(r+2)s)’
hl = Hln—(r+3)/((r+1)(2r+3)+2(r+2)s)
for constants H, H, > 0; compare (3.8). Asymptotic coverage error is then
p3(h, hl) = W3(H, Hl)n—2(r+1)(r+s)/((r+1)(2r+3)+2(r+2)s),

where

Wy(H, H,) = H 'w, + H™"'H{ "*Yw, + H™*2H wywg.

Once again, by careful choice of H and H, it is sometimes, but not always,
possible to ensure that Wy(H, H,) = 0.

If the estimator b is taken to be zero, then the optimal choice of % is
Hn~3/@™+3 for a constant H > 0 and the asymptotic coverage error equals
W,(H)n~27/@r+3) where

Wy (H) = H 'w, + H" ' H; " Yw, + H™*YPw.w,.
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Sometimes, but not always, we may choose H so that W(H) = 0. Since

2(r+s) 2(r+1)(r+s)
2r+2s+3 - (r+1)(2r+3)+2(r+2)s’

then, if W;(H, H,) and W(H) are nonzero, the undersmoothing method
produces lower coverage error than explicit bias correction, for the same
smoothness assumptions.

4. Numerical results.

4.1. Summary. In this section we report details of a simulation study
which addresses performance of the two different methods of bias correction.
The study has two parts: First, an examination of the undersmoothing method
when a second-order kernel estimator is employed to estimate f; and second, a
comparison of the undersmoothing method and explicit bias correction when
four derivatives are assumed of f. Throughout, the intervals were two-sided,
bootstrap approximations were based on B = 299 resamples, and approxima-
tions to coverage probability, etc., were based on 300 independent samples.

4.2. Undersmoothing a second-order kernel density estimator. Let K de-
note Epaneénikov’s kernel, K(u) = (8/4)5- V%1 — (u2/5)} for |u| < 5'/2,
K(u) = 0 otherwise. When the true density f is that of an N(0, 72) distribu-
tion, the bandwidth which asymptotically minimizes mean integrated squared
error is 1.057n =1/, This suggests the empirical version, 1.05#n /%, where #2
denotes sample variance. To assess the effect of undersmoothing we took
h = 1.05¢7n~1/5, where 0 < ¢ < 1. Table 1 lists the coverage p (as a percent-
age), mean width w and width standard deviation s of nominal 95% confidence
intervals, for various sample sizes, distributions and values of c.

It will be seen that coverage accuracy tends to improve at first, and then
decline, with increasing amount of undersmoothing. The inaccuracy of cover-
age is generally greater for x = 0 than for x = 0.75 or 1.50, since bias is more
pronounced for x = 0. The case where ¢ = 1, x = 0 and the sampling distribu-
tion is the normal mixture (1/2)N(0,1) + (1/2)N(8,1), produces extremely
poor coverage accuracy. However, accuracy improves by the time ¢ has de-
creased to 0.3. The pattern in Table 1, of coverage accuracy at first improving
and then declining as & decreases, is readily apparent for larger sample sizes.
Of course, the optimal value of ¢ decreases as n increases.

On comparing the values of w and s for small values of c, it is clear that
substantial undersmoothing is not a practical proposition. The values of ¢
which give good coverage accuracy for given x, n and distribution type are not
easy to determine empirically, and as yet we have no good practical advice to
offer.
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TABLE 1
True coverage probabilities p (as percentages), interval widths w and width standard deviations s,
estimated by simulation, of nominal 95% confidence for different values of the bandwidth h =
1.05¢7n /5, where 0 < ¢ < 1. Further details are given in Section 4.2

n =50 n = 100
c x = 0.00 x =0.75 x = 1.50 x = 0.00 x = 0.75 x = 1.50
(i) N(0, 1) distribution

1.0 D 78.7 93.0 93.7 80.3 94.7 91.3

w 0.170 0.170 0.152 0.134 0.132 0.111

s 0.0207 0.0216 0.0253 0.0126 0.0121 0.0112
0.75 D 92.7 94.0 93.3 96.7 96.3 96.3

w 0.227 0.222 0.201 0.179 0.168 0.135

s 0.0306 0.0333 0.0966 0.0174 - 0.0175 0.0164
0.5 D 96.3 97.0 93.3 94.7 94.7 96.3

