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ON THE BOOTSTRAP OF U AND V STATISTICS!

By MIGUEL A. ARCONES AND EVARIST GINE

City University of New York and University of Connecticut

Bootstrap distributional limit theorems for U and V statistics are
proved. They hold a.s., under weak moment conditions and without restric-
tions on the bootstrap sample size (as long as it tends to =), regardless of
the degree of degeneracy of U and V. A testing procedure based on these
results is outlined.

1. Introduction. 1. Let h(x,,...,x,,) be a symmetric measurable func-
tion and let P be a probability measure on R (it is not relevant here that & be
defined on R™ and P on R; in fact, R could be replaced by any measurable
space S throughout this paper.) Let {X,} be iid. (P). The U and the V
statistics based on & and P are defined as

(1.1) Uz(h,P) = (,’,‘L)_1 Y h(Xi,-.o0 X, )

1<i)< -+ <i,=<n

and
(1.2) Vi(h,P)y=n"" Y h(Xil""’Xi,,,)'

iyerrim=1

Under moment conditions on h, these statistics, properly centered and nor-
malized, converge in distribution (with some abuse of notation we say that
they satisfy a central limit theorem, CLT). If 2 is nondegenerate for P, the
limits are normal (depending on % and P), but if ~ is P-degenerate (definition
in Section 2), then the limits are functionals of a Gaussian process, sometimes
complicated ones. Therefore, bootstrap approximations to the laws of these
statistics, or of their limits, are potentially useful. Bickel and Freedman (1981)
show that the CLT for nondegenerate U and V statistics of order 2 (m = 2)
can be bootstrapped just by replacing X; by the bootstrap sample X,,,..., X,,,
liid. (P,) with P, =n~'L}_ ,8x] at stage n. Bretagnolle (1983) studies the
same type of bootstrap in the general case. In particular, he proves that in the
degenerate case the bootstrap works in probability if the bootstrap sample size
N, satisfies N,/n — 0 and a.s. if N, (log n)®/n — 0 for some b > 1, under
quite strong moment conditions on .. He also observes that for N, = n, the
usual bootstrap does not work for h(x,y) = xy if EX, = 0. This example gives
a clue to both, why the usual bootstrap fails and how to proceed. Let EX; = 0.
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Then
-
(13) 7 1si<js=n
' 1 f;X 2 1 ixz
n—1\7"" n—1;2""
but
1 n 2 1
a9 aptnp) - (Ex) - 2L
1% n—1;5

which, even after centering, is not a natural replica of Uj'(h, P). It is clearly
more natural to apply the bootstrap CLT and the bootstrap law of large
numbers to the right side of (1.3) to obtain that the bootstrap statistic that
works is

1 n 1
5 7| I (K- B, ,)) ——Z(X - E*X,.)",

where E* denotes conditional expectation given the sample. Expression (1.5)
equals nUJ(h ,, P,), where h (x,y) = h(x,y) — P,h(x,-) — P,h(-,y) + P2h.
h, is the orthogonal projection [in L,(P2)] of h onto the subspace of P,-
degenerate functions. This suggests how to proceed in the general case: If 4 is
P-degenerate of order r — 1 and if Ak, is the P -orthogonal projection of A
onto the subspace of P,-degenerate functlons of order r — 1, then take as the
bootstrap statistic not U] (k, P,) — U} (h, P), but U"(h,,, P,). Still better,
since only the leading term in the Hoeffding expansion of U "(h,, P,) con-
tributes to the limit, take this term as the bootstrap statistic, which is

(1.6) (7 )ur(mEnh, P,
where, for a probability measure @ we write (w2, hXx,,...,x,) =
6, -Q) - — @)Q™ "h (this notation is explained below)

The same 1dea applies for V statistics. Although the bootstrap results for V
statistics can be deduced from those for U statistics via their Hoeffding
decomposition, it seems more convenient to use in this case the decomposition
not into U but into V statistics with P-canonical kernels. In this way, it
follows very easily that the important V statistics that appear in the Taylor
expansion of von Mises functionals, namely (P, — P)™h, can be naively boot-
strapped.

The law of large numbers for U and V statistics can be bootstrapped under
weak integrability conditions. This is proved in Section 4; see Athreya, Ghosh,
Low and Sen (1984) for a different approach leading to a somewhat weaker
result.

In Section 2 we prove the bootstrap CLT for U statistics, Theorem 2.4 (and
Corollary 2.6). We find it convenient to give a short review of the CLT for U
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statistics, and for this we follow, in essence, Bretagnolle’s (1983) arguments
(although we make no explicit reference to symmetrized tensor products or to
the Wiener chaos). V statistics are treated in Section 3. The main result here is
Theorem 3.5 (and Remark 3.6). Corollary 3.8 gives the bootstrap version of
Filippova’s (1961) limit theorem for {n™/%(P, — P)™h):_,. In the case of U
statistics we try to obtain results under minimal integrability conditions, but
no such attempt is made for V statistics: in this case we just use Filippova’s
conditions. In Section 5, we outline a possible way in which the previous
results can be used for testing hypotheses. Sometimes testing a composite
hypothesis for P reduces to testing (H,): A certain function A(x,,...,x,,) is
P-centered and P-degenerate of a certain order versus (H,): A is not P-centered
or has a lower order of degeneracy. The above results can be applied to the
construction of natural bootstrap tests of this sort which satisfy desirable
properties.

