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THE SINGULARITIES OF FITTING PLANES TO DATA

By STEVEN P. ELLIs
University of Rochester

This paper is dedicated to the memory of the late Charlie Odoroff
—colleague and ponderer of point clouds.

Plane-fitting, for example, linear regression, principal components or
projection pursuit, is treated from a general perspective. It is shown that
any method of plane-fitting satisfying very mild hypotheses must have
singularities, that is, data sets near which the procedure is unstable. The
well-known collinearity phenomenon in least squares regression is a special
case. Severity of singularities is also discussed. .

The results, which are applications of algebraic topology, may be viewed
as putting limits on how much can be done through robustification to
stabilize plane-fitting.

1. Introduction. Let a topological space X be the sample space. Let & be
a data analytic procedure on X taking values in a topological space A. Now, &
may not be defined everywhere in X, so let X' € X be the set of points at which
8 is defined. If x, € X is a limit point of X', we call x, a singularity of & if
lim, , . &(x) does not exist. (Multi)collinear data sets are singularities of least
squares regression [Belsley, Kuh and Welsch (1980), Section 3.1]. The break-
down point [Donoho and Huber (1983)] of an estimator of location is appar-

_ently related to its singularities at infinity.

Singularities of data analytic procedures are important because it is desir-
able that a data summary or description not vary wildly when the data are
perturbed only a little. So if a procedure has singularities, it seems desirable to
remove them. For example, if n > 2 is the sample size, say that a map A:
R” - R (R = reals) is a measure of location if it satisfies the constraint:
Mzx,...,x) = x for every x € R. Suppose A is the ‘“‘shorth’’ [Andrews, Bickel,
Hampel, Huber, Rogers and Turkey (1972)], that is, it assigns to a data set the
mean of the shortest half of the data. One easily sees that A has singularities.

However, by robustifying A, the singularities can be removed. Let S c R
be the set of singularities of A and let U c R" be a tight neighborhood about
S. If xe 8, let p =median(x); if x € R” \ U (\ indicates set-theoretic
subtraction), let w(x) = A(x); and if x € U \ S, let u(x) be an appropriate
convex combination of the median and shorth of x. Then at most data sets
u = A, but the robustified shorth x has no singularities.
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In this paper, the singularities of plane-fitting techniques like linear regres-
sion, principal components or projection pursuit [Huber (1985)], are investi-
gated from a general perspective. A plane-fitter is defined generically to be a
map satisfying a very mild constraint. We show that, for topological reasons,
plane-fitters, unlike measures of location, have singularities which cannot be
robustified away.

We also discuss the severity of singularities of plane-fitters. If x, is a
singularity of 8, then by definition the images under  of neighborhoods of x,,
cannot be arbitrarily small. The larger these images are, the more unstable 8
is near x, and, we say, the more severe is the singularity at x,. We show that,
apparently, a severe singularity of a plane-fitter cannot be replaced by a mild
one without in general creating new singularities.

The proofs, which rely on algebraic topology, are sketched in Section 3.

2. Results. Let n > p > k > 0 be fixed integers. A data set will be a point
in the space 2 of all n X p matrices with the topology of R"?. (So a data set
consists of n p-dimensional observations.) By a plane we will mean a linear
manifold, that is, an affine subspace of R”.

By fitting a plane we will mean assigning to Y € 2" a k-dimensional plane
which reflects the linear structure of Y. Choose a particular plane-fitting
technique 8. For simplicity, we confine attention to the map ® defined as
follows. If Y € 2 and the k-plane §(Y) is defined, let ®(Y) be the k-dimen-
sional subspace (i.e., plane through the origin) of R” parallel to §(Y). From
now on, assume that ® is defined on a dense subset 2’ of %. The range of ®
is the Grassman manifold I' consisting of all k-planes in R” passing through
the origin [Boothby (1975), page 63].

A map ®: 27 —» I' will be a plane-fitter if it satisfies a certain constraint
which we now develop. If Y € %/, it rows, y,,...,Y,, determine the plane,

Let A(Y) € T denote the subspace of R? parallel to this plane. Let &, = {Y €
2: dim A(Y) = k). It is natural to require a plane-fitter ® to assign to each
data set lying on a unique %-plane, the plane through the origin parallel to the
one on which the data lie. That is:

(2.1) If Y € #,, then ®(Y) is defined and ®(Y) = A(Y).

For example, ® = least squares regression can be extended in a natural way to
satisfy (2.1).

