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VARIABLE SELECTION IN NONPARAMETRIC REGRESSION
WITH CONTINUOUS COVARIATES!

By PING ZHANG

University of Pennsylvania

In a nonparametric regression setup where the covariates are continu-
ous, the problem of estimating the number of covariates will be discussed in
this paper. The kernel method is used to estimate the regression function
and the selection criterion is based on minimizing the cross-validation
estimate of the mean squared prediction error. We consider choosing both
the bandwidth and the number of covariates based on the data. Unlike the
case of linear regression, it turns out that the selection is consistent and
efficient even when the true model has only a finite number of covariates.
In addition, we also observe the curse of dimensionality at work.

1. Introduction. In this paper, we consider the estimation of the number
of covariates in a nonparametric regression model. Although much of the
theoretical aspect of variable selection methods is yet to be explored, the
concept has been well accepted by most statisticians and some criteria are
being routinely used in practice. Current literature, however, has been focus-
ing on linear regression and as far as we know, there has been no published
study on model selection methods under a nonparametric setup.

Throughout this paper, it is assumed that all the covariates are continuous.
Under a linear regression setup, it has been pointed out be many authors that
when the true model has finitely many covariates, criteria such as AIC tend to
choose overfitted models with positive probability. Although concepts like AIC
and maximum likelihood do not carry over to the nonparametric situation in a
straightforward fashion, it does make sense to talk about prediction error and
cross-validation in the general framework. The equivalence of the AIC and the
cross-validation (CV) criterion was observed by Stone [14]. One naturally
expects the behavior of the CV criterion in nonparametric regression to be
similar to that of AIC in linear regression. Namely, it does a good job only
when the true model has infinitely many covariates (see Shibata [13]). While
this has been shown to be true when the covariates are categorical variables,
we will show momentarily that in the continuous case, it is not true. To
understand the difference, we have to realize that it is a misconception, often
adopted in the literature, to mix up the number of covariates and the model
dimension. The latter should be interpreted as the number of parameters
needed to describe the model, and in the earlier studies (linear regression or
nonparametric regression with categorical covariates), these two quantities
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happen to coincide. That is, a regression model with a finite number of
covariates can indeed be described by a finite number of parameters. However,
this is no longer the case for the model considered in this paper. Even though
there is only one covariate, the model dimension is always infinity, or goes to
infinity depending on how one looks at the problem (see Buja, Hastie and
Tibshirani [2]). In conclusion, it seems that for consistency in variable selec-
tion, what matters is the model dimension rather than the number of covari-
ates. If the true model is finite dimensional, cross-validation sometimes chooses
overfitted models. Otherwise, it can be consistent. It is also illuminating to
notice that a similar classification also exists in the asymptotic distribution of
the mean squared error. For models with finite model dimension, it usually
tends to a mixture of y?’s. Otherwise, it tends to a normal distribution (see
Hall [7].

Formally speaking, assume that (X, Y),(X,,Y,),...,(X,,Y,) are iid ran-
dom vectors with (X,,Y,) € R* X R!. When a new observation X arrives, we
want to predict the corresponding Y. The best prediction under squared error
loss would be m(x) = E(Y|X = x) and we are going to estimate this function
nonparametrically (using a kernel estimate in particular). Given the observa-
tions, the object now is to find a subset of covariates which best predict the
response. Let X = (X(1), X(2),...) € R*. We assume, as usual, that X(i),
i =1,2,..., are preordered according to their importance so that it will be
only necessary to select the number of covariates rather than searching among
all possible subsets. Generally speaking, let the d-dimensional prediction
function be

my(x) = E(YIX(1) = x(1),..., X(d) = x(d)).

