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REDESCENDING M-ESTIMATES OF MULTIVARIATE
LOCATION AND SCATTER

By Joun T. KeNT aND Davip E. TYLER!
University of Leeds and Rutgers University

A class of redescending M-estimates of multivariate location and scat-
ter are investigated. Sufficient conditions are given to ensure the existence
and uniqueness of the estimates. These results are applied to the multivari-

" ate t-distribution with degrees of freedom » > 1.

1. Introduction. M-estimates are usually defined as the solution of a set
of implicit equations. As such, it is possible for an M-estimate not to exist for a
given sample, and if it exists it is possible for it not to be unique. It is therefore
of interest to know under what conditions on the sample does an M-estimate
exist and under what conditions is it unique. This paper studies the existence
and uniqueness of the simultaneous M-estimates of multivariate location and
scatter.

One way to pose the problem of M-estimation of location and scatter is as
follows. Let {y;, i = 1,...,n} be a data set in R”. Let p(s), s > 0, be a given
function of s and let 9” denote the set of p X p symmetric positive definite
matrices. A location estlmate f € RP and an estimate of scatter Se &, are
defined to minimize the objective function

(11)  L(wE) = X p(( - w)E"'(mi - w)) + Ln loglzl.

i=1

When exp{ —p(y’y)} is integrable over R?, (1.1) can be regarded as the negative
log-likelihood from an elliptically symmetric distribution. Throughout the
paper, it is assumed without further mention that p is continuous.

If p is differentiable, then setting the derivative of (1.1) with respect to p
and X to 0 yields the estimating equations

(1.2) p = ave{w,y;} /ave{w,},

(1.3) $ = ave{w,(y; - W (y; — i)},

where w; = u(s;), u(s) = 2p'(s) and s; = (y Y2y, — p). Here “ave”
stands for the arithmetic average over i = 1,...,n.

If s72u(s) is an increasing function of s> 0, then exp{—p(y'y)} is a
strongly unimodal function of y € R?; that is, p(y'y) is convex in y. The
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existence and uniqueness of solutions to (1.2) and (1.3) follow from straightfor-
ward arguments provided the hyperplane generated by the data set {y;; 1 <
i < n} corresponds to RP?; see, for example, Barndorff-Nielsen and Blaesild
(1980). The emphasis in this paper is on redescending M-estimates, that is,
estimates for which s/%u(s) is increasing near 0 and decreasing for s near .
Curiously, the case for which s'/2u(s) is not redescending is of limited
interest. Although the influence function of the location statistic is bounded if
s72u(s) is bounded, the influence function of the scatter statistic is bounded
only if su(s) is bounded. If su(s) is bounded, then s'/2u(s) must redescend to
0 as s — . The redescending case is considerably more delicate than the
strongly unimodal case. In particular, when the scatter matrix ¥ is fixed, then
it is well known that (1.2) is susceptible to multiple solutions in f; see, for
example, Reeds (1985) who studied in detail the likelihood equation for the
univariate location family of Cauchy distributions.

When the M-estimates of multivariate location and scatter are defined via
implicit equations, the form is usually more general than that given by (1.2)
and (1.3). Maronna (1976) defines a more general class of M-estimates by
replacing w; in (1.2) by w; ; = u(s;) and replacing w; in (1.3) by w, ; = u(s,).
The functions z, and u, need not be the same function and hence the more
general M-estimates need not be related to a minimization problem of the
form (1.1). Viewing M-estimates as a minimization problem though has some
advantages. The function p need not be differentiable, and so M-estimates of
the form (1.1) include estimates which cannot be represented as solutions to
implicit equations. Also, when multiple solutions exist to M-estimating equa-
tions, not all solutions may be ‘‘desired” solutions. Minimizing (1.1) gives a
natural definition of a “right” solution for equations of the form (1.2) and
(1.3).

Sufficient conditions on the data and weight functions for the existence of
the M-estimates of location and scatter are known; see, for example, Maronna
(1976), Huber (1981), Chapter 8, or Hampel, Ronchetti, Rousseeuw and Stahel
(1986). Application of these conditions to (1.2) and (1.3) requires u(s) to be
continuous and nonincreasing and for su(s) to be nondecreasing. The results
on existence given in this paper essentially require only that p(s) be continu-
ous. Some conditions are also imposed on the observed data set {y;; 1 <i < n}.
These sample conditions are dependent on the ‘“tail’’ behavior of p. They are
milder than previously known sample, conditions and are perhaps the best
possible. These conditions, however, exclude strong redescenders, that is,
whenever u(s) = 0 for large s. This may be unavoidable since for strong
redescenders, (1.1) goes to —~ when X approaches a singular matrix; see
Section 2. The nonexistence of a solution to minimizing (1.1) does not neces-
sarily imply the nonexistence of a solution to (1.2) and (1.3), although the
desirability of such a solution, if it exists, is questionable.

Results on the uniqueness of the M-estimates of location and scatter are
more scarce, at least in the multivariate setting (p > 2). Huber (1981) notes on
page 223 that “Uniqueness of the (estimators) so far has been proved only
under the assumption that the distribution ... has a center of symmetry; in the
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sample distribution this is of course unrealistic.” This problem is still largely
unresolved; see, for example, Hampel, Ronchetti, Rousseeuw and Stahel (1986),
Chapter 5. We believe this paper is the first to give sufficient conditions for the
uniqueness of the solution of the M-estimating equations for multivariate
M-estimates of location and scatter.

