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GENERALIZED M-ESTIMATORS FOR
ERRORS-IN-VARIABLES REGRESSION

By CHi-LuN CHENq AND JOHN W. VaN NEss
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This paper discusses robust estimation for structural errors-in-varia-
bles (EV) linear regression models. Such models have important applica-
tions in many areas. Under certain assumptions, including normality, the
maximum likelihood estimates for the EV model are provided by orthogo-
nal regression (OR) which minimizes the orthogonal distance from the
regression line to the data points instead of the vertical distance used in
ordinary regression. OR is very sensitive to contamination and thus effi-
cient robust procedures are needed. This paper examines the theoretical
properties of bounded influence estimators for univariate Gaussian EV
models using a generalized M-estimate approach. The results include
Fisher consistency, most B-robust estimators and the OR version of Ham-
pel’s optimality problem.

1. Introduction. Consider the usual linear errors-in-variables (EV) model
(also called the measurement error model) which assumes that there are
linearly related true variables x and y,

(1.1) y =a + Bx,
which cannot be observed directly. Instead X and Y are observed, where
(1.2) X=x+u, Y=y+e

and u, ¢ and x are independent with Eu = 0 and Ee = 0. Thus, x and y are
both observed with errors. If x and y are random variables, then (1.1) is called
a structural relation; while if x and y are deterministic, then (1.1) is called a
functional relation [Kendall and Stuart (1979), Chapter 29]. Only the struc-
tural model will be considered here.

The proofs used in this paper require that all random variables be Gaussian.
In this case the model (1.1)-(1.2) is underspecified and an additional assump-
tion is needed. A common assumption is that the ratio of the error variances
A = 02/0? is known. This is assumed throughout this paper and all variables
are assumed scaled so that A = 1. Under these assumptions the maximum
likelihood estimates of the parameters a« and B are given by orthogonal
regression (OR) which minimizes the orthogonal distance from the regression
plane to the data points instead of the vertical distance.

Surveys of the EV model can be found in Kendall and Stuart [(1979),
Chapter 29] and Fuller (1987). Two important early papers are Lindley (1947)
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and Madansky (1959). Other early works on the subject are referenced in
Anderson (1984). Fuller (1980), Gleser (1981) and others investigate the
multivariate EV model.

Simulation studies have shown that OR is nonrobust in the sense that
robust algorithms give much better estimates when the data are generated
from models having modest deviations from the standard model [Carroll and
Gallo (1982), Brown (1982) and Ammann and Van Ness (1988, 1989)]. The
present paper examines the theoretical properties of robust estimates for the
parameters of model (1.1)-(1.2) in the Gaussian case. In particular we study
bounded influence generalized M-estimates.

The results here parallel those of robust ordinary regression [Hampel,
Ronchetti, Rousseeuw and Stahel (1986), Chapter 6]. Standard M-estimators
[Huber (1973)] are only the first step in the robustification of a regression
estimator since they do not allow bounded influence estimators. Generalized
M-estimators [Maronna, Bustos and Yohai (1979)], denoted GM-estimators
hereafter, provide such estimators.

Early theoretical work on robust errors-in-variables regression includes
Carroll and Gallo (1982) and Brown (1982). Zamar (1985, 1989) has extensive
coverage of classical M-estimation and Cheng and Van Ness (1990) discusses
GM-estimation for the EV model. The difference in bounded influence proper-
ties between classical and GM-estimates in EV regression is similar to that
mentioned above for ordinary regression.

In Section 2, the M-estimator approach of Huber (1973) is described for the
EV problem [Zamar (1985)]. Section 3 introduces GM-estimators and estab-
lishes Fisher consistency. In Section 4, sharp lower bounds for both gross-
error sensitivity and self-standardized sensitivity are obtained; and GM-esti-
mators which attain these lower bounds are found. In Section 5, Hampel’s
optimality problem is solved for the EV model.