We use the so-called Watson—Nadaraya estimate

mxn=-—7——ZxK(&;xy

where

R 1 X, —x 1
f) = G T K5 )+

Some notation and conventions are warranted before further arguments can
take place. Whenever x appears as an argument of a function, it is regarded as
if it had a subscript d to indicate that x € R?. This rule is followed through-
out this paper. Let S, c R? be a compact set and w;: R? - R be a weight
function supported on S; and w,(x) < C for some constant C not depending
on d. Let f,(x) be the joint density function of the first d coordinates of X.
We define

A,(d,h) = E(Y — i y( X)) wy(X),
M,(d, k) = E[(Y = g( X)) wa(X)|(X,, ¥, ... (X, )]
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and their cross-validation approximation
1 n R 2
n(d h) = ; Z (Yt - md(—i)(Xi)) wy(X;),

where 17 4_;, is the kernel estimate of the regression function using all but
the ith observation.

The rest of the paper is organized in the following way. Section 2 shows the
asymptotic optimally of the cross-validation criterion. In particular, unlike the
parametric case, the CV criterion is consistent. In Section 3, we show that our
results hold generally under mild restrictions. Topics such as selection range
and boundary effects are discussed. Section 4 discusses the potentials and
limitations of the CV criterion. And finally, lengthy proofs are deferred to the
Appendix.

2. Optimality of cross-validation. In the following, m”,(x) stands for a
d X d matrix with the (i, j)’s element d2m 4(x)/dx(i) dx(j). And m/;(x)f'(x)
denotes the d X d matrix with the (i, j)’s element dm ,(x)/dx(i) X
f(x)/3x(j). Also, define

By(x) = fu’(m’d(x)f'(x)/f(x) + m’;,(x)/2)uK(u)du.

It should be stressed that throughout this paper, we use C to denote a generic
constant not depending on n, d and k. The C’s appearing at different places
need not be the same. Here below, we use || || (or ||-[lg to indicate the
dimension of its argument) for the Euclidean norm and when applied to a
matrix, it would be the corresponding induced norm. The notation (- )
represents the usual inner products.

We make the following assumptions.

(A) For any integer I, EY? < w and E[Y?%|X = x] < C% for x € S;.
(B) f(x) is twice differentiable, and there exist constants A; > 1 and a <
1/2 such that for all x,y € S5, the following hold:

f(x) >0, | (x)/F ()l < A,
F()/F(x) =1+ () /f(x),y —x
+(y —x) (f(x)/2f(x))(y — %) + O(Adly — x[***).

(C) my(x) is twice differentiable, and there exist constants A; > 1 and
a < 1/2 such that for all x,y € S5, the following hold:

Ima(x)l < Ag,  Ima(x) <Ags IIma(x) — my(n)] < Aglx - yII".

(D) There exist positive constants a, b such that a? < f(x) < b¢ for x € S&.

In the above, S5={y € R% |ly —xll<e x<€S,}, and when there is no
confusion, the subscript d is often dropped for convenience of presentation.
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For the kernel function K, we assume:

(E) K(u) is a continuously differentiable density function supported on
llullg < C, where || - || is the Euclidean norm in R€.

Condition (E) implies that K(uz) < C and |{u, K'(u))| < C. The restric-
tions on kernel function are for convenience in carrying out calculations rather
than necessary. It is, however, well known, that the choice of kernel function
is not as important as the choice of bandwidth (see Rosenblatt [12]).

Defining

JE¥(u)du_| (Y = my(X)) wy(X)
nh® f(X)

let H(8,) ={h > 0: A;h* <35,} and L (C) = {X: X € L; E[X]” < C}, where
C does not depend on p. Then we have the following lemma.

V(d,h) =

+ E[wy(X) B3(X)]h*,

LeEmMA 1. Suppose that h € H(8,) for some 8, — 0, and assumptions (A)
to (E) hold. Then for any integer l, there exists a random variable 6 € L,,(C)
such that

A (d,h) =E(Y - my(X)) wy(X) + V(d, h)

2.1 ‘
(2.1) + C90( A (nh?) "> + A b /nhd + ALR),

M,(d, h) = E(Y — my(X))*wy(X) + V(d, h)
2.2 \ .
(2.2) +6(n,d, h)CH A (nh?) "> + AZh/nh? + ALRYH)

and

o 1
A (d,h) = ;Z eflawa(X;) + V(d, h)
(2.3)

-3/2

+0(n,d, h)C4(A%(nh?) ™" + ALhe/nh + AYR4*e).