Results on uniqueness in the univariate case do exist. Within the ‘‘robust-
ness” literature, the results on uniqueness for p = 1 assume s'/2u(s) is
nondecreasing; see Maronna (1976) or Huber (1981), Chapter 6. Thus these
earlier uniqueness results do not apply to (1.2) and (1.3) when su(s) is
bounded, that is, when the scale estimate has bounded influence. In particular,
they do not apply to bounded influence ‘maximum likelihood estimates in
symmetric location-scale families of distributions.

The paper is set out as follows. Section 3 gives the main results on existence
and uniqueness. The key observation in our approach is that the location-
scatter problem in p dimensions can be viewed as a scatter-only problem in
(p + 1) dimensions. Results on the existence and uniqueness of the solution ¥
to (1.3) with i set equal to 0, which is a well-studied problem, can then be
used to obtain results on the location-scatter problem. Some background
results on the M-estimates of scatter are presented in Section 2. The results
on existence of the M-estimates of scatter both extend and simplify earlier
results and the approach used to prove existence is novel. For clarity of
exposition, the technical proofs are relegated to Section 5.

To help illustrate the main results of the paper, the class of multivariate ¢
M-estimates are discussed in Section 4. The multivariate ¢ M-estimates refer
to the M-estimates which correspond to the solutions to the likelihood equa-
tions for the location-scatter families of elliptically symmetric z-distributions
on v > 0 degrees of freedom. The density of the z-distribution is given by

(14) f(y;m,2) =c, B 1+ (y-w)E Yy - )/} 77 yerp,

for some suitable normalizing constant c, , which is not dependent on p € R?
or X € Z,; see, for example, Mardia, Kent and Bibby (1979), page 57. The
log-likelihood function up to an additive constant is the negative of (1.1) with
p(s) taken as

(1.5) p,(s) = z(v + p)log{(v + 5) /v}
and the likelihood equations correspond to (1.2) and (1.3) with u(s) taken as
(1.6) u,(s)=(w+p)/(v+s).

Uniqueness of the multivariate ¢ M-estimates can be shown for v > 1. Unique-
ness in the univariate setting was established in the Cauchy case (v = 1) by
Copas (1975) and for v > 1 by Mirkeldinen, Schmidt and Styan (1981). Our
approach for proving uniqueness differs substantially from the approach taken
in these earlier papers and is as easy to apply in the multivariate setting as it is
in the univariate setting.
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2. Scatter-only problem. In this section, the M-estimates of scatter are
considered when the location parameter p is known or fixed. Without loss of
generality, assume p = 0 and so interest lies in minimizing over A € &, the
function

n
(2.1) L(A) = ¥ p{yiA"'y;} + 3n loglAl.
i=1
Before discussing conditions for the existence and uniqueness of a minimum of
(2.1), the following definition is introduced.

DEFINITION 2.1. Given a continuous function p(s), s > 0, define the ““sill”’
Gy, —® < @y < o, of p(s) by

(2.2) a, = supf{als®/? exp[ —p(s)] > O as s > x}.

If p(s) is differentiable with p'(s) = 2u(s) and if ¥(s) = su(s) converges to
a limit as s — o, then the sill can also be characterized by
(2.3) lim ¢ (s) = a,.
S§—>
A proof of (2.3) is given in Section 5. For statistical purposes, only the case
a, > 0 is of interest.

The following condition specifies that the data should not be ““too concen-
trated” in low-dimensional subspaces, where ‘‘too concentrated” depends on
the sill of p(s). Fix 0 < g <p — 1 and let P(-) denote the empirical distribu-
tion of the {y;; 1 <i < n}. Here “D” stands for ‘“data.”

ConpitioN D,. Let p(s) have sill @, > 0 and suppose that for all linear
subspaces V € R? with ¢ < dim(V) <p — 1,

(2.4) P(V) <1 - {p—dim(V)}/a,.

Condition D, will be important in this section; Condition D, will be impor-
tant in the next section. Note that Condition D, gets less stringent as ¢
increases and as a, increases. In particular, for any choice of q, if a, = o,
then Condition D, merely implies that the {y;} span R?. Some further s1mp1e
properties are listed below. .

Lemma 2.1. () If Condition D, holds, then ay > p — q and n > p.
(i) Ifag > p, n>pandif every subset of p or fewer data points is linearly
independent, then Condition D, holds.

Proor. See Section 5.
The next lemma is needed for the existence theorem. Let {A wk=12..)

be a sequence in &, and A; , > -+ > A, , > 0 represent the elgenvalues of
A,. Note that A, goes to the boundary of &, onlyif A, , > oorA,, —0.
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Lemma 2.2. Let p(-) have sill a, > 0. Then L(A,) — « if either:

DAy > wand (A, ,; k= ...} is bounded away from 0,
(i) Condition D, holds and /\ - 0, or
(iii) for some q > 1, Condztzon , holds, (A, 4; k=1,2,...} is bounded
away from 0 and A, , — 0.

Proor. See Section 5.

Part (iii) is needed in the next section. The existence of a minimum to (2.1)
now follows from parts (i) and (ii).

THEOREM 2.1. Under Condition D, there exists an A € &, such that
L(A) < L(A) forallA e P,

If p(s) continuously differentiable for s > 0, with u(s) = 2p'(s) and ¢(s) =
su(s), then setting the derivative of L(A) to 0 yields the estimating equation

(2.5) A = ave({u(y/A 'y, )yivi},

which must be satisfied, in particular, by any global minimum in Theorem 2.1.