2. Robust orthogonal regression via M-estimators. Suppose there
are n independent and identically distributed observations (X, Y)),...,
(X,,Y,) from the structural Gaussian EV model (1.1)-(1.2) with A = 1.
Lindley (1947) and Madansky (1959) show that maximum likelihood leads to
minimizing a weighted sum of squares,

(Yz a _BX;')Z
K(B) ’

where K(B) = (1 + B?)'/2 is the weight which converts to orthogonal residu-
als. For weights under more general assumptions, see Fuller [(1987), page 37].
Huber’s M-estimation approach applied to OR modifies (2.1) to a general loss

21)  min ¥ w(B)(Y -« - BX,)* = min ¥
B =1 @B =1

function p,

, n (Y, —a-BX, Y—-a-8X

2.9 i = ') = mi ———F | dF(X,Y),
(2.2) T,‘,?El”( K(B) ) “p p( K(B) ) A1)

where F, is the empirical distribution function of (X, Y)),...,(X,,Y,). By
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choosing p suitably, various robust estimates a,, and B,, can be obtained. It is
convenient to write the estimators in functional form, «, = S(F,) and B, =
T(F,), where S(F) and T(F) are solutions of

Y-S(F)-T(F)X
2.3 i dF(X,Y).

Zamar (1985, 1989) discusses the multivariate version of the M-estimators
obtained from equations of the form (2.3). He investigates existence, unique-
ness, consistency, influence functions and asymptotic normality for such esti-
mates. He does not consider the GM-estimates studied in this paper nor the
bounded influence criterion for robustness.

A defining relation for 8 can be obtained from (2.3) by differentiation:

Y- S(F) - T(F)X

f‘”( K(T(F))
Y - §(F) - T(F)X
f"’( K(T(F))

where it is assumed that p has derivative ¢ and that regularity conditions
hold which allow interchange of differentiation and integration. The estimates
obtained from (2.4) do not have bounded influence [see (2.6)]. To overcome this
limitation we employ GM-estimates in the following sections. We will derive
the optimal bounded influence estimator for the slope parameter 8 only. We
can treat the slope parameter separately because of the following. If we were to
define X =X — uy and Y = Y — puy, then (2.4) reduces to

Y-T(G)X) | , oo
(2.5) jw( ®(T(5) )(X+T(G)Y)dG(X,Y)—O,

where G is the distribution of X and Y. Thus, T(F) = T(G) and if we are
only interested in optimal estimates of B8, we can theoretically study estimates
obtained from the appropriate GM-estimation modification of (2.5). In practice,
wx and py are not known. If we need bounded influence estimators of both «
and B, we can, for example, use bounded influence estimators u x(F) and
wy(F) of location found in Hampel, Ronchetti, Rousseeuw and Stahel [(1986),
Section 2.4] and apply the following.

)dF(X,Y) -0,
(2.4)

(X + T(F)Y)dF(X,Y) =0,

PropoSITION 2.1. Let ux(F), uy(F) and T(F) be bounded influence
estimators of wy, wy and B, respectively, and assume that either wuy(F)
or T(F) are continuous functionals in the sense that ux(H) — ux(F) or
T(H) - T(F) whenever H — F weakly. Then S(F) = puy(F) — T(F)u x(F)
is a bounded influence estimator of a. If ux(F,), uy(F,) and T(F,) are
strongly consistent, then so is S(F,).

ProoF. Let Z =(X,Y)and F, = (1 — &)F + ¢A,, where A, represents
a unit mass at the Z. If, for example, T is continuous, by the definition of the
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influence function of S,

S(Fz,.) - S(F)

IF(Z; S, F) = lim

|0 €
_ lim{#Y(Fz',Js_ ry(F) ~T(F,.) /"LX(FZ,E)E_ rx(F)
T(F,,) -T(F
BIPLCRELLT

and therefore
IF(Z;S,F) =1F(Z;uy, F) — T(F)IF(Z;ux, F) — px(F)IF(Z;T, F).

Since the influence functions of ux(F), uy(F) and T(F) are bounded in Z,
the influence function of S(F) is bounded in Z. Strong consistency is obvious.
O

Of course, the optimality of T (in the sense of Section 5) does not imply that
of S. No such optimal estimate for « has been derived even in the ordinary
regression case.

Denote the distribution of X and Y with slope 8 by Gg. The functional T is
said to be Fisher consistent T'(Gz) = B. Since all the estimators discussed in
this paper are Fisher consistent (see Section 3) the notations T(Gp) and B will
be used interchangeably as is common practice in the literature.