ProoF. See Zhang [15]. O

It is assumed throughout this section that Y, = m(X,) +¢;,i = 1,2,...,n,
where ¢;’s are iid with mean 0 and variance %, and ¢; is independent of X;.
Let m(x) be some smooth function satisfying assumption (C). By saying that
the true model has d, (not necessarily finite) covariates, we mean that the
value of m(x), x € R*, depends only on the first d, coordinates of x. We
further introduce the following assumptions:

(F) [KXu)du = [K¥u,,...,uy)du, -+ duy > C? for some constant C.
(@) Ewy(X) does not depend on d; lim,_,, wy(X) = w (X) exists and
Jw{x)dx,dxy -+ # 0.



NONPARAMETRIC VARIABLE SELECTION 1873

THE SELECTION RULE. Let Q, = {(d, h): d is an integer, d2/log(n) < ,,;
Cin~ V@ < h < Cyn~1/@+9) where 8, — 0. Let PE(d, h) be any measure
of prediction error. The selection procedure then goes as follows. Given d,
select an h = h(d) which minimizes PE(d, %), then select d to minimize
PE(d, h(d)). All the selections are done with the constraint (d, k) € Q,. In
the next section, we show that this constraint is very reasonable in the sense
that the global minimizer actually falls in this region.

THEOREM 1. Suppose that assumptions (A) to (G) hold and A, < C? for
some constant C. Suppose the true model has d, (< ®) covariates, and d(n) is
the minimizer of A (d, h(d)). Then lim, . d(n) = d,.

Proor. See the Appendix. O

LEmMMA 2. Let 6(n,d,h) € L,,(C) be the random variables in Lemma 1.
Under the assumptions of Theorem 1, it can be shown that for any t > 0,

sup |6(n,d,h)|C%nh?) " =p 0.
d,h)eq,

ProoF. See Zhang [15]. O

Here the notation =, represents convergence in probability. Importantly,
this lemma implies that the remainder terms in various expansions in Lemma
1 are uniformly negligible.

THEOREM 2. Let the assumptions of Theorem 1 hold. Suppose d(n) is the
minimizer of M,(d, h(d)). Then d(n) =p d,.

Proor. First, from the same argument leading to Theorem 1, one can
show that underfitting is impossible. That is, lim P[d(n) < d,] = 0. To elimi-
nate the possibility of overfitting, from Lemma 1, when d > d,, we can write

M,(d,h) =c’EBw (X) + V(d,h)[1 +1,],
where from Lemma 2, by appropriately choosing ¢, it is easy to check that

sup r, =p 0.
d,h)eQ,

In other words, when d > d,,
(2.4) M, (d,h) = c?’Ew (X) + V(d,h)[l +op(1)].
The same argument leading to Theorem 1 would then eliminate the possibility

of lim sup d(n) being greater than d, with positive probability. Consequently,
d(n)=p d, O

To deal with An(d, h), note from Lemma 1 that the first term in the
expansion yields an error of the order O,(n~'/?). Since the optimal bandwidth
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h is of order n~1/¢4*d 5 -1/2 ig agymptotically negligible in comparison with
the term V(d, k) (which is of the order n=%4/(?*%) only when d > 4. In other
words, our criterion would fail when d < 4. A simple remedy is as follows.
Assume

(H)  wy(x) = wy(x) = wy(x(1),x(2),x(3),x(4)) ford < 4.

For d < 4, instead of letting w,(x) be a function of the first d coordinates,
we allow it to depend on the first four coordinates. By doing so, we make the
leading term in the expansion of A,(d, k) independent of d for d < 4.

Obviously, this is only a technical device and has nothing to do with the
problem itself. Let Q, be as before. We have the following theorem.

THEOREM 3. In addition to the assumptions of Theorem 2, assume (H)
holds. Suppose d(n) is the minimizer of A,(d, h(d)). Then d(n) =p d,.