If p is bounded above and below, then a, = 0 and so Theorem 2.1 does not
apply. However, the problem of minimizing L(A) in this case does not have a
solution since loglA| - — and hence L(A) > —x as A € &, approaches a
singular matrix. This case includes strong redescenders, since if p(s) is also
differentiable with u(s) = 0 for large s and u(s) > 0 for all s > 0, then p(s)
must be bounded above and below.

In general, it is not possible to establish the existence of a solution to (2.5)
without some condition such as Condition D, relating the function u to the
sample. When u(s) is continuous and nonnegative, a necessary condition for
existence is that for any subspace V c R? with dim(V) < p,

(2.6) P(V) <1~ {p - dim(V)} /K,

where K = sup{¢(s)|s > 0}. The proof of this result corresponds to the proofs
of (2.2) and (2.3) in Tyler (1988). Note that if a, = K, which occurs when ¢(s)
is nondecreasing, then the only difference between the sufficient condition D,,
and the necessary condition (2.6) is the strict inequality.

More stringent conditions on u(s), namely monotonicity conditions, are
imposed in order to establish the uniqueness of a solution to (2.5), and hence
the uniqueness of a global minimum to (2.1). The uniqueness theorem itself is
a subtle variation of Theorem 2.2 in Tyler (1988). A brief proof is given in
Section 5.

ConprTioN M. (i) For s > 0, u(s) > 0 and u(s) is continuous and nonin-
creasing.
(ii) For s > 0, ¢(s) = su(s) is strictly increasing.
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THEOREM 2.2. If Conditions D, and M hold, then there exists a unique
solution A € P, to (2.5).

Attention is now directed to the convergence of the following iterative
reweighting algorithm. Given an initial estimate A® € &, define

(2.7) A+ = ave| u{yi(A™) 'y by.i|.

The conditions for uniqueness are sufficient for proving that this algorithm is
well defined and converges regardless of the initial estimate.

TuroreM 2.3.  If Conditions D, and M hold, then for any initial A® € £,
A e P and converges to the unique solution A € &, of (2.5).

ProoF. See Section 5.

The monotonicity condition on ¢(s) = su(s) can be dropped without affect-
ing the convergence of the sequence A™), provided the initial estimate A©®
satisfies

(2.8) 0 < ave[u{y/(49) y}| <1.

Note that under Conditions D, and M(i), it is always possible to find such an
initial estimate since for any A € &, the function ¥(c) = ave{y(cy;A'y,)}
satisfies ¥(0) = 0 and ¥(») = {1 — P, (0)}a,.

TueoreM 2.4. If Conditions D, and M() hold and A® € &, satisfies
(2.8), then the algorithm given by (2. 7) converges to a solution A 9” of (2.5).

PrOOF. See Section 5.

A comparison of the results and approach of this section with other work is
now briefly discussed. The proof of the existence of a solution to (2.5) given by
Maronna (1976) and by Huber (1981) essentially consists of finding conditions
under which the algorithm (2.5) converges to an element in &,. Their condi-
tion on the sample is stronger than Condition D,, namely that for any
subspace V ¢ R? with dim(V) <p, P(V) <1 — p/a,. For a, close to p, this
condition is much stronger than needed. The case a, close to p is discussed in
more detail in Tyler (1988), where more relaxed conditions for existence are
given which are only slightly stronger than Condition D,. The proof of
existence of a solution to (2.5) given by Tyler (1988) consists of showing that
an algorithm which is more complicated than (2.7) converges. In light of the
results of this section, the former algorithm is not necessary. The proof of
Theorem 2.4 can also serve as an alternative proof of existence under Condi-
tions D, and M(). The proof itself is simply a tightening of the arguments
used by Huber (1981).
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3. Location-scatter problem. Results on the existence of a solution
feR? and £ &, can be obtained by embedding the problem into the
scatter-only problem in (p + 1) dimension. Given an observation y € RP?,
define z = (y', 1Y € RP*!. Also, given X € Z#,, » € R? and a scalar A > 0,
define A € &, ., by

-1 ’ -1
(3.1) A=|ZTA M AT
A 1|L' A 1
Note that any A € &, ; can be decomposed into this form. The main results
of this section are based on the reparameterization (3.1) and the algebraic
identity

(32) ZA 'z =2+ (y - w)E Uy — p).

This identity is a special case of the standard identity for a partitioned
quadratic form.

Foragiven p € R? and £ € &, let A, € &, be defined as in (3.1) with
A = 1. By using identity (3.2) and noting |A,| = |Z|, the objective function
defined by (1.1) can be expressed as

(3:3) L(n,2) = Lo(Ao) = X po(z:Aq'z;) + 3n loglA|,
i=1

where py(s) = p(s — 1) for s > 1, and z; = (y/, 1). Thus the problem of mini-
mizing L(p,X) over p € R? and X € &, is equivalent to minimizing L,(A,)
over A, € &, ; with the restriction that the (p + 1, p + 1) element of A, be
1. Since the largest root of A, is no smaller than any diagonal element, it is
bounded below by 1. The existence of a minimum fi € R? and £ € Z, to
L(p,%) thus follows from Lemma 2.2() and (iii) with ¢ = 1. In applying
Lemma 2.2, note that the value of a, defined by (2.2) is the same for p and
po- Also, a subset {z;; j € J} lies in a linear subspace V ¢ RP*! with 1 <
dim(V) < p + 1 if and only if {y;; j €J} lies in a hyperplane
H cR? with dim(H) = dim(V) — 1. Condition D, and Lemma 2.1 for
{z;; 1 <i < n} cRP*! can be recast as follows for {y;1<i<n}cRP.