The influence function and the asymptotic variance of the estimate of B are
obtained from (2.4) by appealing to general results on multidimensional M-
estimates [see, e.g., Hampel, Ronchetti, Rouseeuw and Stahel (1986), page
230]. The variance results due to Huber (1967) and Clarke (1983) require
certain additional regularity conditions not discussed here. The influence
function for 8 is

- X
(2.6) IF(X,Y;8,G,) = M(4,Gp) ¢( K(/[;) )(X+BY)
where
ad . ; .
M(y,G,) = [ag K({) )(X+{Y){=ﬁdGB(X,Y).

Note that for any nontrivial ¢, the influence function (2.6) remains un-
bounded. Thus, this form of M-estimation cannot lead to estimates with
bounded influence. The same is true in ordinary regression, see Hampel,
Ronchetti, Rousseeuw and Stahel (1986). Using the terminology of ordinary
regression, call the M-estimator defined by (2.4) a classical M-estimator for
the EV model.

3. Generalized M-estimators for EV models. Henceforth, we drop
the dot notation and write F for G, that is, we assume the data is centered on
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the mean; (X, Y) has mean zero. GM-estimators for EV models are obtained
by replacing ¢[v(T)] in (2.5) by nlw(T), v(T)], where we define

X+ BY Y -8X
The second variable added by the n function allows one to remove the term

causing the unboundedness of the influence function in (2.6).
Thus a GM-estimate for the slope parameter is defined implicitly by

(3.2) [nlw(T(F)),o(T(F))]w(T(F))dF(X,Y) = 0

and the finite sample estimate B, satisfies ¥ nlw,(B,,), v(B,)lw,(B,) = 0. Here
n: R X R - R is assumed to satisfy the following conditions [see Maronna and
Yohai (1981) and Ronchetti and Rousseeuw (1985)]:

1. n(w, - ) is continuous on R — C(w;n) for all w € R, where the set C(w;n)
has finite cardinality. At each point of C(w;n), n(w, - ) has finite left and
right limits.

2. n(w, - )is odd and n(w,v) > 0 forall w € R, v € R™.

3. For all w, the set D(wj;n) of points in which n(w, - ) is continuous but in
which (3/dB8)n[w(B), v(B)] is not defined or not continuous, is finite.

4. M(n, F) and Q(n, F) exist and are nonzero, where

d
(33)  M(n,F) =~ [—[nlw(®),v()]w(®)],-rr) dF(X,Y)
and

(34)  Q(n,F) = [n?[w(T(F)),v(T(F))|wX(T(F))dF(X,Y).

Results in Huber [(1981), page 45] imply that the influence function of T at F
is

(35) IF(X,Y;T,F) = M~ (n, F)n[w(T(F)),v(T(F))]w(T(F)).

Under certain regularity conditions [Huber (1967)] including uniqueness of
solutions of (8.2), the estimator is strongly consistent and asymptotically
normal with asymptotic variance

(3.6) V(T,F) = fIFz(X, Y;T,F)dF(X,Y) =M"%n,F)Q(n, F).

The Huber conditions can be weakened for the special case of EV model
GM-estimation. The specialization is done for ordinary regression in Maronna
and Yohai (1981) and for EV model M-estimators defined by (2.3) in Zamar
(1985), but we will not pursue this matter in the present paper.

It is necessary in what follows that we have a unique solution to (3.2) at
least in a neighborhood of F,. Note that even for classical least squares
estimation (2.4) has two solutions. Frequently side conditions are imposed to



390 C.-L. CHENG AND J. W. VAN NESS

force uniqueness [see, e.g., Zamar (1985) and Clarke (1983)]. Henceforth, it is
assumed that a unique solution 7' has been identified.

Fisher consistency, T(F,) = B for all B, is important for several reasons. It
says that the defining equation (3.2) is unbiased at the model. Furthermore, if
T is continuous with respect to the weak-star topology [see, e.g., Huber (1981),
Chapter 2], then since F, converges almost surely, then B, = T'(F,) will
converge almost surely to B. Finally, Fisher consistency will be necessary for
the most B-robust and optimal estimates discussed below.

