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OPTIMALITY OF SOME TWO-ASSOCIATE-CLASS
PARTIALLY BALANCED INCOMPLETE-BLOCK DESIGNS

By C.-S. CueNG! anD R. A. BaiLEy
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Experimental Station

Let 9, ;1 be the set of all the binary equireplicate incomplete-block
designs for v treatments in b blocks of size k. It is shown that if 9, , ,
contains a connected two-associate-class partially balanced design d* with
Ay = Ay £ 1 which has a singular concurrence matrix, then it is optimal
over 9, , , with respect to a large class of criteria including the A, D and
E criteria. The dual of d* is also optimal over 9, , , with respect to the
same criteria, where r = bk /v. The result can be applied to many designs
which were not previously known to be optimal. In another application,
Bailey’s (1988) conjecture on the optimality of Trojan squares over semi-
Latin squares is confirmed.

1. Introduction. Let , , , be the set of all binary equireplicate incom-
plete-block designs for v treatments in b blocks of size k: each treatment is
replicated r times, where r = bk /v. For any d € 9, ,, ;, let N, be the v X b
treatment-block incidence matrix of d. Then the information matrix of d is
given by

Cd =r] - k_lNdNé.

The matrix N, N, is called the concurrence matrix of d and we shall call its
off-diagonal entries nontrivial concurrences. It is well known that C, is
symmetric, nonnegative definite and has zero row sums. Optimality criteria
are defined as real-valued functionsof C;. Let u¢ > u¢ > -+ > u?_, > u¢ =10
be the eigenvalues of C,. Then the commonly used A, D and E criteria seek
to minimize ¥ YZM(u?)~!, TT22 (w9~ and (u?_,)" %, respectively. It is well
known [Kiefer (1975)] that if 2, ,, contains a balanced incomplete-block
design (BIBD) d*, that is, d* has all its nontrivial concurrences equal, then d*
is universally optimal over Z, , ,, in the sense defined by Kiefer (1975); in
particular, d* is A, D and E optimal over , , ,.

However, for most values of v, b and k& there is no BIBD. Two quite
separate theories have been developed to deal with this lack. Bose and Nair
(1939) and Bose and Shimamoto (1952) introduced partially balanced incom-
plete-block designs (PBIBD) as a natural extension of BIBD’s which had
intuitively attractive combinatorial properties and whose algebraic properties
enabled efficiency factors to be easily calculated. Most attention has been paid

Received April 1989; revised June 1990.
'Research supported by NSF Grant DMS-88-02640.
AMS 1980 subject classifications. Primary 62K05; secondary 05B05.
Key words and phrases. Optimal design, partially balanced incomplete-block design, regular
graph design, strongly regular graph design.
1667

[ ,4"2

e

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to S0
The Annals of Statistics. RINORY

www.jstor.org



1668 C.-S. CHENG AND R. A. BAILEY

to PBIBD’s with two associate classes, hereafter called PBIB(2) designs. Such
a design has precisely two nontrivial concurrences if it is not a BIBD.

Unfortunately, some PBIB(2) designs are not very efficient. An alternative
approximation to combinatorial balance is to have precisely two nontrivial
concurrences which differ by ore. Any such design defines a regular graph
whose vertices are the treatments: one concurrence is chosen and there is an
edge in the graph between every pair of treatments with the chosen concur-
rence. John and Mitchell (1977), called such designs regular graph designs
(RGD’s).

A RGD is a PBIB(2) design if and only if its corresponding graph is strongly
regular [Bose (1963)]: we therefore define a strongly regular graph design
(SRGD) to be a PBIB(2) design which is also a RGD. It has been conjectured
[John and Mitchell (1977); John and Williams (1982)] that if ), , , contains
any RGD’s, then the optimal RGD’s are optimal over the whole of .@ bk IE 18
tempting to make a similar conjecture about SRGD’s. Indeed, Cheng (1978)
has shown that if 9, , , contains a group-divisible design d with two groups
and A, =A; +1 (such a design is a SRGD), then d is optimal over , , 5 for
many criteria, including the A, D and E criteria. However, there is a
triangular SRGD which is optimal over all PBIBD(2) designs in 9 3 o
[Cheng (1981a)] but which is inferior to a RGD in 2, 3, , found by John and
Mitchell’s (1977) computer search.