ConpiTion D*.  Let p(s) have sill a, > 0 and suppose that for all hyper-
planes H C R? with 0 < dim(H) <p — 1,

(3.4) P(H) <1-{p - dim(H)}/a,.

LemmaA 3.1, (i) Under Condition D*, it follows that a, > p and n > p + 1.

() Ifag>p+1,n>p+ 1andif{y; 1 <i < n} lies in general position,
then Condition D* holds.

Gii) If p <ag<p + 1, n>ay/(ag—p) and if {y;; 1 < i < n} lies in gen-
eral position, then Condition D* holds.

For a proof of part (iii), the only new conclusion, see Section 5. Recall that
the data points lying in general position mean that every proper hyperplane H
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contains at most dim(H) + 1 points. In particular, a data set lies in general
position with probability 1 when sampling from a continuous population.

Summarizing, we obtain the following existence theorem for the location-
scatter problem.

THEOREM 3.1. Under Condition D*, there exists a fp € R? and £ € Z,
such that L(j, £) < L(n, =) forall pe RP, T € Z,.

If p is continuously differentiable, then (ji, £) will be a solution of the
estimating equations (1.2) and (1.3). .

Since minimizing (3.3) involves a restricted search over A, € &, ,,, the
results from Section 2 on uniqueness and computation cannot be applied
immediately to the location-scatter problem. By employing the reparameteriza-
tion (3.1), the implicit equations (1.2) and (1.3) can be expressed equivalently
as

(8.5) A=

&t inm  S_1a
AT AA *l - ave{u(s;)z,z}},
A_lfll A_l

where s, = (y, — fY2£ "Xy, — ) and A is defined by
(3.6) A~1 = ave{u(s;)}.
Using (3.2), expression (3.5) can then be rewritten as
(3.7) A= ave{ (z A g, )t)z,z,},

where u*(s;A) = u(s — A) for s > A and u*(s;A) = u(0) for s < A. The key
observation here is that (3.7) looks similar to an implicit equation for an
M-estimate of scatter only; see (2.5).

The difference between (2.5) and (3.7) is that the weight function is fixed in
the former, whereas in the latter it depends on A. Since A may depend on the
data, uniqueness does not follow by applying Theorem 2.2 to (3.7) directly.
Some additional arguments are needed. The complete proof is given in Sec-
tion 5.

TuEOREM 3.2. If Conditions D* and M hold, then there exists a solution
feR? and ¥ %, to (1.2) and (1.3). Further, this solution is unique if
(s + Nu(s) is strzctly increasing in s, where A is defined by (3.6).

Theorem 3.2 may be difficult to apply in practice because the value of A
depends on fi and 2. Given a solution (i, £), though, it does give conditions
which guarantee that no other solutions exist. To obtain a condition which is
easier to check we can look for an upper bound A, for A since, if A, > A and
(s + A, )u(s) is strictly increasing and Condition M holds, then (s + Mu(s) is
also strictly increasing.
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An upper bound A, can be derived as follows. By multiplying (1.3) by $-t
and taking the trace we obtain ave{u(s;)s;} = p. Thus, for all >0, p =
ave{(s; + bu(s;)} — bA~! which implies A; < <A< A,, where

(3.8) Al = sup mf{(s +b)u(s) — p}/b,
5>0 8

(3.9) A= ;nf sup{(s + b)u(s) — p}/b.
>05>0

Hence we obtain the following uniqueness theorem.

THEOREM 3.3. If Conditions D* and M hold and (s + A,)u(s) is strictly
increasing, where A, is defined by (3.10), then there exists a unique solution
peRr,$eP to(l2)and (13)

An even simpler condition to check can be obtained by noting that if
(s + b)u(s) is strictly increasing for b = (p + 1)/u(0), then A;! > {bu(0) —
p}/b=>b"1 and so (s + A,)u(s) is strictly increasing provided Condition M
holds. Hence the following result holds.

THEOREM 3.4. If Conditions D* and M hold and {s + (p + 1)/u(0)}u(s)
is strictly increasing, then there exists a unique solution j € R?, ¥ € &, to
(1.2) and (1.3).

For a given weight function u(s) satisfying Condition M, consider the class
of weight functions u(s;c) = cu(s) which is indexed by the ‘“tuning” constant
¢ > 0. If (s + &)u(s) is strictly increasing for some £ > 0 but not for & =
(p + 1)/u(0), then the weight function u(s) can be “tuned,” that is, replaced
by u(s;c) for some ¢ > 1, so that {s + (p + 1)/u(0; c)}u(s;c) is strictly in-
creasing. This is done by choosing ¢ > (p + 1)/{eu(0)}. Theorem 3.4 on
uniqueness then applies to u(s;c) provided Condition D* holds for u(s;c).
Note that if Condition D* holds for u(s), then it holds for u(s;c) for any ¢ > 1
since the sill corresponding to u(s;c) i is ca,, where a, is the sill corresponding
to u(s).