2. The bootstrap CLT for U-statistics. In Section 2A we set up nota-
tion and sketch Bretagnolle’s (1983) proof of the CLT for U-statistics. In
Section 2B, we obtain the bootstrap limit theorem.

2A. A short review of U-statistics. A function h: R™ — R is symmetric if
h(xy,...,%,) = h(x,qy, ..., X)) for all (x,,...,x,) € R™ and all permuta-
tions o of N, ={1,...,m}). Let P be a probability measure on R and let
{X.}°_, be ii.d. random variables with law P. Given a measurable symmetric
function A on R™, the U statistic of order m based on k& and P is

n n\~!
(2.1) Uz(h, P) = (m) Y h(Xis-os X; )
1<i;< -+ <ip<n
Given the notational complexity of U statistics, it is convenient (but not
essential) to define the following two linear operators on (symmetric) functions
h:R™ > R Forall x,,...,x,, €R, n €N, we let
(or2h)(24,...,%,) = Y h(x;,...,x; ) form<n,
(2 2) 1Si1<“'<im5n
on(h)=0 form>n and of(c)=c forc €R.
The projection operator w,f . is defined on functions 2 of m variables in

L(R™ #™, P™) and takes values in L, R* #* P*), 0 <k < m, as follows:
For (x,,...,x,,) ER™, m # 0,

(2.3) (Th mh)(21,..., %) = (8, — P) -+ (8,, — P)P™*h

and 7§ o(c) = ¢ for ¢ € R, where for measures @, on| R we let @, Q,h=
f,Rmh(xl, s X,,)dQ(xy) - -+ dQ,(x,,). We will let w7 ==f,. Ifa function h
on R™ is not necessarily symmetric, we will write S, & for its symmetrization,
that is,

(2.4) (S )(X1s ey ) = (M) T 'ER(Xoqys - - » Xorgmy) s
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where the sum extends over all permutations o of N,,. Important types of
functions in this theory are the P-canonical functions: h: R™ — R is P-canoni-
cal if h is symmetric and Ph(x;,...,%,_y,") =8, - 8, Ph=0 for P-
almost all xy,...,x,,_; € R. Obviously, square integrable P-canonical func-
tions of different number of variables are orthogonal (with respect to P). Note
that the functions v,f, mh, 1 <k <m, are P-canonical and in particular
orthogonal. Next we list some obvious properties of the o and 7 operators
which will be used below:

LeEmMmA 2.1. o and 7 are linear. Moreover, for h: R™ — R symmetric:

(@) If h is P-canonical, then E(o7h(X,,..., X,))? = (,’,"l)Ehz(Xl, ey X))
for 1 <m <n. .

(b) E(mf h(Xy, ..., X,))* < ER(X,, ..., X,) for 1 <k <m.

© onoorh) = (2)(7)(3) ot for 0<k<m<n.

@ wQenmf (h)=mqPm k), 0<k<m, Q€ PR), where P" *h is
identified with 8, -+ 8, P™ *h.

(e) If h is P-canonical and 0 <m, n <r, then w} onh =h if m = n and
. onh =0ifm +n.

Proor. (a), (c) and (d) are trivial. (b) follows using E(X — EX)? < EX?
conditionally. As for (e), we have

(8 romh)(%y,...,%,)
= hM (5x1 -P)--- (sx,, -P)P"""g, i,
1<i,< - <i,<r
where g;  ;(x,...,%)=h(x;,...,x; ). So, if no i; is k, then
(8,, — P)g;,...; =0 (P is understood here as integrating x,), that is, the

terms of this sum for which {1,...,n} ¢ {i,,...,i,} are all zero. On the other
hand, if {i},...,i,} ¢ {1,...,n}, that is, if some i; is larger than n, then
PT""g, .. =0because h is P-canonical. Finally, if {i;,...,i,} ={1,...,n},

then (8, — P)--- (8, — P)P" "h(xy,...,%x,) = h(x,,...,x,) since h is P-
canonical. (e) is thus proved. O

Using the o — 7 notation we obviously have that for & symmetric,
h(xy,...,%,) =8, -+ 8, h=(8, -P+P)--- (8xm—P+P)h

2.5 m
( ) = E O'km’lrf’mh(xl,...,xm), xi € R.
k=0

Then, since U, (h, P) = (,’,‘,)'l(o-;h)(Xl, ..., X,) it follows from Lemma 2.1(c)
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and (2.5) that

Un(h, P) = f ( )(5) " (mE k) (i) )
(2.6) B0

m

kgo( )Uk (wF k. P).

This is the Hoeffding decomposition of U » into a sum of U statistics
associated to P-canomcal functions (recall mh is P-canonical for & > 1)
plus EU; = P™h = a§w§ ,h.

The symmetric function h(xy,...,x,,) or the U-statistic U (h, P) is P-
degenerate oforder r—1,1<r<m,if 5, ...8, P™ "*'h=P™h as. but
6, '+ 8, P™ "h is not a constant a.s.; it is noncfegenerate (or degenerate of
order zero) if 5, P™" 4 is not a.s. equal to P"‘h It follows that A is
P-degenerate of order r — 1 if and only if w{ A= --- =«F, h=0and

7Pk # 0. So, if h is degenerate of order r — 1, 1 <r <m, the Hoeffding
decomposmon of U is

U*(h, P) — EU™h,P) = ( )( )_la,:w,{mh(xl,...,xm)

>
(2.7) ,:
z,

(% Jve(eh k. P).