Although a SRGD is therefore not always optimal over the relevant 7, , ,,
we shall show in Theorem 2.2 that many SRGD’s are indeed optimal over their
9, » With respect to a large class of criteria. This includes many SRGD’s that
were not previously known to be optimal: for example, all those with b < v
and all the partial geometries introduced by Bose (1963). Section 2 is devoted
to the statement, proof and corollary of Theorem 2.2. In Section 3, we apply
Theorem 2.2 to a selection of examples. As another application of our results,
the conjecture by Bailey (1988) on the optimality of Trojan squares over
semi-Latin squares is confirmed.

2. Results. Our main theorem is proven by associating each design with a
vector x in n-dimensional real space. The coordinates of such a vector are
X1y Xgy ooy Xy

THEOREM 2.1. Let € be a subset of R™. Suppose that there is a constant c
such thatif x € €, then ¥?_x;, =candx; >0 fori =1,...,n. If € contains
an element x* such that:

@D x>0 fori=1,...,n;
(ii) there are two distinct values among x%, ..., x};
(iii) x* minimizes L?_,x? over ¢;
(iv) x* maximizes max?_, x; over €,
then x* minimizes L?_; f(x;) over € for all sufficiently differentiable real-val-
ued functions f such that f"(x) > 0, f"(x) <0 forx > 0 and lim, _, o+ f(x) =
f(0) = .
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The proof of Theorem 2.1 is implicit in Cheng [(1981b), page 246-247] so we
do not reproduce it here. We shall consider criteria of the form LYZ1f(u?),
where f satisfies the conditions given in Theorem 2.1. The A and D criteria
are covered by choosing f(x) =x"! and —log x, respectively, and the E
criterion is also covered as a pointwise limit of criteria derived from functions

satisfying the conditions in Theorem 2.1.

THEOREM 2.2. If 9, , ; contains a connected strongly regular graph design
d* whose concurrence matrix is smgular then d* is optimal over 9, , ; with
respect to any criterion of the form L!Z f( u?), where f satisfies the condztwns
given in Theorem 2.1. In particular, d* is A, D and E optimal over G, , ,.

ProoF. Letn=v—1.Ford € 9, ,,, put p’ = ([.bl, . u). Let €= {u?:
de 9,,,). For each d€ 9, ,,, we have C; = rl = k~'N,N}, where r =
bk /v. Slnce d is binary, every dlagonal entry of C, is equal to r(k — 1)/k and
so u + -+ +u? = tr(C,) = b(k — 1). Moreover, C,; has no negative eigenval-
ues. Thus ¢ satlsﬁes the condltlons of Theorem 2.1.

Write u* and w* for u¢* and p? *. Because d* is connected, all of u%, ..., u*
are posmve Because d* is a PBIBD(2), there are two distinct values among
uh .., p,n [Connor and Clatworthy (1954)]. The trace of CZ? is equal to
rr 1( 9)2 and this is minimized by any regular graph design [Cheng (1978)
page 1246] in 9, 4 4, in particular by d*. We have r > max]_; ud = ud. If
N, N} is smgular, then C, has at least one eigenvalue equal to r. Hence p*
maximizes u¢ over ¢. Therefore, conditions (i)-(iv) of Theorem 2.1 are
satisfied.

The result now follows from the conclusion of Theorem 2.1 O

CoRrOLLARY 2.3. The dual of the design d* in Theorem 2.2 is also optimal
over 9, , , with respect to the same criteria.

ProoF. Denote the dual of d* by d. Then we have N;Nj = Nj« N+, which
has the same nonzero eigenvalues as N« Nj«. Since Ny« Ny« is singular and
C,+ has two distinct nonzero eigenvalues, it is clear that C; has at most two
distinct nonzero eigenvalues. If C; has only one nonzero eigenvalue, then the
optimality of d is obvious. If C; has two distinct nonzero eigenvalues, then
N;N; must be smgular To apply Theorem 2.1 to d, it is sufficient to show
that it minimizes tr C7 over d € 9, , .. This follows easily from the fact that
tr(N,;N})? = tr(N}N,)? and that d* minimizes tr C3 over d € 9, , ,. O

3. Applications. The results in Section 2 cover many PBIB(2) designs
which were not proven optimal before. In the following, we shall give a list of
some PBIB(2) designs to which Theorem 2.2 can be applied.