In the EV model with L, loss, it is easy to check that the defining equation
(2.4) is satisfied at the model. This means that for L, loss, the corresponding
M-estimator is Fisher consistent regardless of the distribution of (X, Y).
Fisher consistency for EV model M-estimators and GM-estimators can be
proved under the Gaussian assumption as follows.

THEOREM 3.1. In the Gaussian EV model, if a unique GM-estimator is
defined by (3.2), it is Fisher consistent if, at the model F,, En(w,v) =0 for
allw e R.

Proor. We first rotate to the principal components, w and v, of X and Y.
At the model F = Fj, let 6 be such that

2 2 1/2
EpY? — EpX* + [(EY? - EpX?) + 4(EpXY)’|
2E, XY '
Note that (w(B), v(B)) = A(X, Y, where

A= cos 0 sin 6
—sin® cosf]’

tang =B =

It is easy to check that
2EXY 28
EX?—EY? 1-p82°
By elementary calculations, E(w,v) = (0,0) and
Ewv = 3(EY? — EX?)sin 20 + EXY cos 20

(3.7) tan 26 =

(3.8)
= 3(0% — 0% )sin20 + oy cos 26.

By (3.7) and (8.8), Ewv = 0 and since Ev =0, o,, = 0; thus w and v are
independent. We wish to show that

fn[W(B),v(B)]W(B)dFB(X,Y) =0,
that is, that

(3.9) Jnlw(B), v(B)]w(B) dHy(w,v) =0,

where H, is the joint distribution of w and v at the model. Since w and v are
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independent, the left-hand side of (3.9) becomes

[[ frtw(e).o(8)] ditu(w) |w(p) dity(w),

where H, and H, are the marginal distributions of w and v, respectively. The
result follows from the assumptions. O

Unfortunately the proof of Theorem 3.1 requires that w and v uncorre-
lated implies w and v independent. This and the calculations in Section 4 are
the reasons for the Gaussian assumption in this paper. It may be possible to
add side conditions in order to obtain the uniqueness of the estimates required
for this theorem. The theorem can easily be generalized to higher dimensions.
Note that the above requirement that n(w, - ) be odd guarantees E n(w, v) = 0.

Observe that M and @ and thus V depend on B as well as n. This is a major
difference from ordinary linear models where M, @ and V do not depend on 8
[see Hampel, Ronchetti, Rousseeuw and Stahel (1986), Chapter 6]. For simplic-
ity, write M(B), Q(B) and V(B).

4. Bounded influence robust estimators. We adapt the notation of
Hampel, Ronchetti, Rousseeuw and Stahel (1986).

DerFINITION. The unstandardized gross-error sensitivity of an estimator
(functional) T at the model distribution Fj is

¥ = sup|IF(X,Y; T, Fy)| = sup|n(w,v)wM~'(B)|.
X, Y w,v

DeriniTioN.  If V(T, Fp) exists, the self-standardized sensitivity is defined
by

_111/2
v: = sup[IF¥(X, Y; T, By)V(T, ;) ' 7 = sup|n(w, v)w|@~*/(6)
X, Y w,v
if V(T, Fp) is nonzero. Otherwise, v¥ = oo,

Let {n} denote all n satisfying the conditions in Section 3. We now derive
the most B-robust estimator in {n}, that is, the estimator with the smallest
sensitivity y*.

DerFINITION. T defined by (3.2) is B,-robust (B -robust) if and only if v;
(y¥) is finite.

LEMMA 4.1. At the model Fy,

41 do,, 0 do, 0
(4.1) 0 -
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and

a
(4.2) 35 10 fo(X,Y) = a(B)wr,

where f, is the (Gaussian) déﬁ;ity of F; and

2 22 2 V2
ol — o’ 1 [(O'X -o3) + 40'XY]

1+p% o202 1+ p? oiof — ofy

(4.3) a(B) =

Proor. Algebraic manipulation yields

(4.4) 02 = a3 cos® 0 + oxy sin20 + oy sin® 0,

(4.5) 02 = olsin?0 + oyy sin260 + o cos? 0.

Differentiating (4.4) and (4.5) and using (3.8) yields (4.1). Geometrically, we
rotate (X,Y) to the principal components (w, v), where o> and o are the
extreme values.