Proor. We follow the same line of arguments as before. It is easy to show

that underfitting is asymptotically impossible. From the argument in previous
theorems, if we can show for d > d, that

R 1
(2.5) A, (d,h) = Py Y 2w, (X;) + V(d, h)[l + op(l)],

then overfitting is also impossible. To prove (2.5), we have from Lemma 1 and
the argument in the previous theorems that

n 1
A (d,h) = Py Y 2wy (X;) +V(d, h)[l + op(l)].

Next, by assumptions (F), (G) and (H), we have for d > d,, that
| 1 1
- 8i2dwd( X)) =— Z efwy(X;)
n n
1 2 -1/2
=;Z£iw4(Xi)+Op(n )

1
= = Teetw(X,) +0,(V(d, b))
Hence follow (2.5) and the conclusion. O
Acknowledging the previous results, we can easily state the efficiency (or the
optimality, as in Breiman and Freedman [1]) of the cross-validation criterion

under the same assumptions. This is summarized as follows.

THEOREM 4. Suppose that the assumptions in Theorem 3 hold. Let
(d(n), h(d(n)), (d(n), h(d(n))) and (d(n), h(d(n))) be the minimizers of
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A,(d, h), [\n(d, h) and M, (d, h), respectively. Then
[M,(d(n), h(d(n))) - oEw,(X)]

® [8.(d(m), h(d(m)) — o Bun(X)] *"

and
. [M,(d(n), h(d(n))) - *Buw(X)] o
[A.(d(n), h(d(n))) — o”Buw(X)]

Proor. () Let f(d,h)=A,(d,h) - oc’Ew(X), g(d,h) =M/ d,h) -
o?Ew,(X). Then (A.2) and (2.4) imply that uniformly for all (d, k) € Q, and
d=<d,,

(2.6) f(d,h) =V(d,h)[1+0(1)]
and
(2.7 g(d,h) =V(d, h)[l + op(l)].

Now minimizing A, (d, k) and M,(d, k) is the same as minimizing f(d, k)
and g(d, k). Notice the consistency results proved previously, we get asymp-
totically that

g(d(n), h(d(n))) <g(d(n), h(d(n))) =f(d(n), h(d(n)))[1 + 0,(1)]

and
g(d(n), h(d(n))) = f(d(n), h(d(n)))[1 + 0,(1)]
< f(d(n), kh(d(n)))[1 + 0,(1)].

The above two equations 1mply (). Part (ii) can be derived through a very
similar argument by letting f(d, k) = A (d, k) — n"'Le,w,(X,). O

3. Some further results. For practical reasons, efforts have been made
in bandwidth selection literature to allow larger selection ranges (see Hérdle
and Marron [8]). It is therefore arguable that our selection range (d, k) € Q,
might eventually lead to a local minimum. The next result will to some extent
ease such concerns by showing that in some sense, the global minimizer
actually falls into Q,,.

THEOREM 5. In addition to assumptions (A) to (H), assume that
Ew/(X)BXX) > C? for some C. Let QF ={(d, h): d is an integer, n*/%h >
8,1 K% < 6,}, 8, > 0. Suppose (d*, h*) is the minimizer of A,(d, h) within
Q* accordzng to the selection rule. Then (d*, h*) € Q, for some 8, » 0 and
C2 > C; > 0.
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Proor. Clearly, when (d, k) € Q%, (2.1) holds. By the assumptions, it is
easy to show that for some C,

A(d, k) = E(Y — my( X)) wy(X) + C¥(h* + n"h~9).
If (d*, h*) is the minimizer, then
A, (d,Cn~ V@D > A (d*, h*).
This implies, first of all, that there exist constants C,, C,, such that
Cln—l/(d*+4) < h* < Czn_l/(d*+4),

and second, that d*2/log(n) — 0 since A*Y/%" — 0. The proof is complete.
O

For (d, h) € Q*, we have n'/?h — » and h'/? — 0. Given any d, these are
the minimal requirements for the consistency of the kernel regression esti-
mate. As a result, we can reasonably regard (d*, h*) as the global minimizer.