w 0.328 0.312 0.284 0.244 0.228 0.183

s 0.0456 0.0692 0.111 0.0266 0.0254 0.0339
0.3 D 97.7 98.3 88.0 96.7 95.7 94.7

w 0.490 0.475 0.559 0.359 0.327 0.305

s 0.0733 0.0872 1.01 0.0447 0.0430 0.272
0.2 D 97.3 94.7 80.0 96.7 97.7 93.3

w 0.775 0.907 1.038 0.481 0.445 0.552

s 0.337 1.333 3.829 0.0701 0.0758 0.890
0.1 D 87.7 78.0 60.7 95.3 88.7 71.0

w 2.15 9.19 1.06 1.02 1.12 0.918

s 5.54 5.82 6.04 0.982 2.66 3.18

(i) £N(0, 1) + £N(3, 1) distribution

1.0 p 4.00 43.3 86.7 80.3 94.7 91.3

w 0.188 0.120 0.115 0.950 0.095 0.088

s 0.0160 0.0167 0.0156 0.0107 0.0109 0.0094
0.75 p 33.7 77.0 90.7 17.3 67.3 82.0

w 0.164 0.222 0.201 0.179 0.168 0.135

s 0.0306 0.164 0.147 0.126 0.124 0.109
0.5 D 67.7 93.0 94.0 55.3 86.7 93.3

w 0.237 0.231 0.214 0.181 0.171 0.146

s 0.0344 0.0323 0.0881 0.0206 0.0188 0.0187
0.3 p 94.0 97.7 913 78.7 93.7 94.3

w 0.357 0.343 0.443 0.260 0.245 0.209

s 0.0582 0.0584 0.970 0.0315 0.0327 0.0308
0.2 D 96.3 98.7 90.7 93.0 97.0 95.0

w 0.808 0.631 1.011 0.344 0.342 0.483

s 4.89 1.20 5.55 0.0465 0.273 291
0.1 D 87.7 84.0 69.3 96.7 96.7 84.0

w 1.53 1.51 1.36 0.225 1.74 0.569

s 3.94 7.76 4.65 0.270 16.6 0.844
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4.3. Comparison of undersmoothing and explicit bias correction. First we
took K to be the Epaneénikov kernel for which k, = 1/2 and r = 2 in the bias
formula (2.1). Under the assumption that f has four derivatives, we should
take s = 2 in the discussion in Section 2. Therefore, we estimated f® by
using the (2,4)th order optimal kernel suggested by Gasser, Miiller and
Mammitzsch [3]; this kernel is given by L®(z) = (105/16)(6u2 — 5u* — 1) for
lul <1 and L®(u) =0 otherwise. We took A = 1.05¢n"'° and h,=
2.70#n~1°, which are asymptotically optimal if the data are normal. With
these conventions, the bias estimator 5(x) is given by (2.2).

Next, we took K to be the optimal fourth order kernel from [3], defined by
K(u) = (15/32)(Tu* — 10u? + 3) if |ul <1 and K(u) =0 otherwise. The
asymptotically optimal bandwidth for normal data is 5.057n "'/, which sug-
gests taking & = 5.05¢7n~1/° where 0 < ¢ < 1. This we did.

These approaches to the confidence interval problem both require four
derivatives of f. Their numerical performance is summarized in panels (b) and
(c), respectively, of Table 2. The poor performance of the first method and of
the second method for c¢ close to 1 is immediately apparent. However, the
second method performs substantially better for smaller c¢’s. Similar patterns
of performance occur for larger sample sizes.

5. Proof of the theorem. The proof which we shall give of the main
theorem is valid uniformly in & € (¢,1 — §) for any 0 < ¢ < 1/2. It is readily
extended to @ € (n~1,1 — n™Y), on noting that if z, = ® '(a) is the a-level
normal quantile, then sup,-1_, .;_,-1lz,| = O{(log n)'/3}.

To make the proof as clear as possible we shall present it in a sequence of
six steps, of which the last two outline technical arguments behind rigorous
theoretical justification of earlier steps.

Step (i): Simplified formula for B(e). Let X and X* denote generic
versions of X; and X}, respectively, and define

Y, = K{(x - X)/h}* — E[K{(x - X)/h}*],
Y = K{(x - X*)/h)" - E[K{(x - X*) /)| 2],
Mij = h‘lE(Yl"Yzj), ilij = h‘lE(Yl"‘in*j|.92”)

for i,j = 0,1,2. Then o? = (nh) 'uy, 5% = (nh) Yiy,. Define 6 =4, — u,,
€ = (b — b)/6. In this notation,

(5.1) B(a) =P(fel)=P(S<u,+8+¢).