Next, let h, be the density of (w, v), then

(46) KO0 = ()]

Since A is orthogonal, |det A~!| = 1. Because we have centered the data,
a'uz, 0

EX = 0 and (w, v) is Gaussian with mean (0, 0) and covariance matrix |, |.

Thus (4.6) becomes '

2 a2

w

1 1((Xcos6 + Ysin6)®
fp(X,Y) = 2 exp
0o,

w-v

2

oy

(—Xsin 6 + Y cos 0)* )}
+ .
Observe that
Jw v

a ad a0
0—0'=U, £= -—w, "%ln fB(X’Y)=(9jo—1n fﬂ(X,Y)'(%

A direct calculation yields (4.2). Finally, tedious calculations shows that

o020k =030y — o2y and
1/2
2 2 2 22 2 _ 2\ 2
O'w—O'v = [(O-X_O-Y) +4axyl —(1+B )O'x. 0

Specializing (3.3) using results for Fisher consistent estimators [see, e.g.,
Hampel, Ronchetti, Rousseeuw and Stahel (1986), page 102] we have at the
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model distribution
(D) M(B) = [nlw(B), (B w(B) 35 10 f,(X.Y) dE(X.T),
where f, is the density of Fj. By the lemma, (4.7) becomes

(4.8) M(B) = a(B) [n(w,v)w?v dH(w, v).

The following two theorems give lower bounds for the unstandardized
gross-error and self-standardized sensitivities and estimators that attain these
lower bounds.

THEOREM 4.2. Always
1/2

(1 +8%)

2(o; — o) 2[(0;% - 01%)2 + 40')%}/]1/2

mwo,0,(1 + B?) B m(og0% — oxy)

(49) vizd,(B)=

and n(w,v) = sign(v)/|w| attains this lower bound.

Proor. By (4.8), M = a(B)En(w, v)w?v, so
1 =M 'a(B)En(w,v)w?v < a(B)E|n(w,v)|IM ™ 'w|lwy]
< a(B)viElwv| = a(B)v EIwl|El],

since w and v are independent. Moreover, Elw| = 20,/ V27 and Elv| =
20,/ V2w because w and v are Gaussian with mean 0. A simple calculation
yields (4.9).

When n(w, v) = sign(v)/|w| (observe that this is Fisher consistent since n
is odd in v), M = a(B)Ew?2v sign(v)/|w| = a(B)E|wv| and

1
y¥ = sup|n(w,v)|IM *w| = sup —IM~'w| = d,(B). 0
w,v w,v lwl

THEOREM 4.3. Always y¥ > 1 and n(w, v) = sign(v)/|w| attains this lower
bound.

ProoF. By definition y*? > n*(w, v)w?@ ~!. Integrate this inequality to see
that y*? > 1. A simple calculation shows that when n(w,v) = sign(v)/|wl,
v¥=1. 0

The estimator n given in Theorems 4.2 and 4.3 is called the most B, -robust
(B,-robust) estimator and for a given data set, {(X,,Y,), i=1,..., n} is the
solution of

sign(Y; - BX;)

(4.10) ¥

i=1
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It is interesting to compare the most B-robust estimator in ordinary linear
models, which is

n 1 —
(4.11) Y MX,. =0.
i=1 | X; |

This has solution, B = median{Y;/X;} [see Krasker (1980)]. The solution of
(4.10) is similar. Rotate coordinates so that the regression line is the new
X-axis, then the solution to (4.10) is B = median{Y;* /X}}, where (X*,Y;*) are
the rotated observations. The estimator (4.11) has the property that it is
optimal in the sense that it minimizes the maximum bias among all regression
equivariant estimators over an e-contaminated neighborhood [Martin, Yohai
and Zamar (1989), Theorem 5.2]. We conjecture that if one uses this minimax
approach in the EV model, a similar result is true for (4.10). If one is only
interested in the smallest sensitivity for both the unstandardized and the
self-standardized cases (or is working in an e-contaminated neighborhood),
(4.10) should be used. However, if optimality in Hampel’s sense is required,
then use the estimator of the next section.