Before the selection procedure starts, for any dimension d, there are two
key elements that need to be determined, a kernel function K(u) and a weight
function w,(x). It is generally believed that the choice of kernel is not
essential. The weight function, however, ties in closely with the properties of
underlying covariate distribution f(x), and therefore cannot be chosen arbi-
trarily.

One of the main constraints about the weight function is that Ew,(X) does
not depend on d. Let G be the distribution function of || X|. If the joint
density f(x) is known, the task becomes trivial. An obvious candidate would be
the indicator function on the set S; = {x: | XI| < G~ '(u)} for some u close to
1. The fixed design case (X not random) can be handled in a similar fashion. It
is known that for fixed design problems, m(x) cannot be properly estimated
when x is near the boundary of the design set (see Eubank [4]). Our S, should
eliminate such points. Generally, we choose S; to satisfy the following condi-
tions:

@) P(S,) = 1 — ¢, ¢ prespecified;
(i) a? < f(x) < b9, x € S5 for some a, b > 0;
(iii) diameter of S; = O(C*) for some constant C.

For f(x) unknown, we turn to the data for help. In other words, we
construct a random weight function by somehow estimating the above indica-
tor function. Some other types of random weight functions have been consid-
ered by Hall [7].

If wy(x)=wy(x; X;,...,X,) is such a random weight function, we can
modify the cross-validation criterion so that '

- 1 Z . 2.
A (d,h) =— Z (Yz - md(—i)(Xi)) wd(—i)(Xi)’
ni=1

where 0, _;, is the corresponding version of w, with X; being removed.
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Let | X|l-y denote the rth-order statistic of I|Xl,...,[X,l, where r =
[n(1 — &)] for some prespecified ¢ > 0. Let u = r/(n + 1). We define

(3.1) y(x) = I(lxll < 11Xl

Since || X|l,y is the natural estimator of G~ '(u), it is expected that w,(x)
would approximate I(Jlx|l < G~(u)) well enough so that when substituted, the
modified cross-validation criterion still gives optimal selection. We have the
following result.

THEOREM 6. Suppose that S; = {x: |lx|l < G~ ()} satisfies conditions (i) to
(iii) above and assumptions (A) to (H) hold with wy(x) = I(x € S;). Then the
results of Theorems 3 and 4 still hold when replacing the role of A (d, h) with
A (d,h).

ProoF. See the Appendix. O

Theorem 6 provides us with a fully adaptive variable selection procedure
which is equivalent to CV, thus asymptotically optimal. To verify conditions (i)
to (iii), we give the following examples [note that (i) is trivial for the chosen
S,l

ExampLE 1. If the covariates X(1), X(2),... are iid with density f,(x)
which is bounded above and f(x) > C, exp(—C,x?) for some positive con-
stants C; and C,, then conditions (ii) and (iii) are satisfied. To see this, since
Xl =0 (\/_ d) from the law of large numbers, we have G~ (1) = O(Yd ), hence
condition (iii). This further implies condition (ii) since fo(x) > C; exp(—C,x?).

The above claim can be extended to the situation when fy(x) >
C, exp(—C,lx|*) for some a > 0. In this case, we need to use the L, norm
instead of the L, norm in the definition of S; and everything else follows by
exact analogy.

ExamMPLE 2. Suppose that there is a sequence of random variables
X)), X(2),... satisfying conditions (ii) and (iii). If our covariates are such that
for any d, (X(1),..., X(d)) = (XQ),..., X(d)I,, where T, is a d X d matrix
and the eigenvalues of I;I; are bounded below and above, then the sequence
X(1), X(2),... also satisfies conditions (ii) and (iii). The proof is obvious when
writing out the density of x in terms of the density of X and noticing that
ClXI < IXIl < Gyl X|l