As an example, consider the class of weight functions which are normal in
the middle and have ¢-type tails; that is, define for s > 0, ¢ > 0,

SSSO,

1,
(3.10) u(s;c) =c{(v+30)/(y+s)’ 5> s,
where v > 0 and s, > 0. The function u(s; c¢) has corresponding sill ¢(v + s,)
and satisfies Condition M. In addition, {s + (p + 1)/u(0; ¢)}u(s;c) is strictly
increasing in s for ¢ > (p + 1)/(sy + v).
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Another example is the class of weight functions which can be represented
as the ratio of two polynomials with alternating roots; that is, define for s > 0,
c>0,

k k+1
(3.11) u(s;c) =c{ll:[1(s+ai)}/{11:[l(s+ﬁj)},

where k> 1, a;>ay,> -* >a, >0, B;>2By> -+ >B,,, >0 and with
B;>a; > B;,, for i = 1,..., k. The weight function u(s;c) has corresponding
sill equal to c¢ and satisfies Condition M. Furthermore, {s + (p +
1)/u(0; ¢)}u(s; ¢) is strictly increasing in s for ¢ > (p + DIT%_ (a,/B,). Both
examples (3.10) and (3.11) include the multivariate ¢ weight functions (1.6) as
special cases. The multivariate ¢ M-estimates are discussed in more detail in
the next section.

Concerning computation, guaranteed-convergent iterative reweighting algo-
rithms are more difficult to construct for location-scatter problems than for
scatter-only problems, even when the solutions to (1.2) and (1.3) are known to
be unique. Such algorithms can be constructed for the multivariate ¢ M-esti-
mates. These are briefly discussed in the next section. In general, though, the
problem remains open.

Finally, we note that only minor relaxations of Condition D* may be
possible to ensure the existence of (ji, $). Necessary conditions for the exis-
tence of solutions p € R?, $ € &, to (1.2) and (1.3) can be obtained by using
the representation (3.7) and notlng that although A may depend on the data,
this does not affect the application of (2.6) to (3.7).

LEMMA 3.2. If a solution i € R? and £ € P, exists to (1.2) and (1.3) and
A is defined by (3.6), then:

1) K(X) = sup{(s + Du(s)ls > 0} > p + 1, and
(ii) for any hyperplane H c R? with 0 <dim(H)<p -1, P(H)<1 -
{p — dim(H)}/K(}).

The first part of the lemma can be justified by multiplying (3.7) by A~! and
taking the trace. This gives

p+1l= ave{z’iA‘lziu*(z’iA‘lzi;)i)} < sup{su(s; A)|s > 0} = K(4).

Part (ii) is obtained from (2.6) by again making use of the relationship that a
subset {z;; j € J} lies in a linear subspace V c RP*! with 1 < dim(V) <
p + 1if and only if {y;; j € J} lies in a hyperplane H c R? with dim(H) =
dim(V) — 1. A

If (s + Mu(s) is nondecreasing in s, then K(A) =a, and so the only
difference between the sufficient condition D* and the necessary condition
given by Lemma 3.2(ii) is the strict inequality. For the existence of a minimum
to (1.1) in general, it is fairly easy to show that Condition D* essentially
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cannot be relaxed in the univariate case, and we conjecture that a similar
result is true for p > 2. A proof of the following lemma is given in Section 5.

LEmma 3.3. Suppose p(s) has sill ay > 0 and that for any a > a,,
s2/2 exp{—p(s)} > o ass — », For p = 1, if there exists a solution jp € R and
$ € R* to minimizing (1.1), then for any y € R, P(y) < 1 — 1/a,,.

As noted previously, when p is differentiable a solution to (1.2) and (1.3)
may exist even if (1.1) does not have a minimum.

4. The multivariate ¢ M-estimates. This section discusses the multi-
variate ¢ M-estimates. Clearly, u (s) defined by (1.6) satisfies Condition M for
all » > 0. Also, su,(s) is bounded and hence s'/%u (s) is redescendlng The
sill is easily seen to be a, , = v + p.

First we discuss the scatter-only problem. For any v > 0, Theorems 2.2 and
2.3 on uniqueness and computation can be applied provided Condition D,
holds for the sample. Condition D, for this example can be stated as follows:
For any subspace V c R? with 0 < dim(V) <p — 1, P,(V) < {v + dim(V)}/
(v + p). This condition becomes a necessary condition for the existence of a
solution to (2.5) when u = u, if the strict inequality is replaced by < ; see
(2.6). Condition D, is most restrictive for v near 0. In particular, if any data
point equals 0, then the condition cannot be met for sufficiently small ».
Nevertheless, for any v > 0, Condition D, holds with probability 1 for random
samples of size n > p from any contlnuous distribution.

Next we turn to the location-scatter problem. Let i, € R? and E € Z,
represent a solution to (1.2) and (1.3) when u = u,. Such solutlons ex1st
provided Condition D* holds for the sample, which for this example can be
stated as follows.

ConbiTioN D*. For any hyperplane H € R? with 0 <dim(H) <p — 1,
P(H) <{v + dim(H)}/(p + v).

For v > 0, any solution (i, $,) gives
(4.1) A7 =ave(u,(s;)} =1

where s; = (y, — [,)2 $- Uy, — fu,). Statement (4.1) can be verified by evaluat-
ing the expressions in (3.8) and (3.9) at b=v, s=0and b=v, s=0,
respectively. One important consequence of A, not being dependent on the
data is that any method for finding a solution in the scatter-only problem, such
as the iterative reweighting algorithm (2.7), can be applied to the location-
scatter problem through (3.7).