Next we develop an approximation to 8. Put A;; = 4;; — p;j,

s- B |5 (|




The coverage probabilities p (as percentages), interval widths w and width standard deviations s,
estimated by simulation, of nominal 95% confidence intervals constructed by the methods de-
scribed in Section 4.3. Panel (a) represents the method in the first paragraph of Section 4.3 and
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TABLE 2

panel (b) represents the method in the second paragraph

n =50 n =100
c x = 0.00 x=0.75 x = 1.50 x = 0.00 x=0.75 x = 1.50
(i) N(0, 1) distribution
(a)
p 87.0 90.0 91.7 89.3 91.3 88.7
w 0.168 0.170 0.149 0.135 0.133 0.122
s 0.0217 0.0215 0.0197 0.0135 0.0128 0.0111
(b)
1.0 p 16.0 76.7 57.7 13.3 77.0 53.3
w 0.077 0.092 0.103 0.060 . 0.071 0.077
s 0.0102 0.0154 0.0135 0.0065 0.0078 0.0067
0.75 p 71.0 96.0 89.3 7.7 95.3 89.3
w 0.128 0.141 0.136 0.099 0.106 0.100
s 0.0161 0.0198 0.0147 0.0096 0.0117 0.0088
0.5 p 94.7 94.3 95.3 95.7 96.3 95.3
w 0.218 0.219 0.186 0.163 0.160 0.129
s 0.0264 0.0252 0.0217 0.0154 0.0245 0.0131
0.3 p 94.0 98.3 94.3 95.0 94.3 96.3
w 0.349 0.330 0.289 0.255 0.236 0.182
s 0.0499 0.0460 1.127 0.0274 0.0261 0.0255
0.2 p 96.3 96.3 96.3 94.7 95.7 97.7
w 0.487 0.455 4.223 0.340 0.310 0.250
s 0.0700 0.0692 63.867 0.0386 0.0382 0.0659
0.1 p 97.7 94.3 86.7 98.3 98.3 92.3
w 0.867 12.79 1.710 0.530 0.501 0.532
s 0.197 5.71 5.23 0.0786 0.0752 0.627
(i) $N(0, 1) + 1N(3, 1) distribution
(a)
p 13.7 63.7 82.7 9.67 47.0 77.0
w 0.118 0.120 0.115 0.094 0.095 0.088
s 0.0163 0.0164 0.0143 0.0104 0.0104 0.0083
(b)
1.0 p 0.00 3.67 38.0 0.00 0.67 13.0
w 0.056 0.061 0.069 0.043 0.046 0.052
s 0.0084 0.0111 0.0122 0.0052 0.0062 0.0068
0.75 p 2.33 29.7 66.7 0.67 18.0 52.0
w 0.091 0.096 0.101 0.070 0.073 0.075
s 0.0141 0.0154 0.0159 0.0077 0.0089 0.0081
0.5 P 26.0 75.3 88.0 12.3 63.0 86.7
w 0.153 0.154 0.145 0.115 0.115 0.166
s 0.0212 0.0227 0.0176 0.0125 0.0123 0.0115
0.3 P 78.3 92.3 94.3 60.7 85.7 90.0
w 0.253 0.242 0.214 0.184 0.176 0.150
s 0.0384 0.0348 0.0330 0.0199 0.0206 0.0178
0.2 p 90.0 96.7 94.0 80.0 89.0 94.7
w 0.353 0.333 0.315 0.248 0.230 0.192
s 0.0543 0.0497 0.0860 0.0286 0.0289 0.0260
0.1 p 98.7 99.3 92.0 91.3 94.7 95.0
w 0.632 0.967 0.901 0.397 0.370 0.341
s 0.147 6.71 1.55 0.0557 0.0584 0.0855

689
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Note that A;; = A,,,; + 0,{(nh)~"/?} = O,{(nh)'/?} and that

(5.2) 8= —(nh) *{4i(2.) — au(2.)} + O,{(nh) 71},
where
(5-3) q:(y) = %#2_03/2#11 - %#2_03/2(#30 - 3#11)(}'2 - 1)

and §,(y) has the same formula except that u,; is replaced by 4, ; [6]. We may
prove by Taylor expansion that

Dy = 5" — ka0 % = o 2(As — Suadruls) +0,{(nh)” 1/2}

Dy = fi3g g0 — B30 3o = #2_03/2(A3 - %#-2_01#30132) + OP{( nh)_l/z},
Hence, noting that ugy = p,; + 0(1),

0:(2) = u(y) = n?/%(85 — Suahnds) (27 + 1) + o {(nk) V%),

and so by (5.2),
(5.4) 8 = (nh) " Y?%(c,Ay + cyA4) + op{(nh)—l},
where ¢; = (222 + Dpy>%1m,1/4, ¢ = — (222 + Duy/?/6.