Roughly speaking, the above two examples indicate that when the covariates
are not heavily interdependent and the tail of the joint density f,(x) is not too
light, the cross-validation criterion is always going to work. Let us conclude
this section with a specific example.
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Exampie 3. If X(1), X(2),... consists of a stationary Gaussian process and
the corresponding spectral density h(w) is bounded below and above, then
conditions (i) and (iii) are satisfied. In particular, this includes the usual
ARMA stationary processes. In light of the previous two examples, we only
need to show that the eigenvalues of the autocovariance matrix are bounded
below and above. This can be seen by the following argument (see Priestly [9]).
Using the spectral representation X(¢) = [ _exp(tw) dZ(w), we can write the
autocovariance matrix as A = (7 _B(w)h(w) dw, where B(w) is the nonnega-
tive definite hermitian matrix with the (j, 2)’s element exp(i(j — k)w). If
h(w) > 6> 0, then A > 6/ B(w)dw = 2w81,, where I; is the identity ma-
trix of order d. This implies that the smallest eigenvalue of A is no less than
276. The same argument leads to an upper bound.

4. Discussion. The kernel method is used mainly for analytical conve-
nience. Fan [5] has pointed out that theoretically, the Watson-Nadaraya
estimator can be rather deficient compared with other kernel methods. The
main trouble remains, however, that general kernel methods, although of
substantial theoretical merits, all require the choice of a bandwidth, which
makes the task of variable selection unnecessarily fussy. Less sophisticated
methods such as GCV or the nearest-neighbor methods might be better off in
this respect simply because more efficient algorithms can be developed (see
Eubank [4] and Cleveland and Devlin [3]). We wish to report work in this area
elsewhere.

We have assumed that the covariates are preordered according to their
importance. Notice that the CV criterion also applies to the general all subsets
selection problem. We conjecture that all the previous results can be general-
ized to this case. However, all subsets selection is simply too cumbersome to be
used in practice. When an ordering of covariates is not given a priori, people
have tried various data-driven methods to order the covariates. The issue goes
beyond the scope of this paper and to our knowledge, no satisfactory resolution
has been found.

Most of the work on nonparametric regression deals with a single covariate,
and the parallel multiple regression case is often regarded as a straightforward
generalization. Not until recently did people start to realize the practical
difficulty in dealing with high dimensional data. The problem is termed by
some the curse of dimensionality. See Friedman and Stuetzle [6]. We encoun-
tered the same problem from the perspective of variable selection. Technically,
we observed this by treating the number of covariates as an unknown variable
and all the expansions must be adjusted accordingly. This results in assump-
tions like d?/log(n) < §,,, which, according to Theorem 5, is almost necessary.
Thus, in principle, even with very large sample size, we are only able to deal
with models with very few covariates. On the one hand, this has handicapped
the procedure from being potentially a useful practical method in data analy-
sis. On the other hand, it also shows that the curse of dimensionality is
inherent and any attempt to tackle multidimensional data the same way as
dealing with univariate case would be unrealistic. For recent developments in
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more powerful nonparametric regression techniques, see Buja, Hastie and
Tibshirani [2].

APPENDIX

Proor oF THEOREM 1. Since A, < C? it is seen that
Aghe < Cdp-a/d+d) - [Cn—a/d(d+4)]d.

Note that the quantity in the brackets tends to 0 uniformly in (,, so
SUP(y nyeq, Aqh® — 0. Hence Lemma 1 holds uniformly for (d, k) € Q,,. This
in turn implies that

(A.1) limsup A, (d(n),h(d(n))) <E(Y - m(X))2wm(X) = o’Ew (X).

n—o

Suppose the claim were not true, say, without losing generality, that
lim, . d(n) <d' <d, for some d'. Then from Lemma 1, it is easy to see that

A (d(n), k(d(r))) = E(Y = m (X)) waem( X) + o(1)
> 02Bw(X) + E(my(X) — ma( X)) wam(X)
+0(1).

Hence
lgx:oAn(d(n), h(d(n))) > c’Ew(X),

which contradicts (A.1). Consequently, we must have liminf, _,, d(n) > d,.