Consider now the case v > 1. When random sampling from continuous
distributions in R?, Condition D holds with probability 1 for samples of size
n 2 p + 1. We note that Condition D can be made a necessary condition for
the existence of (fi,, & ,) by replacing the strict inequality by a simple inequal-
ity. Theorem 3.2 on uniqueness holds since (s + 1)u (s) is strictly increasing.
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Alternatively, since ):,, = 1 regardless of the data, the uniqueness of (ji,, ﬁ‘,,,)
follows directly by applying Theorem 2.2 to (3.7).

The special case v = 1, the Cauchy case, requires separate consideration.
Note that (s + Du(s) = p + 1 and so is not strictly increasing. Equation (2.5)
has been recently considered by Kent and Tyler (1988) for u(s) = p/s. Assume
the following conditions on the sample hold: (i) P,{0} = 0 and (ii) for any
subspace V € R? with 0 < dim(V) < p, P(V) < dlm(V)/p Under these con-
ditions, a solution A to (2.5) exists and if AO is any other solution, then
A= yA for some y > 0. This result is given in Theorem 1 of Kent and Tyler
(1988). Results on uniqueness for v = 1 follow from applying the above result
to (3.5). For this case, (3.5) can be expressed as
(4.2) A= ave{uo(z’iA‘Iz )2z },

4

where uy(s) = (p + 1)/s, z’; = (y/, 1) and for any y > 0,

(4.3) A=y 57
iy 1

2+ g f’q}

Now for the data set {z; € RP*!|1 <i < n}, Condition (i) above obviously
holds since z; # 0. Condition (ii) is equlvalent to Condition DF. Since the
1ndeterm1nancy of y does not affect fi, and £,, the estimates are uniquely
defined when Condition D¥ holds.

TueoREM 4.1. If Condition DY holds, then there exists a unique solution
i, €R? and E €, to (1.2) and (1.3) for the weight function u,(s) =
(p +1/(s + 1)

Finally, consider the case 0 <v < 1. Condition D7 is still sufficient for
ensuring the existence of (j,,3,) for 0 <» < 1. However this condition can
only be satisfied if n > (p + v)/v, which goes to © as v — 0. Also, there is a
large gap between the sufficient Condition D* and the necessary condition
given by Lemma 3.2 when v is near 0. For 0 < » < 1, (s + 1u (s) is decreas-
ing rather than increasing and so the necessary condition of Lemma 3.2
becomes: For any hyperplane H with 0 < dim(H) <p — 1,

(4.4) P,(H) <1-v(p - dim(H)}/(p +»).

This necessary condition is very weak for v near 0, since the upper bound is
close to 1. Another consequence of (s + 1)u (s) being decreasing for 0 < » < 1
is that the results on uniqueness from Section 3 do not apply.

The p = 1-dimensional case has been well studied. As noted in Section 1,
uniqueness in the univariate ¢ setting was shown by Copas (1975) for v = 1
and for v > 1 by Mirkeldinen, Schmidt and Styan (1981). Uniqueness is
known not to hold in general for the case v < 1; see Gabrielson (1982). For
v > 0 in the univariate case, Condition D simply states that no more than
vn /(1 + v) observations can coincide. This is the same condition imposed by
Copas (1975) and by Mirkeldinen, Schmidt and Styan (1981). This condition is
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the same as conditions (ii) and (iii) of Lemma 4 in Dempster, Laird and Rubin
(1980) when applied to a univariate ¢-distribution on v > 0 degrees of freedom.
Under this condition, they prove the convergence of an iteratively reweighted
least squares algorithm to a solution of the likelihood equation associated with
the univariate ¢-distribution. Rubin (1983) generalizes their algorithm to the
multivariate ¢ setting, but does not explicitly give conditions on the sample for
ensuring its convergence.

5. Proofs.

Proor oF (2.3). The proof is by contradiction. Let b, = lim,_,, su(s),
—o < by < . First, suppose there exists an a < b, such that as s — o,
lim sup s%/2 exp{—p(s)} = » or equivalently lim sup H(s) = o, where H(s) =
a(log s) — 2p(s). Since H(s) is differentiable, by the mean value theorem there
exists a sequence s; — o such that H'(s;) = a/s; — 2p'(s;) = a/s; — u(s;) >
0 or equivalently s;u(s;) < a. This contradicts the definition of b, and so for
a < b, it follows that s®/2exp{—p(s)} = 0 as s - =,

Next, suppose there exists an a > b, such that as s — o,

s/ exp{ —p(s)} — 0

or equivalently H(s) » —o. This implies there exists a sequence s; — » such
that H'(s;) =a/s; —u(s;) <0 or s;u(s;) > a. Again this contradicts the
definition of b,. Thus b, equals the sill of p(s) and (2.3) holds. O

Proor oF LEMMA 2.1. (i) Let V be any g-dimensional subspace so that
P (V) > 0. Then (2.4) implies a, > p — gq.

Next suppose n < p and let V be any (p — 1)-dimensional subspace con-
taining all the data, so that P, (V) = 1. But (2.4) implies P, (V) < 1, giving a
contradiction. Hence n > p.

(i) Let V be any proper subspace and set dim(V) = r say, r < p — 1. Under
the stated conditions,

e (e

r
P(V) < —
V) p p ay
O

r
— =<
n

That is, Condition D, holds.