In the proof of the bootstrap CLT we will require the law of large numbers
and the central limit theorem for U statistics. The first, due to Hoeffding
(1961) [see also Berk (1966)], uses the martingale structure (or alternatively
the reverse martingale structure) of U-statistics, and is as follows:

(2.8) E|h(X,,...,X,)| <~ implies that
Uxh,P) > EUXh,P) as.asn — o
We will also require an easy complement of this theorem [Sen (1974); see
also Giné and Zinn (1990)]. Let g: R —» R be a symmetric function; then
r>d and E|g(X,,. .,Xd)ld/' < ® implies that
n-r Yy gX;,....,X;,) >0 as. asn >
1<i;< -+ <ig<n

A consequence for V statistics is that, letting #(C) denote the cardinality of
the set C,

(2.9)

if for each iy, .., iz E|g(X;, ..., X)) 7""? < », then

2.10 n
(2.10) n? Yy gX,..,X)-EgX,...,X;) as.

il’ ceey id =1
The'proof of the central limit theorem is crucial for the bootstrap. So, we

sketch it here essentially following Bretagnolle (1983). We borrow some nota-
tion from Dynkin and Mandelbaum (1983) who have another approach to the
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CLT for symmetric statistics. For ¢: R - R measurable and bounded and with
P =0, let hd(x,,...,x,) = d(xy) -+ ¢(x,), £ € N. Then it is classical [the
Newton’s identities; see, e.g., Jacobson (1951), page 110] that for each £ € N
there is a polynomial R, of k .variables and of degree %, independent of n,
such that for all n > &,

(2.11) ophf(xy,...,x,) = R, Zl &(x,), X ¢%(%),.- -, L *(x) |-
1 1

Let {Gp(¢): ¢ € Ly(R, &, P) and P¢ = 0}, be the isonormal Gaussian
process, that is, Gp(¢) is N(O, P¢2) and EGp(¢)Gp(¢) = Ppo for all P-mean
zero ¢, ¢ € Ly(R, &, P). Let ¢;, j = ,J < o, be P-centered and bounded
real functions. Then the central hmlt theorem and the law of large numbers
give

./(n k/2 ”h"’J(Xl, LX) )= 1,...,J)

>, Z(Bi(Gp(4)),02,0,...,0): j = 1,....d),
where adi = P¢?2. It follows by orthogonality considerations that

R,(Gp(4),02,0,...,0) = (k) *0}H,(Gp($)/0,),

where H, is the kth Hermite polynomial [see, e.g., Bretagnolle (1983)]. If
h € L,(R*, #*, P*), then h can be approximated in L, by functions g of the
form g = £¢_,¢; 1, (x,) - -+ I,,(x;). If moreover h is symmetric, since b = Skh
and S, has norm "bounded by 1 as an operator acting on L,, then h is
approximated in L,(P*) by functions of the form Y {_,c;S,(I,, (xl)

1, (x)). This last sum, by polarization, can be written as L b, Wix;) - n/f,(xk)
for functions y; which are sums of some of the I, . (Given ¢,,...,¢, iid.
with P(¢; = 1) = P(¢; = —1) = 1/2 the polarlzatlon formula can be written
as

(2.12)

RIS,(fu(%y) *+* fu(xr)) = E.eq - gx(erfr(x1) + -+ +ep fu(x)) -
(e1fi(xp) + -+ +epfu(xr))-)

So we obtain that for any symmetric & there are simple functions ¢,; and real
numbers ¢;; such that

Sy
(2.13) h=lim Y ¢;Rf in L,(P*).

Let &;; =y Pl/fl If moreover h is P-canonical, then h =xfh =

lim, ,,X° _ltljhkb in L,(P*) because 7} is an operator of norm 1 on L2 By

(2.12) for each [ the sequence of random variables n~*/2o (L% ¢,;h%Y) =
n=*2L %t of(hiY) converges in distribution to

Z tlij(GP(l//zj): 0,,,211., o,..., O).
Jj=1



BOOTSTRAPPING U-STATISTICS 661

On the other hand, by Lemma 2.1(a), as | — o,

s 2
E[n_k/z(a'knh(xl’ ceey Xn) - 0',:’( tljh%”j)(xl’ cee Xn))]
- j=1

J
8 2
- n‘k(Z)E(h -y t,jh',’;'f) - 0.
j=1

These two observations yield weak convergence of the laws of
n~*2grh(X,,...,X,)

by an easy triangle inequality argument [showing that if Y,,, >, Y, as n > o
and sup, d(Z,,Y,,) = 0 as | - = for some distance d metrizing weak conver-
gence, then Y, -, Y for some Y and Z, —»; Y). The limit is obviously a
functional of the process G in its Wiener chaos of order .

