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CONSTRAINED MINIMAX ESTIMATION OF THE MEAN OF
THE NORMAL DISTRIBUTION WITH KNOWN VARIANCE

By ISRAEL FELDMAN

Hebrew University

In this paper we shall discuss the estimation of the mean of a normal
distribution with variance 1. The main question in this work is the exis-
tence and computation of a least favorable distribution among all the prior

" distributions satisfying a given set of constraints.

In the following we show that if this distribution is bounded from above
on some even moment, then the least favorable distribution exists and it is
either normal or discrete. The support of the discrete distribution function
does not have any accumulation point. The least favorable distribution is
normal if and only if the second moment is bounded from above, without
any other relevant constraint.

These theorems shed light on the James-Stein estimator as the mini-
max estimator for a prior with unknown bounded variance.

1. Introduction. Let 0 be the unobserved parameter and let X =6 + ¢
such that

e ~ N(0,1).

We assume that 6 is a random variable with unknown distribution. We also
assume that there is some partial knowledge about this distribution, as
specified below.

Let 7 be the distribution function of 8. For a given observation x, let 5 (x)
be an estimate of 6.

Consider square error loss and define the risk function

R(6,5,) = E[(0 ~ 3.(X))"].

Define the Bayes risk by r(r,8,) = E, R(6, 5,). Assume that 7 satisfies a set of
moment constraints. Thus 7 belongs to some set P, of distribution functions:

Py={r:l,<E6* <m,, A, <E6*" '<p,,n=1,... k& Ef=0}

For a given distribution function 7, let §, be the Bayes estimator with respect
to 7. Thus r(r,§,) = inf; r(r, 8).
Our problem is to find 7* € P, and 8% such that

r(r*,8%) = inf supr(r, ).
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If such 7* exists, it is the least favorable distribution among all distribution
functions that belong to P, and 8% is then the desired minimax estimator.

2. Background. Let 7 be the prior distribution function of 6. Define

h(x) = fio(ﬁ(x — 6) dr(6).

h(x) is the marginal density of X and ¢ is the density function of a standard
normal distribution. Then & (x) = x + A (x)/h(x) and r(r,3§,) =

[* h(w)/h(u) du. The last equality is known as Brown’s equality [see B1ckel
(1981)].

It is well known that if there are no moment constraints on the prior, the
least favorable distribution does not exist and 8(x) = x is minimax [see
Ferguson (1967)].

The problem of bounded normal mean became interesting because of two
reasons: (a) x is no longer minimax as it is in the unrestricted problem. (b) The
minimax estimator is not obvious.

Casella and Strawderman (1981) have found the exact minimax estimator
and least favorable prior for problems with small bounds, but have not been
able to determine the solution for larger values. Other convenient priors, such
as uniform prior, have been tried by some people for problems with larger
bounds, which can be used to improve the approximation of the minimax risk
from the two-point and three-point Bayes risks. Levit (1980) studied the
behavior of the minimax risk when the bound is large. Bickel (1981) claimed
that, for a bound sufficiently large, the minimax risk can be well approximated
by the Bayes risk with a ‘“cos’ prior. Ibragimov and Haminskii (1984) proved
that the risk induced by the best linear estimator is within a finite factor to the
minimax risk over all possible bounds. And this factor is later determined in a
precise way by Donoho and Liu (1988) to be less than 1.25, with applications to
nonparametric estimations. Another relevant problem was studied by Donoho
and Johnstone (1988), when 6 is known to lie in an n-dimensional [ p» ball.

3. The main theorems. Let P, ={r: E6** <m,, n=1,...,k}, 0<
m,<on=1,...,.k—1land 0 <m, < o.

P, is a set of distribution functions satisfying given constraints on the k
first even moments.

Define a problem 7, as follows.

Find 7* € P, and &% such that r(7*, §%) = inf; sup, r(r, 8).

By standard methods we can prove that there exists a solution (7%, §%) to
the problem 7, for £ > 1, such that * € P, and &} is Bayes with respect to
7*, and also

r(7*,8%) = sup infr(r,8) = inf supr(r, ).
T 8 8 T
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THEOREM 1. Let P, be the set of all distribution functions that are con-
strained on their first k even moments (k > 1).

P,={rE 6™ <m,,n= 1,...,k},

when O0<m,<owo,n=1,...,k—1land 0 <m, < »,

The least favorable distribution function is either normal with mean 0 and
variance m, (this happens if and only if the normal distribution with mean 0
and variance m, belongs to P,) or it is discrete with support that does not have
any accumulation point.

PROOF. Assume that there is an interval [a, b] in the support of 7} that
contains an accumulation point. Let §; be the minimax estimator that is
Bayes with respect to 7}, then

k
R(6,85) = ¥ a,0% ae.(7}),0¢< [a,b].
i=0

To see that, suppose that there is no real a,,..., a, such that

k
R(6,8}) = ) a,06% ae.(7}),0¢<[a,b].
i=0
Thus R(6, 83) ¢ Span(1,6%,...,6%) in the Hilbert space L,(r}).
There are c,...,c, (obtained by the Gram-Schmidt orthogonalization
procedure) such that

k
G(0) = R(6,8}) — Y c,0%.
i=0
And also:
(1.1) J°R(6,5%)G(6) dri(0) > o,
(1.2) J°G(6)6% dri(6) =0 fori=o,...,k.
Define

. |1, 0 & [a,b],
dA(6)/dr" = {1+sG(0), 6 € [a,b].