Proor oF LEMMA 2.2. Define g(s) = exp{—p(s)} for s > 0 and G(A) =
exp{—L(A)} for A € &,. Since a, > 0, p(s) > © as s — «. Also, since p is
continuous, this implies d = inf{p(s)|s > 0} > — . Thus

n
(5.1) G(A) = |A|™"/2 I_Ig(yiA“yi)
goes to 0 if and only if L(A) goes to «. Clearly, if A, , > while A, remams

bounded away from 0, then G(A,) - 0 since |A,|"' - 0 and g(s) <e”
Thus part (i) is proven. The proofs of parts (i) and (iii) can be combined. For
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an arbitrary ¢ = 0,1,..., p — 1, suppose part (ii) holds when ¢ = 0 and part
(iii) holds when q # O Define r,1 <r <p,sothat A, , » 0for r <j < p and
Ajpzc>0 for 1 <j<r. It follows that r > q. For clarity, the proof is
broken into several steps.

Step 1. Let E, = {e;,,...,e, k} be an orthonormal set of eigenvectors of
A, sothat A,e; , =A;,e;,, 1 <j<p. Without loss of generality, it can be
assumed that Ek — E ={e,,...,e,}, an orthonormal set of vectors. This can

be assumed since any sequence has a subsequence satisfying this property, and
so if convergence of G(A,) to 0 is proven under such sequences, then it holds
in general. For each j=1,...,p, let S i denote the space spanned by

{e,...,e;} and D, =S; \S ={yeR’lyeS;,, y&S,_} with S, ={0}
and D, = {0}.

Step 2. Express G(A,) = 17_,G,(A,), where for j=1,...,p
(5.2) Gi(Ay) =237 l__[g(yéA;‘yi)

with the product I1; being taken over y, € D;, and G(A,) = {g(O)}"P n(So),
Note that IT725G,(A k) is bounded since g(s) is bounded andforl <j<r-1,
Ay <ct Thus it only remains to show that I1?_,G,(A4,) - 0.

Set @, = {1 — (p — L + 1)/a} — P(S,_,). Choose a < a, close enough to a,
so that a, > 0, [ = , p- Condition D, guarantees that these inequalities
can be met because dlm(Sl pD=Il-1> o1 = q. Then it will follow that

I17_,G,(A,) — 0 if we can show that
P
(5.3) l—[lGj(Ak) = o(A7%1 /%)
j=

for r<l<p.

Step 3. Before showing (5.3), an intermediate result is established.
Let r<h <p and suppose y € D,. Since y'A;'y = L2_1A; 1€ ,y)* and
(e}, y)? > 0, it follows that

(5.4) liminf A, ,y'A;'y > (€,y)° > 0.

Now since A , — 0, it must be that y’A; 'y — « and by definition for any
a <agy, (YA, 'y)*2g(y'A; ty) - 0. Together with (5.4), this gives

(5.5) g(y'Ar'y) = o(A3/3).

Step 4. The proof of (5.3) now proceeds by reverse induction. Since
P(D,)=1-P(S,_,) and dlm( ,-1) =p — 1, it follows immediately from
(5 5) that (5.3) holds for [ =

Next, suppose (5.3) holds for some [, r <l < p. Together with (5.5), this
implies

P
(5.6) TT Gi(AL) = o(NePyP0 =)0 Ko /2).
i
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However, since P,(D,_,) = P,(S,_;) — P(S,_,), it follows that «;_; = a, +
{P,(D;_,)} — 1/a. Furthermore, since A; , < A;_; ;, (5.5) holds with «, re-
placed by «;_,. Thus (5.5) and consequently Lemma 2.2(ii) and (iii) are proven.

O

Proor oF THEOREM 2.2. Without loss of generality, suppose both A=1
and A = A satisfy (1.3). Let §; be the largest eigenvalue of A, and suppose
8, > 1. Since su(s) is strictly increasing and u(s) is nonincreasing, it follows
that for y # 0, u(y'A~'y) < u(6;'y'y) < 8,u(y’y). By Condition M, this im-
plies A = ave{u(y/A~'y)y,y/} < 8,avelu(yy,)y,y;} = 6,1, where A, <A,
means A, — A, is positive definite. This gives the contradiction §, < §,, and
so 8; < 1. A similar argument implies that the smallest eigenvalue of A is

>1.Thus A=10O

ProoF oF THEOREM 2.3. Since the conditions of the theorem ensure A
exists and since the transformatlon {y;} = {By,} for any nonsingular B in-
duces the transformatlon A > BAB', it can be assumed without loss of
generality that A = I is a solution to (2.5). Again, for clarity the proof is given
in several steps.

Step 1. Let 51,m and §, , denote the largest and smallest eigenvalue of
AU, =12,.... In this step, the following results are established:
@ &, , < 1==‘61 me1 <1, (i) & 1=>61 mi1 <081, (i) 6, >1=

8y m+1 =1 and (iv) 8pm <1= 8 m+1> 0, - Note that (iii) and (1v) imply
AmtD e whenever A(’”) € 9”

To prove (i), if 8, ,, < 1, then y’{A(’")} y =6, y'y 2 y'y and since u(s)
is nonincreasing u(y’{A(”‘)} 1y) < u(y'y). Given that A = I is a solution to
(2.5), this implies A™*D < ave{u(y!y,)y;y;} = I, where the partial ordering
A, <A, means A, — A, is positive semidefinite. Thus 4, ,,,; < 1. The proof
of (iii) is analogous.