Combining the CLT just proved with the Hoeffding decomposition (2.7) of a
degenerate U-statistic, we obtain the CLT for U statistics:

If P™h% < © and U(h, P) is degenerate of order r — 1,
1 <r < m, then the sequence {n"/2(U(h, P) -

(2.14) EU(h, P)),_, converges in distribution and its limit
coincides with the limit of the sequence

ol (X, X

[We are not interested here in obtaining the exact form of this limit, which
may be quite complicated for r > 1 (it is normal for r = 1): The bootstrap
limit theorem to be proved below provides approximations for it.] The limit
theorem (2.14) is due to Rubin and Vitale (1980), in general and, for m = 2, to
Hoeffding (1948a) (nondegenerate case) and Serfling (1980). Von Mises (1947)
and Filippova (1961) obained a similar result for V statistics.

2B. The bootstrap CLT. Given {X,);_,iid.(P),let P(w)=n"'L7_ ;6x(w)
be their empirical distribution. Let X¢,,..., X2, be iid. random variables
with law P,(w). In what follows the superscript  in X, will be omitted and
we will also write P, for P,(w). Let k be a kernel (i.e., a symmetric measur-
able function on R™) degenerate of order r — 1 for P.

As mentioned in the Introduction, there are some difficulties with the naive
bootstrap Uj(h, P,) — U:(h, P) of UZX(h, P) — EU(h, P) [Bretagnolle
(1983)]. The central limit theorem (2.14) suggests bootstrapping instead the
first nonnull term of the Hoeffding expansion of U (k, P) — EU(h, P) (see
Remark 2.5 for an alternative, equivalent heuristics and bootstrap procedure).

Letting .£* denote conditional law with respect to the sample {X,}"_;, we
will prove that, under mild integrability conditions,

A A )
= lim Z#(n"/*(Uz(h, P) — EUZ(h, P)))

n—oow
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w-almost surely. (Here and in what follows, the limit of a sequence of laws
refers to its weak limit.) Note that the bootstrapped statistic is obtained from
the leading term

A(F)n2 L (8x, —P)-- (8x, — P)P™h

1<i;< - <i,<n

by two substitutions: {X;} is replaced by {X,,;} and P is replaced by P,, to get

r!(’;.z)n—rﬂ Z (8Xni1 _ Pn) - (8Xni,. _ Pn)P,:"_'h,

1<i;< - <i.<n

a statistic that does not involve P. These two statistics are the rth terms in
the Hoeffding decompositions of n"/2U[(h, P) and n’/2UZ(h, P,), respec-
tively. We first show that

lim ./*(n_’/zo'r”qrf';ng( X150 X00)

—> 00

(2.16)
= lim A(n""?0nw},8(Xy,..., X,)) as.

for functions g of the form X ¢_,¢,h% with ¢, bounded. Then we show that
(2.16) also holds for functions g in L,(R™, #™, P™) satisfying certain mo-
ment conditions.

LEmmA 2.2. Let ¢, € LR, %,P), j=1,...,dJ. Then w-a.s.,
lim Z*(n~" 20wl hi( Xy, s X)) = 1,000, d)

n—oo

= lim Z(n"" 20wl hY( Xy, X)) = 1,0, ).

n—o

(2.17)

Proor. We have
TE G (%1, %) = (Pu(4)))” (8 = Pa)(85) " (8, = Pu)($))

= (P(8))" "B,
Hence, by (2.11),

—r/2 P .
n r/ arn"r,';nh?r{(xnh Tt Xnn)

= (Pn(‘f’j))m_rRr n2 Y (6,(Xn) — Pod;)s
i=1
n Y (6;(X,.) - P.a,)",.
i=1

n=r/2 E (¢j(xni) - Pn¢j)r .
i=1
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Similarly,

n~%orml h%(X,, ..., X,)

= (P(d’j))m_rRr Gn_l/z _Zj:l(dy(xi) - P¢j),
n-l é(d;j(xi) - Pg;)’,...,

o f (ox - o).
i=1
By the bootstrap CLT in RY [Bickel and Freedman (1981)], w-a.s.,

lim ./*(n‘l/2 i (6,(X,i) — Padj):J = 1,...,J)
i=1

= lim /(n_l/zz (¢j(Xi)_P¢j):j=1"“’J)’
noe i=1
and by the strong law of large numbers and the bootstrap LLN in R (loc. cit.),

n
P,¢,—>Pp; as. and n 'Y $3(X,;) — Pp; inPr*, w-as.
i=1

Since polynomials commute with weak limits, we obtain that a.s.,

lim £*(n~"20rmln, % j=1,...,J)

n— o0

= lim £(n~"%oral k% j=1,...,J). O

n— o

LEMMA 2.3. Let h be a symmetric function in L,(R™, #™, P™) satisfying
the integrability condition: For each (iy,...,i,) € N, if d = #iy.oorinh
then

|2d/m

(2.18) E|h(X;,...,X; ) <

Then, w-a.s.,

lim £*(n~" 20wl h( X155 Xnn))

n—o

= lim £(n"" 20w} h( Xy, ..., X,)).

n—wo

(2.19)

PRroOF. By (2.13), b = lim,_, g, in L,(P™), where g, are functions of the
form T 0t ;h%. By Lemma 2.2, the identity (2.19) holds for g;. Now Lemma
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2.1(a) and (b), with P, replacing P, gives
E*(n =" 0wl (h — 8))" = n= (T} ) B (nFs(h - 8))°
< (P) B (h - ) (X e o)

=(r)'am . Y (h- gl)Z(Xil""’ X;,)