5. Hampel’s optimality problem. In this section the so-called Hampel’s
optimality problem is solved for the EV model. An estimator is constructed
that has the following property: it minimizes the asymptotic variance at the
model, subject to a bound on the supremum of the influence function (also at
the model). It was first proposed and solved by Hampel (1968) for one-dimen-
sional M-estimators. Huber [(1981), Chapter 11] has a discussion of this and
obtains some further results. In Hampel, Ronchetti, Rousseeuw and Stahel
[(1986), Chapter 4], this idea is extended to multidimensional M-estimators
where it is shown that if such estimators exist, they must take a certain form
but the existence remains unresolved in general. In ordinary linear models, the
problem was first studied by Krasker (1980). Further results were obtained by
Ronchetti and Rousseeuw (1985) with some restrictions on the distribution of
the independent variables.

For the EV model, Hampel’s optimality problem has a satisfactory solution
for the univariate Gaussian case. The resulting estimator bears strong resem-
blance to that of ordinary linear models. It might be called the Hampel-Krasker
estimator for EV models.

THEOREM 5.1. The estimator within {n} (defined in Section 4) which
minimizes the asymptotic variance subject to a bound c¢(B) on the unstandard-
ized gross-error sensitivity exists and is unique if and only if ¢(B) > d ,(B).
This estimator is defined by

[4 b | |
Te(W, V) = ¢(B)(alf(BB))le;7) e,

where ¥ (t) = sign(¢)min[|¢|, c] is Huber’s function, a(B) is given in (4.3) and
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b(B) > 0 is defined implicitly by
a(ﬁ)E‘/’c(ﬁ)(a(ﬁ)b(ﬁ)|w|v)|w|v =1.

Proor. Fix B and write a(B), b(B) and c¢(B) as a, b and c, respectively.
Define, for all & > 0, f(b) = Ey (ablwlv)alw|v, then

f'(b) = Ey.(ablwlv)a’w?v? > 0.
Observe that

ablwlv, if —c¢/b < alwlv < ¢/b,
U.(ablwlv) = {c, if alwlv > ¢/b,
—-c, if alwlv < —¢/b.

Hence lim, _, o~ f(b) = 0. Furthermore,
. _ e, if v >0,

which implies that lim, _,,, f(b) = Ecalwv|. Now consider f(b) = 1. The above
argument shows that if ¢ > 1/Ea|wvl, there is a solution and if ¢ < 1/Ealwvl|,
there is no solution. Moreover, f'(b) > 0 means that f is strictly increasing
and the solution is unique if it exists.

The conditions required by Theorem 1, Hampel, Ronchetti, Rousseeuw and
Stahel [(1986), page 241] are satisfied in this case. This gives the optimality of

Nepy: U

Note that b6(g8) is simply 1/M(B). An immediate corollary to this theorem
is:

COROLLARY 5.2. If B is fixed, then y}(n,) = c.

The major difference between the Hampel-Krasker estimators for ordinary
linear models and for EV models is that the former is defined independently of
B while the latter is defined pointwise by B. Compare Theorem 5.1 with
Proposition 2 of Hampel, Ronchetti, Rousseeuw and Stahel [(1986), page 319].
This dependence on the unknown parameters is not uncommon in the general
M-estimation problem [see, e.g., Section 2.4 of Hampel, Ronchetti, Rousseeuw
and Stahel (1986)]. The existence and uniqueness of the n-functions which
define the optimal estimators do not guarantee the existence and uniqueness
of a value B8 of such an estimator for a given sample or distribution.

6. Conclusion. This paper derives bounded influence robust estimates
for the slope and intercept parameters in the univariate, Gaussian, structural
EV model with the ratio of the error variances known. For the slope parame-
ter, ‘Fisher consistency, sharp lower bounds on the gross-error and self-stan-
dardized sensitivities and Hampel’s optimal estimator are obtained. The
Gaussian assumption is crucial to these derivations. Outstanding problems in
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this area include the removal of the Gaussian assumption; the establishment
of conditions for the uniqueness and weak continuity of the implicitly defined
functional T'; the study of bounded influence estimation in the case where one
error variance is known instead of the ratio A; and the extension of the results
to the multivariate case. ?
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