‘Theorem 2.2 and Corollary 2.3 establish the optimality of PBIB(2) designs
with A, = A, + 1 which have singular concurrence matrices, and their duals.
These include, for example, the following designs and their duals: (i) all the
PBIB(2) designs with A, =A; + 1 and b < v; (ii) all the resolvable PBIB(2)



1670 C.-S. CHENG AND R. A. BAILEY

designs with A, =A; £ 1 and & <v + r — 1; (iii) all the partial geometries
introduced by Bose (1963); (iv) all the singular group-divisible designs with
Ay = A; — 1; (v) all the semiregular group-divisible designs with A, = A; + 1.
The readers are referred to Raghavarao (1971) or Clatworthy (1973) for the
definitions of these designs. Comprehensive tables of PBIB(2) designs can be
found in Clatworthy (1973).

Some families of semiregular group-divisible designs with A, = A; + 1 have
been reported in the literature. For example, Bose, Shrikhande and Bhat-
tacharya (1953) constructed, for every prime or prime power s and any
m < s + 1, a semiregular group-divisible design with v = ms, b = s%, k = m,
A; = 0 and A, = 1. Raghavarao [(1971), page 140] reported a family of semireg-
ular group-divisible designs with v =53, b =5%s + 1), k=52 A, =s and
Ay =s + 1 for any prime or prime power s, which can be constructed by a
method described in Bose, Shrikhande and Bhattacharya (1953).

The lattice designs introduced by Yates (1936) are popular in practice
because they are resolvable and easy to construct. For b < v, they are L -type
PBIB(2) designs with A; = 1 and A, = 0, where r is the replication and their
concurrence matrices are singular. Patterson and Williams (1976) proved that
these designs are A-optimal among resolvable designs. Theorem 2.2 improves
this result in two ways: it extends the class of optimality criteria and removes
the restriction to resolvability for the competing designs.

Triangular type PBIB(2) designs with A, = A; + 1 which have singular
concurrence matrices can also be found. One such example is design T16 in
Clatworthy (1973) with parameters v =b =15, k=3, A, =0, A, = 1.

Many of the triangular and L,-type PBIB(2) designs with A, =A; + 1
which have singular concurrence matrices have b < v or are duals of BIBDs or
semiregular group-divisible designs with A, = A; + 1. So their optimality can
also be obtained by other means. Design T16 has v = b and is truly self dual,
that is, it is isomorphic to its dual; therefore its optimality does not follow
from that of a previously known optimal design.

It is interesting to observe that if a design satisfies the conditions of
Theorem 2.2, then its complement also satisfies these conditions. So we have
the situation where a design and its complement are both optimal, which is not
true in general.

Another application of our results is to show the optimality of Trojan
squares over semi-Latin squares. Bailey (1988) discussed the use of semi-Latin
squares in the experimental situation where & plots are nested in each cell of
an n X n square. Suppose there are nk treatments. Then in a semi-Latin
square, the nk treatments are allocated to plots in such a way that each row
and each column is a complete replicate of the treatments. For convenience,
the k observations nested in each row-column intersection are called a block.
A Trojan square is a special kind of semi-Latin square defined by taking k&
mutually orthogonal n X n Latin squares on % disjoint sets of treatments;
each block of the semi-Latin square contains the treatments which occur in
the corresponding cell of all the individual Latin squares. Because of the
orthogonality between treatments, rows and columns, the information matrix
(in the plots stratum) of a semi-Latin square is identical to the C-matrix of the



OPTIMALITY OF PARTIALLY BALANCED DESIGNS 1671

block design consisting of the n? blocks of size k; see Bailey (1988) for details.
Bailey (1988) conjectured that a Trojan square is optimal (for analysis in the
plots stratum) over semi-Latin squares. It is easy to see that the n? blocks of a
Trojan square are a semiregular group-divisible design with A; = 0 and A, = 1.
Therefore it is optimal with respect o the criteria described in Theorem 2.2; in
particular it is A, D, and E optimal.
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