> (rY7T'E(h - g)X(Xy, ..., X,,)

as n — » by (2.10) [note that A — g, satisfies (2.18) as g, is bounded]. These
two observations give the identity (2.19) for & by'an easy triangle inequality
[e.g., using a distance that metrizes weak convergence; see the paragraph prior
to (2.14)]. O

The CLT for U-processes together with Lemma 2.3 immediately gives:

THEOREM 2.4. Let P be a probability measure on R and let h: R™ —» R be a
measurable symmetric function P-degenerate of order r — 1 for some 1 <r <
m. Let {X}7_,, be i.i.d (P) and for each n, let X;;; =X,;, j=1,...,n, be
i.i.d. (P(w)), where P(w)=n"'L}_ 8x(w). Let K satzsfy the mtegrabllzty
condition (2.18). Then the followmg sequences of probability distributions
converge weakly and all have the same limits:

@ (L(n"’2U(h, P) — EU(h, P)))},, "

O (LY T ) 2or al (X, X s,

@ {L*C 7 ) 20wl (X s, ., X Wiy, 0-0.S.

REMARK 2.5. A slightly different (but essentially equivalent to the above)
rationale for the bootstrap of degenerate U-statistics goes as follows: Since
U™ (h, P) is P-degenerate of order r — 1 and degeneracy is so crucial that it
must be preserved when bootstrapping, the bootstrap statistic should not be

U™, P,) but instead U”(h,, P,), where h, is the P,-orthogonal projection
of h onto the subspace of functlons which are P,-degenerate of order r — 1,
namely,

(2.20) h(0) =h— ol wlih — -+ —am wP) b

Notlce that by Lemma 2.1(e), for 0 <k <r, wf» h,=0 and for k >r,
min,k, = win, h, so that

m

(221)  Up(E,,P,) - kz=r(’;‘)(Z)_l(o;w,znmh)(xnl,...,XM).

The leading term in (2.21), multiplied by n”/2, is equivalent to the nth term of
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the sequence (c¢) in Theorem 2.4 and the remaining terms are o(n~"/%) by
Lemma 2.3 provided that (2.18) holds. Hence, we have:

COROLLARY 2.6. If h is as in Theorem 2.4, then
(d) (w20 (R, P},
has a.s. the same weak limit as the sequences (a)-(c) in Theorem 2.4.

REMARK 2.7 (The case r = 1). It is worth noting that for r = 1 the statistics
(d) in Corollary 2.6 and (c) in Theorem 2.4 take, respectively, the forms

(2.22) nV(U2(h, P,) — P"h)

and

(2.23) mn~1/2 . Z (h( niy’ zz""»Xi,,,) - h(Xil""’Xim))'
Lreens i, <n

The centering P"h in (2.22) can be replaced by U, (k, P).

ReMARK 2.8 (Relation to previous work). The bootstrap in the nondegener-
ate case (r = 1 in Theorem 2.4), under stronger integrability conditions, was
obtained by Bickel and Freedman (1981) for m = 2 and by Bretagnolle (1983)
for general m. Our bootstrap is different from Bretagnolle’s in the degenerate
case as explained in the Introduction. Babu (1984) shows that, under high
moment conditions, if H is a twice differentiable function, then n(H(X,) —
H(EX,) — H'(EX) )X, — EX)) is asymptotlcally equivalent to n(H(X*) -
H(X,) - H(X, )(X * — X)) and, closer in spirit to our work, observes that
the bootstrap linear term cannot be dropped even if H'(EX,) = 0. (Here X, is
the sample mean and X* is the mean of the bootstrap sample.)

REMARK 2.9 (The case m = 2). For m = 2 and r = 2 (the degenerate case)
the bootstrap statistics corresponding to the sequences (c) and (d) coincide (up
to multiplicative constants tending to 1) with

nUz"(hn, n)

=n('2")_1 r h( X, nj)_n_l zn: h(Xy;, X;)
k=1

l<i<j<n

(2.24)

n n
LY R(X, X)) trt Y (X, X))
k=1 k,l=1

REMARK 2.10 (Different bootstrap sample sizes and other extensions). (i)
Since the CLT and LLN in R” can be bootstrapped for any bootstrap sample
size N = N, — » and since the L,(P,) estimates in Lemmas 2.2 and 2.3 also
work in this case, it follows that Theorem 2.4 and Corollary 2.6 also hold for
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bootstrap sample size N — « not necessarily equal to n. The sequences (c) and
(d) are now, for X,,..., X, 5 (iid. (P)), respectively,

o
n=1

(o (PN o (b Ko Kan)
and
(WU (Ra, B,

(ii) The limit (2.12) holds also jointly in 2 =1,..., K < », hence the
argument below (2.12) gives that if h,,..., hy are P-degenerate kernels of
order r;, —1,...,rg — 1, respectively, then the vector of U statistics
(n"72U%(hy, P),...,n"®/2U(hg, P)) converges in distribution in RX and the
analogues of Theorem 2.4 and Corollary 2.6 hold. In other words, U statistics
can be bootstrapped jointly.

(iii) Finally, the bootstrap also works for multisample U statistics in an
analogous way.