Choose ¢ > 0 such that 1 + £G(8) > 0 for every 6, 6 € [a, b].
It is obvious from (1.2) that

fwazid)tk(a)=fw Ozid'r;:(ﬂ), i1=0,...,k.

And hence A, € P,.
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Compute the risk of §; with respect to A,:
b
r(A, 85) =r(7g,8%) + af R(0,85)G(0) d7i(0) > 7(7F,8%).
a

The last inequality contradicts the fact that (7}, 85) is a saddle point such
that
r(ry,8;5) = r(r,8;) forallr.

Therefore R(8, 5*) € Span(l, 6,...,0%%) in the Hilbert space L,(7}).
Let ¢(x) = x — 85 (x).

6) =1z = E@w)| = |[* (= 00z - 0) a2 [ [ oz - 0 art

< j:|x — 0|p(x — 6) dT;:(O)/f_o;qS(x — 0) dr.

Notice that ¢(x — 6) is a decreasing function in |§ — x|, while |x — 0| is an
increasing function in |6 — x|. From Hardy, Littlewood and Polya (1952), it
follows that

E{lx — 6l¢(x — 0)} < Elx — 6|E¢(x — 6).
Thus for a fixed x we get
(1.3) 0<|y(x)|<Elx —0lEdp(x — 0)/E(¢ — 0) = Elx — 0| < |x| + E|6|.
Using Stein’s identity [see Bickel (1981), page 1303], we get
R(8,8%) = 1 - Ey(20/(x) — w(x)) = Ey(y*(x) — 20/(x) + 1).
Thus

R(8,57) = [ (¥3(x) - 20 (x) + 1)o(x — 0) dx.

Since [*.x'¢(x — 0) dx is a polynomial in 6 of degree i, there are c,,..., ¢y
such that

oo 2k . k .
f c;x'p(x —60)dx = ) a,0% =R(6,5;) ae.(7f).
—®i—0 i=0

Thus, from analyticity of R(6, ;) and the assumption of an accumulation
point in the support of 77, it follows that the risk equals the degree 2k
polynomial everywhere. However using (1.3) and analyticity of ¢(x), it follows
that the risk function can grow at most quadratically in 6. It also must be
symmetric, so that

R(8,8F) = ay + a,62.

Now we shall show that the risk function R(8, §}) = a, + a,6? is obtained
by the linear estimator §,(x) = bx.
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For this estimator the risk is given by
R(6,8,) = b2+ (1 — b)%62.

It is clear that a, > 0 otherwise R(6,55) <0 for 6 = 0 and also a, > 0
otherwise R(6,85) < 0 for some values of 6. If a; > 1, then 8} is dominated
by 8, and hence is not Bayes, a contradiction. If ¢, = 1 and a, > 0, then 8} is
dominated by 8, a contradiction. If a; = 1, a, = 0, then 5} has the same risk
function as §,, but §, is not Bayes, a contradiction. If 0 <a; <1, let a, =
(1 — b)2. Then a, < b contradicts the known admissibility of 3, and a, > b*
contradicts the assumed admissibility of 8.

Hence a, = b2 and 8} = §, (a.e.).

In our problem there is one-to-one correspondence between the a priori
distribution function and its generalized Bayes procedures [see Brown (1971)].

Thus, 7§ must be normal with mean 0 and variance 4/(1 — b).

This means that when there is an accumulation point in some interval that
belongs to the support of 7¥, 7§ must be normal. Suppose that 7} is normal
with mean 0 and variance u such that u < m,. Since 7} € P,,

E,z02i3mi, i=1,...,k,
r(8%,7%) =E4R(0,5}) = E4(a, + a,6%) =a, + au.
Define distribution function A as follows:

(1 —-¢)7f(0), —0 <0< —‘/m_l,
A8) = {3e+ (1 —e)r}(0), —ym, <6<m,
e+ (1-e)7f(8), m, <6<o,
E0% <(1—¢e)m;, +em) <m,.
Thus A € P,.
r(8f,A) =E,R(0,8}) =aq+a,[(1 —&)u +emy] >r(sf,75),

a contradiction to the assumption that 7 is a least favorable distribution
function. Thus if 7} is normal, it must be with mean 0 and variance m . In
the case that the normal distribution does not belong to P,, 7§ is discrete
without any accumulation point in its support. O

REMARKS. (a) In a special case when only the second moment of the
distribution function is bounded from above, there is a short proof that a least
favorable distribution is normal. )

(b) Ghosh (1964) proved that when the mean is restricted in a given
interval, the least favorable distribution puts mass on a finite number of
points. This result can also be easily derived from the proof of the above
Theorem 1. Since the least favourable prior cannot be normal in this case, it is
discrete with finite support.
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(¢) Efron and Morris (1973) have showed that the James-Stein (1961)
estimator can be derived by an empirical Bayes approach, assuming normality
of the prior. Using our Theorem 1, this assumption can be replaced by a
weaker one. The normality is derived by assuming that the prior has a
bounded unknown variance and by taking the least favourable distribution
function having this property, as a prior.

Theorem 2 is an extension of Theorem 1 when the constraints are given also
on the odd moments. In this case the least favourable distribution must be
nonsymmetric.

Let

P,={r:l,<E 6% <m; 0<A,<E 0% ' <y,
i=1,...,k, k>2,m, <=, E§ = 0}.

Assume P, # .
Define the problem =), in the same manner as ,.

THEOREM 2. There is a solution to the problem ), for k > 2. The least
favourable distribution function v* is discrete with support that does not have
any accumulation point.

The proof is similar to the previous one and is omitted.
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