To eliminate the possibility of overfit, suppose on the contrary that d(n) >
d’ > d, for n large enough (this only happens when d, < «). By Lemma 1, for
all (d, h) € Q,, we can write

A(d, k) = B X) + [0 + V(d, B)][1 + 1],
where g} = E(m(X) — m4(X))*w,(X). It is also easy to check that

sup |r,| = 0.
d,eq,

Thus uniformly for d > d,, we have
(A2) A (d,h) =0?Ew (X) + V(d,h)[1 +o(1)].

Under assumptions (F) and (G), (2.2) combined with Lemma 1 would show
that

i [2a(d(n), h(d(n))) ~ o*Bu(X)]
now  |Au(dg, h(dy)) — o2 Ew(X)]

The above could not be true since d(n) is the minimizer of A, (d, h(d)) —
o2Ew X) (the ratio should be less than 1). The contradiction proves that
asymptotically, in the range d > d, A,(d, h(d)) is minimized at d = d,. An
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earlier argument says that underfitting is also impossible, so it has to be that
lim,_,.dn)=d, O

ProoF oF THEOREM 6. It is enough to show that A (d,h) and A (d, h)
have the same expansion when (d, k) € Q,, namely,

- 1
(A.3) A,(d,h) = Py Y 2wy (X;) +V(d, h)(l + op(l)),

where o0,(1) is uniform over (d, k) € Q,,.
Clearly, we can write

Wa(x) = wy(x) + WP(x) + WP(x),
where

BP(x) = (W4(%) = wa(2)) (Il < G +£/2))
and

BP(x) = (a(x) — wa(x))(Ixlley > G (p + £/2)).
Correspondingly,
(A.4) A (d,h) =A,(d,h) + A, + A,
We have shown previously that

(A.5) A(d,h) = %Zsfdwd(Xi) +V(d, k) (1 + 0,(1)).

Next, since
1 X 2.
A= n Y (Y — g ( X)) WR-in(Xi)

< ;2;2 g2 W5 H(X;) + ;2;2 (’And(—i)(Xi) - md(Xi))zwc(il()—i)(Xi)
=d, +dJ,
and
BP(X) < [I(1Xllp < 1X1 < G (w)) + I(G7 (1) <IX]| < 1 Xll)]
XI(I1Xlloy < G~ Y1 + £/2)).

We get by Holder’s inequality that
EJ, < 2B, (X,) < 2[Ee2s]?[(a%) (X))"]
< C[E[I(IXllp, < 1X1l < G () + (G (1) <Xl < Xll»)]
XI(I1Xllry < G™Y(n + £/2))}"*

< C{EIU,, - ul}"" < Cn= /%,
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where U,,, is the corresponding order statistic from standard uniform distribu-
tion and the last step is from a result in Reiss [11], Chapter 3. This implies
that J; = 0,(n~'/2) for any q > 1. Furthermore, we have

1 4
122 2% (rac oK)~ ma(X0) T(1X = G- (n + £/2)

1 - 2 -

X \[; Y [®9-(X))] =215
From an argument similar to that leading to Lemma 1, we can show that
J; = 0,(V(d, h)). Also, since EJ; < ‘/E[wg(il)(xl)]z < Cn~Y* we have

J5 = 0,(1). Hence J, = 0,(V(d, ). The above arguments yield that for any
q>1,

(A.6) A, = 0,(n~V2) + o (V(d, h)).
For the A, in (A.4), since M 4(x) < CL|Y;|, we have
1 R 2
E sup A,=Esup—} (Yz = Mg Xi)) w¢(i2()—i)( X))
d, heq, n

< CE[IYI + LY I(1 Xl > G (1 + £/2))
< Cn®PV2(|U,,, — p| > £/2] < Cexp(—yn).

Again, U, is the order statistics from uniform distribution, y is some con-
stant and we used the Cauchy-Schwarz inequality and the exponential bound
of order statistics deviation (see Reiss [11]). In other words, we have just
shown that

(A7) A, = O,(exp( -yn)).

Finally, putting together (A.5) to (A.7), we get (A.3) and the proof is complete.
0O
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