3. The bootstrap CLT for V statistics. Given a symmetric measurable
function k: R™ — R and a probability measure P on R, the V statistic of order
m based on A and P is defined as

(3.1) Vi(h,P)=n"" ¥ h(X,,...,X,)=Prh,

where {X;} are iid. (P). Every symmetric statistic, and V*(h, P) is one,
admits a Hoeffding expansion into U-statistics with P-canonical kernels. So,
the CLT and the bootstrap CLT for V,? can be deduced from the results in the
previous section. This is done for a different bootstrap CLT in Bretagnolle
(1983). Here, we will apply the same principles of Section 2 but not the results
themselves. It is somewhat easier to decompose a V statistic into a sum of V
statistics with P-canonical kernels (instead of U-statistics) and work with
these. As in (2.6), we have

Vi(h,P) = Bih = (B, ~ P) + P)"h = X (77 )(B, = BYP7oh
j=0
(3.2) = Eo(r;)n‘j ’ Z 1(6Xi1 —P) (8Xij - P)P”‘_jh
J= Igyeees i;=

Now we must introduce some extra notation in order to account for
repetition of indices. Given a partition @ = (4,,...,A,)) of N, ={1,..., m},
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where ¢ = #Q and A; # &, we let for h: R™ - R,
Jo(h)(%y, ..., x,) = h(x;,...,%; ),

(3.3) . o
where i; = k if j €A, k=1,...,q

With this notation we obviously have
(3.4) Vr(h,P) =n"" Y o(q!S,Joh)(X,,..., X,),
Q

where the summation runs over all partitions @ of N,,. This is a decomposi-
tion of V,} into U statistics [each of which has in turn its Hoeffding decompo-
sition: (3. 2) is simpler]. Following Filippova (1961), we let L,(R™, #™, P™) :=
{h € L,R™, #™, P™): Jyh € Ly(R? %7, P?) for each partition @ of N,,} and

1/2

(3.5) lAllzz = (Z E(JQh)Z(Xl""’Xq)
Q

LEMMA 3.1. Let h: R™ — R be a symmetric measurable function. Then:

(a) P"oh = (")P”‘hform <n,

®) V(g mh, P) = PX(«w} , h) = (P, — P)*P™" kh k<m,

(©) Ifh € L(P™), then E[nm/z(P -P)"hP <c ||h||L2, where c,, depends
only on m.

Proor. (a) and (b) are trivial [see (3.2)]. (c) is proved in Filippova (1961),
Lemma 1 (von Mises lemma). O

Our goal is to bootstrap the CLT for V,2(h, P) for h P-degenerate of order
r— 1,1 < r < m. In this case the sum (3.2) becomes
(3.6) v*(h,P) — EV*(h,P) =Y, ( )V”( nh, P).

j=r

We show that the first term is the leading term:
LemMa 3.2. Ifh € L(P™) is P-degenerate of orderr — 1,1 < r < m, then
(8.7) wE[Vz(h, P) = BVi(h,P) = (F)V/(mluh, P)]| = O(n7Y).

Proor. Note that by (3.6) and by Lemma 3.1(b, c),

nr/2

|Vi(h, P) = BV (R, P) = (7 )V (wF i, p)|,

< & w7 (afah. P, < .2 n72( 7 e I Pl

Jj=r+1 Jj=r+1
0O
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Filippova [(1961), Theorem 4] proves that if f € L,(P"), then
Z(n"/*(P, = P)'f)

3.8
9 aw/(/olm [olf(F-%(xl),...,F-l(x,))d/s(xl)--~d/s(x,)),

where B is the Brownian bridge and F is the cumulative distribution function
of P. We denote u(f, P,r) the limit law in (3.8). Then, Lemma 3.1(b), (3.7)
and (3.8) give the CLT for V statistics:

If h € L,(P™) is P-degenerate of order r — 1, then

(39) Mm Z(n(Vi(h, P) ~ EV;i(h, P))

= tim £ (w2 () (wF h, P)) = uf( 7 )7L wh, Por).

So, we have a situation analogous to that of Section 2 and will bootstrap in
the same way. Let, as before, X¥,,..., X?, be iid. (P,(w)) and let P =
nly? .8 xo, be the empirical measure of the bootstrap sample. We drop the
variable w.

LEMMA 33. Let —-wo=¢t,<t, < =+ <t, ;<t,=x and let A; =
(t;_1,t;], j = 1,..., k, be the associated partition of R. For constants g; .. ; ,
let g(x,,...,x,,) be the function

k
(8.10)  g(xy,..x,) = X & uda(®) 0 Lay (%)
J1se-es Im=
Then
lim #*(n"/3(P} - P,) P"7'g)
(38.11) e

= lim #(n"/*(P, - P)'P"""g) a.s.

ProoF. By the bootstrap CLT and LLN in R* [Bickel and Freedman
(1981)], lim , _,, Z*(nV/%(P* — P, XA):i=1,...,k) =lim, ., Z(n*P, -
PXA):i=1,...,k)as.and P,(A,) »P(A)) as. So the result follows because

n/¥P,-P)YP"g= ¥ g . ;,n%P,~P)(4;)
Jiseeosdm=
n'/?(P, - P)(A;)P(4; ) - P(4;,)
k
n/ P} -P)Prg= ¥ g, ;%P —P,)(4;)
jly -:jm_l

n/2(Pr = P,)(A;)P.(4;,,) " Pu(4;,)

Jr+1

and polynomials commute with weak limits. O
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LEMMA 3.4. Let f € Ly(P™). Then
lim #*(n"/%(P} — P,) P"'f)

n—>owo

(3.12)
= lim #(n"/*(P, - P)'P™""'f) a.s.