Now we develop an approximation to &. Observe that (nh) /26! =
oo/ A1 = p3g'As0/2)"V2 + O{(nh)™Y) and with p; = h E[K/{(x — X /h}]

Agy = Ay — 2hp A, +O{(nh§ 1, Therefore, since (nh)/2(b —b) - 0 in
probability,

&= (nh)/*(b — b)uy {1 - 3um'(A; = 2hp,A,)} + o,{(nh) ).

Put = (nh)1/2(E5 Bz’ A = (nh)V2(b — Eb)uzg'/?, c5 = pagpy, €4 =

(55) &=mn+A+mn(cshd; +cyd,) +0,{(nh) '} + O,{(nh) " V2(EA2)?).
Combining (5.1), (5.4) and (5.5) we deduce that

(5.6) B(a) = P[S <v, + R +0,{(nh) '} + 0,(g)],

where v, = u, + 7, g = (nh)"V%(EA?)!/2 and

(5.7 R = (nh) " Y%(c;A5 + cyA5) + n(cghA, + ¢ A,) + A,

The delta method for Edgeworth expansion argues that for any ¢ > 0, (5.6) can
be written as

(5.8) B(a) = P(S <v, + R) +of(nh) "'} + O(gn?);
see Step (v) for justification.
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STEP (ii): Method for expanding P(S <y + R). We expand the difference
between the distributions of S — R and S. The difference between the charac-
teristic functions equals

¥(t) = E[exp{it(S.— R)} — exp(itS)]
= —itE(ReS) + o{(nh) ™'} + O{E(4?)}

uniformly in [¢| < ¢, for any ¢, > 0.
Define S’ = (f — Ef)/o. Then S =S’ + O,{(nh)~'/?} and it follows from
(5.9) that

(5.10)  ¢(t) = —iE(Re™) + of(nh) ™"} + Ofg + E(42)}.

(5.9)

Step (iii): Formula for E(Re*S’). Define
A(y) = o~ (nh) [K{(x — y)/k} — EK{(x — X) /h}]
and let B denote any other real-valued function such that E{B(X)} = 0. Put
T =X ,;.,B(X)). Then
n
E(Te'*S") = nE[B(Xl)exp{itA(X)}]E[exp{it Y A(Xj)}},
j=2

E[B(X)exp{itA(X)}] = itE{ A(X)B(X)} + 3(it)’E{A(X)*B(X)}

1/2

+o|(Ea(x)"}*(EB(%)7) "],

|(EACX)Y*(EB(X)%)*| = 0{n~"(nh) }(ET?)?),
E[exp{it f)zA(Xj)}] =e /2 + Of(nh) ™%}
Therefore J
E(Te*S) = n[itE{A(X)B(X)) + 1(it) E{A(X)*B(X)}]e~*72
(5.11) + 0{(nh) ' (ET?)'*}
+ O[n(nh)"V*(E|A(X)B(X)| + EIA(X)*B(X)|}].

Noting formula (5.7) for R and the fact that each of A;, A,, Aj, A is a sum
of independent random variables with zero mean, we see that (5.11) may be
used to develop an expression for E(Re*S’). Put

A;(y) =K{(x—y)/hY —EK{(x-X)/hY, j=1,
Ao(y) = L(x —y)/hi} — ELO{(x — X) /hy},
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ag = (nh)~%071, a; = hT'E{A(X)A((X)). If we take T = A, then B(y) =
(nh) A (y), Whence by (5.11),

E(A;e"S) = (nh) " *agu;,ite™"/% + o{(nh) "/?).
In the case T = A, o
E(Ae™S) = (h/hy)" " k130 agayite™ /2 + of(h/hy) "t + (nk) 7).
Therefore by (5.7),
E(Re"S) = {(nh) 'aq(cips + camy) + (nh) " *nag(cgush + cyps)
(5.12) +(h/hy) "k nie 2aga, fite /2
o{(h/hy) " + (nh) 7).