To prove (ii), since y{A“} 'y > 6; . ¥'y, u(s) is nonincreasing and su(s)
is strictly increasing, it follows that if 8, ,, > 1, then

(5.7 u(y’{A('")} _Iy) <u(8;,¥'y) <8, ,u(y'y),

with the second inequality strict for y # 0. This implies A™*D <
8, mavelu(y/y)y,y;} = 8, ,I. Thus 8, ,,,, <8, ,,. The proof of (iv) is analo-
gous.

Step 2. In this step we shall show that (i) limsupd
liminf$§, , > 1, from which it follows that ¢, , - 1, §,
A T

First we set up some more notation. Given a symmetric positive definite
matrix A, let §,(A) denote its largest eigenvalue and set ¢(A) =
ave{u(y;A~'y,)y;y!}. The logic in Step 1 implies that if §,(A) > 1 and B =
¢(A), then §,(B) < §,(A).

Lm <1 and (i)
— 1, so that

p,m
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In view of Step 1, statement (i) requires proof only in the case where
81, n = 8,(A") > 1 for all m. Note that {5, ,,} forms a decreasing sequence in
this case. Let 6* = lim 6, ,, > 1 and suppose if possible that §* > 1.

From Step 1, the eigenvalues of the { A} are bounded away from 0 and .
Thus we can find a convergent subsequence A — B0 say, where B, is
positive definite. Further AT *D = o(A™)) - ¢(B,) = B, say. Since {61 )
forms a decreasing sequence, 6,(B,) = lim §, m, =56* and §,(B,) =
lim &, ,, 4y = = 6*. However, Step 1 implies that 81(Bl) < 8,(By), giving a con-
tradiction. Hence statement (i) follows.

Statement (ii) can be proved similarly. O

Proor oF THEOREM 2.4. By the Cauchy—Schwarz inequality, for a € R?,
aAVa = ave| u(y/(A®) "'y }(ay,)’]
< ave[a,[/{yi’(A(O))_lyi}]a’AOa < aAja.
Thus AY < A®. Also, since u(s) is nonincreasing, if A+ < AU, then
A+ = ave| u{yi(A™D) "y, ly,i]

/ m -1 ’ m
save[u{yi(A( ) yi}ini] = Am+1)

So A" is a nonincreasing sequence of positive definite matrices and hence has
a positive semidefinite limit A. It suffices then to show that A is nonsingular.

Let R represent the orthogonal projection into V, the range space of A, and
let r = dim(V). Let R,, represent the orthogonal projection into V,, the space
spanned by the eigenvectors associated with the r largest eigenvalues of A ,,.
It follows that fory & V,

(5.8) y{A™} 'y > @ and e fA(if)A(”;) y S1.

Also, for large enough m, trace(R,,) = r.
Premultiplying

A = AT = avel u{y/(A™) 'y, )y.¥i]
by (I — R, X A“)~1 and taking the trace gives for large m,
(59  p—r=ave[u{y/(A™) 'y )yi(I - R,)(A™) y].
By considering only the sum in (5.9) over y;, € V and taking the limit, the

results (5.8) imply p — r > {1 — P(V)}a,. This contradicts Condition D, un-
less V = R. Thus A is nonsingular. O
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Proor oF LEMMA 3.1(iii)). Let p <ay<p + 1,n>a,/(a, — p), and let H
be a k-dimensional hyperplane, 0 < 2 < p — 1. Since the data points are in
general position.

k+1 k+1)(a, — —k(ay, — —k
P(H) < 22 St D(@=p) | Pok@—p) Pk

Qo Qg Qo

Hence Condition D* holds. O

Proor oF THEOREM 3.2. Note that u*(s; ) is nomncreasing in s and that
su*(s; A) is assumed to be strictly increasing in s. Suppose o € R?
and 2, e &, represent another solution to (1.2) and (1.3) and let Ayt
ave[u((y; — p,o) 13-4y, — i) If Ay = A, then i, = i and £, = £. Other-
wise there would be two distinct solutions to (3. 7) which contradlcts Theorem
2.2. Thus it only needs to be shown that Ao = A.

If A, < A then u*(s;A,) < u*(s; A) since u(s) is nonincreasing. Define a
sequence A r € &, starting with the above A0 by

(5.10) A, = ave{u (Z~A; zi;A)ziz’i}.

Note that A, > ave{u*(z,A;'z; A 0)z z)} =A,. Also, if A,,,>A,, then

'A;Hz < zA;'z and so u*(z’AkHz, A) > u(zA;'z; ) which implies
Ay A,z+1 By induction, Ao <A < - <Ak < -+ . However, by Theo-
rem 2.3, Ak — A and thus A, < A. Since A;' and A 'arethe(p + 1,p + 1)
entries of A and A, respectlvely, this 1mphes XO > A, a contradiction.

A similar contradlctlon arises if A, > A. Thus A, = A and hence fi, = i and
$,=% o

ProOF oF LEMMA 3.3. Suppose for y € R, P(y) =m/n > 1 — 1/a,. This
implies n > (n — m)a, and so for some a > a4, n > (n — m)a. For such a,
express

xp{—L(y, 0?)} = o~ (*~ (=m0} exp{ —m p(0)}
xy]}y(«ﬁ) exp[ (i =2)?/0 }]

which is seen to go to © as o — 0. Thus L(y, 02) » —» as o — 0, whereas
L(u,02) > —oforany p € R, o0 € R*, O
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