n—o

Proor. The set of functions g of the form (3.10) is dense in L,(P7). Let
then f=lim,_,, g in L,(P") with g, of the form (3.10). By Lemma 3.1(c),

E(nw/*(P,~ P)P""(f-g))

- 2 2
<R P™7(f - &)z e < 2 f-& Z,c2m)-

Moreover, again by Lemma 3.1(c),
E*(n/%(Py -~ B)' B (- g))

<2l f-gligem= Cf% lJo( f— &) "Z(P:g)-

(3.13)

(3.14)

The last random variable in (3.14) is a sum of V statistics that satisfy the
integrability condition in (2.10) (actually, with some room left). Hence, the law
of large numbers for V statistics shows that

limsupE"‘(n’”(P,’Ll= - Pn)rP,:n‘r(f"gz))z
(3.15) n—o
<cilf-&llegem as.

Now the result follows from Lemma 3.3, (3.13) and (3.15). O
The CLT (3.9) and Lemma 3.4 give the bootstrap CLT for V statistics.

THEOREM 3.5. Let h(x,,...,x,) be a measurable symmetric function P-
degenerate of order r — 1,1 < r < m, such that h € L,(P™). Then the follow-

ing sequences of laws converge weakly to the same limit:
@ {-L(n"/2(V,2(h, P) — EV(h, P));_,,

) (L 2TV, wE by PY s
@ {L*@ (7 Vi aFrh, BN, wea.s.

REMARK 3.6. As in Remark 2.5, if k() is the P,-degenerate component of
h of order r — 1 [(2.20)], then it follows that the sequence

() (w72 (R, P,

converges weakly w-a.s. to the same limit as the sequences (a)-(c), under the
hypothesis of Theorem 3.5.
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REMARK 3.7. As in the case of U statistics, extensions of Theorem 3.5 are
possible. In particular, the bootstrap sample size can be any N, — .

A particular V-statistics of interest is the mth term in the Taylor expansion
of a von Mises statistical functional, namely (P, — P)"f, for f(x,,...,x,,)
symmetric, f € L,(P™). By Lemma 3.1(b), (P, — P)"f = V(=L f), so ) that
this is the special case of (3.6) for r = m. Smce we also have (P} — P )"f =
Ve(mP-f) (by the same lemma), the equivalence between (a) and (c¢) in
Theorem 3.5 gives:

CoroLLARY 3.8 (The bootstrap of Filippova’s CLT). Let f € L(P™) be a
symmetric function. Then w-a.s.,

(3.16) '31320 ZL*(nm/%(P¥ - P,)"f) = ,}‘l‘i £(n™/(P, - P)" f)
=u(f, P,m).

4. The bootstrap of the law of large numbers for U and V statistics.
The purpose of this section is to prove the bootstrap law of large numbers for
U and V statistics under as weak moment conditions as possible. In particular
the following result strictly contains the bootstrap law of large numbers in
Athreya, Ghosh, Low and Sen (1984).

THEOREM 4.1. Suppose that for each possible combination of integers
e eosim EIM(X,,..., X; )l#"1 """ imd/™ < . Then
U.(h,P,) »px ER(X,,...,X,,) a.s.

and
Vi(h,P,) »p+ ER(X,,...,X,,) a.s.

Proor. First consider the U statistics case. The Oth term in the Hoeffding
decomposition is P,k and, by the law of large numbers (2.10) for V statistics,
P"h - P™h as. For 1 <j<m, U™ajnh, P,) = U™wfn bl _ un, P,) +
U’"('n' (k1 12), P,). Now

Var*(U"( m(hI|h|sn1/2) P))
e

n\? = 2
(j) n-@n »a ﬁzy=1|h1|h,snl,z(xal,...,Xaj,X,sl,...,XBm_j)

IA

XhI|h|sn1/2(Xa1’ X X ..., X'/m—j)

ny! "
S(j) P (/2)-m )E“,llh(Xalv--»Xa,-’XBI’-~-’XBW_J-)
. pe
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by the law of large numbers for V statistics. We also have
E*|U(wf5, kL5 e, P,)|

=< 2jE*‘h(Xn17' . "X‘:nm)‘IIh|>nl/2
. n
=2nm ¥ (X, X ) s e 0 as,
i =1

again by the law of the large numbers.

As for the LLN for V statistics, we note that, using the decomposi-
tion (3.4) of a V-statistics into U statistics, it is enough to show that,
for ¢ <m, n=""OU(Jgh, P,) =p« 0 as. But E¥ln~ "~ PU(Jgh, P,)| <
nTmEY L Li=1l(Jgh th’ X; )|, which converges to zero a.s. because of

5. A remark on applications. Usually a kernel h is degenerate only for
a small class of probability measures. So, only some extra care is needed in
order to apply the bootstrap CLT in the usual way to obtain bootstrap
confidence intervals for 6(P) = P™h or for related characteristics of P. A
different application that exploits the above results for degenerate statistics
could go as follows. Suppose we have a class & of probability measures, a class
P c P and a kernel h such that A is P-centered and is P-degenerate of exact
order r — 1 for P € & if and only if P € &, and it is not centered or it is
P-degenerate of lower order otherwise [such a class & could be, e.g., the class
of product probability measures on R2, for the kernel & in Hoeffding (1948b),
or the class of symmetric measures about the origin for a suitable function A
—as we see below]. Then the previous results could be useful in testing
Hy Pe P against Hi: Pe P— P. We could take as critical region
{n"72|U(h, P)| > c} or {n"/2[V*(h, P)| > c} (often these two statistics are
equivalent). Then, given the data X,,..., X,, we could estimate ¢ using the
quantiles of the bootstrap statistic

T = (7)o aEn k(X Xon).