STEP (iv): Formula for P(S <y + R). Combining (5.10) and (5.12) and
noting that E(A%) = O{(h/kh,)**'} = o{(h/h """}, we see that
W(t) = —{(nh) lag(cips + cany) — (nh) T *nag(cansh + caps)
+(h/hy) " kg Paga)(it) e /2 + of (h/hy) " + (nk) 7Y,

uniformly in |¢| < ¢, for any ¢, > 0. Noting that u,; = u5 + 0o(1) we see that
formal inversion of this Fourier-Stieltjes transform yields

P(S<y+R)-P(S<y)

= [(nh) lag{1(222 + V)uad/uf — 3(222 + 1)y %)

(5.13) B _
+(nh)~! "7“0(#-20 Ripoh — 5#20#3)

+(h/hy) " ko mz 2a0a, | yd(y) + o{(h/hy) M + (nk) M)

Justification will be given in Step (vi). Taking y = v, =u, + 7 =z, + o(1)
and noting that pyy = py + 0(D), p, = A, f+0(D), ay = (A, )% + 0(1) and
a; = L0 f + o(1), we see that

P(S<u,+m+R)-P(S<u,+n)
= {(nhf) T3 (3773 — A720,)(222 + 1)
O by I + (h /by AT IO(0) eb(2)
+o{(h/hy) " + (nh) ™' + 92}
' Finally, since
P(S <y) = ®(y) + (nh) " qy(9)$(y) + (nh) 'qx(9)$(y) + of(rh) "},
where ¢, is given by (5.3) and g, is a polynomial with bounded coefficients,
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then
P(S<y+m) —P(S <y) =né(y) = in’yb(y) + (nh) " *nf /255,
X §3(3 = 29%)6(y) + ofn® + (nh) "},
Taking y = u, — (nh)~1/%q,(z,) + O{(nh)™"}, we see that
P(S<u,+mn)—a
(515)  =mnd(2.) — §1%.8(2,) + (nh) T Pn3f 20 2052, 8(2,)
+ofn® + (nh)™}.
The theorem follows by combining (5.8), (5.14) and (5.15).
STEP (v): Justification of passage from (5.6) to (5.8). Since the functions K
and L™ are bounded, then we may readily apply Bernstein’s inequality to

derive large deviation formulae for quantities such as f and b. For example,
we may prove that for any u > 0,

P{| f(x) — Ef (x)| > u(nh)~*(log n)"/?} = O(n~'®),

where I(u) > » as u — ». Therefore P{|f(x) — Ef(x)| > (nh)~/%log n} =
O(n=") for all A > 0. Arguing thus, and using condition (5.6), we may show
that for some £ > 0, the random variable V which is represented by the term
0,{(nh)~1} + O,(g) in (5.6) has the property

P[IVI > {(nh)_ln'f + gllog n] =0(n™")
for all A > 0. Put {; = {(nh) " 'n"¢ + gllog n and
{=sup|P(S<v,+R+¢{)-P(S<vu,+R)|
+ -_—

Then
(5.16) B(a)=P(S<v,+R+V)=P(S<vu,+R)+ O({2 + n‘)‘).

In Steps (ii)—(iv), we derived an expansion of P(S <y + R) for general y; that
result gives P(S <v,+y+ R) — P(S <uv, +y) = O(ly]). Therefore {, =
0(£)), and so by (5.16), B(e) = P(S <v, + R) + O({, + n™*), from which
follows (5.8).

STEP (vi): Justification of (5.13). The key property of S — R which facili-
tates the Edgeworth expansion in (5.13) is that it is a smooth function of sums
of independent and identically distributed random variables. Indeed, if we
define X;; = (nh)"'A,(X,) for 1 <j < 3, X, = (nh)'/?h’Ay(X;) and

U(o»---583) = (nh)l/2§1{l‘-2 +&—h(p, + fl)z}_l/z

—(nh) TV (erfy + eafs) — eshéy + cofa) — Ko 6o
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then
(5.17) S_R =l(2X0i""’2X3i)'

The methods in [6] may be used to develop an Edgeworth expansion of
arbitrary length for the distribution of Z = (3X,,,..., 3X;,), standardized for
scale. The key feature of the argument is a version of Cramér’s condition,
which is provided by an analogue of Lemma 4.1 of [6]. That result uses the
piecewise monotonicity properties assumed of K and L. The resulting
expansion of the distribution of Z is a straightforward analogue of Proposition
4.1 in [6] and is available uniformly over a large class of Borel sets. From that
point it is a simple matter to obtain an Edgeworth expansion for the distribu-
tion of S — R, noting (5.17) and using the approach of Bhattacharya and
Ghosh [2]. This establishes existence of the expansion.
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