Under the null hypothesis and if the limit distribution is continuous, by
Theorem 2.4,

Pr{n"/2|(U2(k, P)| > ¢} = Pr*{|T*| > ¢}

asymptotically, that is, the test would have asymptotically the correct level.
Moreover, by Lemma 2.3, T* converges weakly w-a.s. for any P whereas

n"/; 2IU"(h P)| -» » in probablhty for all P € #— & and therefore the test
would be consistent against all fixed alternatives. (Actually, local alternatives
could also be considered.) The same comment applies to tests based on V
statistics, by virtue of the results in Section 3. We give two simple examples.
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ExampLE 5.1 (A bootstrap test for symmetry about zero). Take =

{P e PR): [x2dP < o} and P = {P € &: P is symmetric about zero}. Con-
sider the statistic

T, = [* (Fx) + F(-x =) - 1f'ds
= f_w(P"(I(_w’x] - I[—x,w)))2dx

(a modification of an example in Filippova). Then if P € &2,

(5.1)

(52) T, = [° [(F, - F)(x) + (F, - F)(-x -)]*dx = (P, - P)’h,
where

(53) h(u,v) = (lul A |v|)(I(u,u>0) +I(u,v<0) _I(u>0,v<00ru<0,v>0))’
u,v €R.
If P is not symmetric

T,= (P, =PY'h+ [° (F(x) + F(=x =) - 1)’ ds
(5.4) 2" [(F, = F)(%) + (F, - F)(-x -)]
x[F(z) + F(—-x —) — 1] dx,

with the second summand different from zero by right continuity of F and the
third tending to zero as n — « by Gilvenko—Cantelli. The limiting distribution
of n(P, — P)’h is the law of a shift of an infinite linear combination of
centered independent chi-square random variables of order 1, hence it is
continuous. So, if we define c¥(a) by

(5.5) Pr*{n|(P¥ - P,)’h| > ci(a)} = a,
we have
Pr{|nT,| > c*(a)} 2 a fPeP
and
Pr{|nT,| > c¥(a)} > 1 f PEP- P

by Corollary 3.8, (5.2) and (5.4). (Obviously this test is also consistent against
local alternatives of the form P + n~*A, P symmetric, A nonsymmetric and
A<1/2)

A similar comment applies for the test of symmetry based on the more
interesting statistic

T,= [ (Fi(x) + Fy(~x =) - 1)’ dF,(x)
which is a V statistic of order 3. If we take here &= {P € #(R): P is
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continuous} and P= {P € &: P is symmetric about the origin}, then the
associated function A satisfies P3h = 0 if and only if P € & and in this case it
is degenerate of order 1. Hence Theorem 3.5 applies.

ExaMpLE 5.2 (Hoeffding’s test for independence). Here we take #=
{P € #(R?): P has continuous joint and marginal densities}, Z= (P € &#: P
is the product of its marginals} and

Tn = U5"(th)v
where

h((x1,51)5---5(%5,95))
= 4718, [ @( 2y, x5, x3) @( %1, %4, 25)0(I1, Y25 ¥3) (Y15 Y45 ¥5)]

with ¢(u,v,w) = I, _,y — I, <, Let F be the cdf of P and A =ET, =
Jrd F(x,y) — F(x,)F(o, y)I? dF(x,y). Then Hoeffding (1948b) shows that
A = 0 if and only if P € &, that if P € &, then h is P-degenerate of order 1
and that the limiting distribution of nT, is continuous (an infinite convolution
with at least one absolutely continuous component). Hence if c¢}(a) is defined
as

(5.6) Pr*{ 2!(g)n‘ ormish( Xy -y Xon)| > c:(a)} =a,
we have

(5.7 Pr*{|nT,| > c¥(a)} > a fPeP

and

(5.8) Pr{|nT,| > c¥(a)} »1 ifPe P- P.

By Theorem 2.4, under P € &, nT, is asymptotically equivalent in distribu-
tion to the statistic in (5.6), so that (the limit being continuous) (5.7) follows;
for any P € #— &, by Lemma 2.3, c*(a) converges a.s. to a finite quantity,
whereas n'/%(T, — A) converges in distribution (by the CLT for U-statistics)
and A # 0, hence (5.8) follows.

Generalizing the above examples given a von Mises differentiable functional
T = T(P), a test of the hypothesis P € &, where & is the set of all probabil-
ity measures for which the first (or the several first) derivative (in the von
. Mises-Filippova sense) is zero, could be constructed just by proceeding as in
the examples. The only problem is that the second (or the first nonzero)
derivative, say hp, may depend on P. The appropriate smoothness conditions
on T at P should, however, allow for the replacement of h, by hp and
therefore justify taking n'/ 2(P* P,)*(hp ) as the basis for the computation
of critical numbers [see, e.g., Dudley (1990) for a general framework on this for
r=1J
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