Now, (2.1) turns out not to be a good choice for the defining constraint of
plane-fitting. Say that Y € 2 is degenerate and write Y € 9 if dim A(Y) < k.
Then 2 c &,. (Here the overbar indicates the closure of a set.) A little
reflection shows that if @ satisfies (2.1), every degenerate data set is a
singularity of ®. It is tempting to robustify ® in the vicinity of 2 in order to



SINGULARITIES OF PLANE-FITTING 1663

free it of degenerate singularities. However, the modified ® would no longer
satisfy (2.1).

To make room for such robustified plane-fitters, we must weaken (2.1) by
permitting &, to be replaced there by smaller classes of data sets. If #Zc &,
is to be used in place of &,, it must be rich enough to lead to an interesting
definition of plane-fitting. To insure this, the main requirement we make is
that it be possible to choose, in a continuous manner, a set of representatives
in & for the planes in T'.

Say that a map R: I' -» &, is a RID (right inverse of A) if it is continuous
and for every ¢ € T’ the k-plane determined by the rows of R(¢) is parallel to
¢, formally A[ R(¢)] = £. An example of a RID is the map R, defined as follows.
Let e,,...,e, be a fixed basis of R?. If £ €T, let R((¢) € &, be the matrix
whose ith row is the projection of e; onto £, 1 < i < p, and whose remaining
rows are zero. (Recall n > p.)

We weaken (2.1) as follows.

There exists #C % satisfying:

(2.2a) & is an open subset of &,
(2.2b) there exists a RID, R, such that R(T') c &,
(2.2¢) if Y € &, then ®(Y) is defined and ®(Y) = A(Y).

It is easy to see that a ® with no degenerate singularities can satisfy (2.2)
providing 2 N = J. Here is an example of such a &.

2.1 ExampLE [Example 1.2, page 11, Ellis (1989)]. Let a,e €(0,1) and
suppose k£ > 1. Define & to be the collection of Y € &2, having the following
property. Delete any collection of up to ne rows of Y. If A; 2 Ay > -+ >
A, > 0 are the first %2 eigenvalues of the sample covariance matrix of the
remaining rows, then A,/A, > a and A, > a/(1 — @). Thus, 2N P=J ina
robust way. Providing a < 1 — pe(1 — &)™, & satisfies (2.2a, b), at least for
large n.

With this preparation we state our first result.

2.2 THEOREM. Suppose ® satisfies (2.2). Then ® has at least one singular-
ity. If n > 2k, ® has a nondegenerate singularity.

Multicollinearity in least squares regression is the best known example of
the phenomenon described in the theorem.

The result shows that robustifying ® around 2 is not enough to rid it of
singularities. If all the degenerate singularities are smoothed out, ® will then
have nondegenerate singularities, which will exist in any case if n is large
enough. Since it seems unreasonable to regard @ as a plane-fitter if it does not
satisfy the mild constraint (2.2), we conclude that plane-fitters can never be
completely stabilized.

We next turn to the issue of the severity of singularities.
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2.3 ExaMpLE. Simple L' regression. Let r be a positive integer and take
n=4r+4, p=2and k = 1. Providing it exists uniquely, let S(Y) be the
slope of the Ll-best fitting line for regressing the second column of Y € & on
the first. Let ®(Y) be the line {(x, B(Y)x) xR} eT.

Let 0 =x,< -+ <x, and let Y, € 2 be the matrix whose rows are
(=%,,0),...,(—x,, O), (x9,0), ...,(x,,0),(-x,, —x,), ...,
(—xq9, —%¢), (xg, %), . .., (x,, x,). The rows of Y lie on two lines which cross at

the origin. Now let ¢ > 0, let B, € [0, 1] and consider the data set Y; which is
like Y, except the two rows (—x,, —x4) = (x,, xo) = (0,0) are replaced by
(—¢, —B,¢), (g, B1&). Then B(Y,) = B,. So if Y lies in a small neighborhood %
about Y|, by perturbing Y a small amount, one can obtain a data set whose
fitted slope can be any value in [0, 1]. Thus, Y, is a singularity of ®. However,

while (Zn %) contains [0, 1], it is bounded (providing % is small enough),

so the instability of B near Y, has bounded amplitude. Hence, ®(Z N 2")is a
proper subset of TI'.

This has an inferential interpretation. Based on Y, a likelihood ratio
confidence interval for the slope in a regression model with ii.d. double
exponential errors will contain [0, 1] for any positive confidence coefficient.
However, the confidence interval will be bounded and hence will provide some
information. At any data set near Y|, one would observe similar behavior.

2.4 ExamMpLE. Principal components. If Y € 2/, let ®(Y) €T be the plane
spanned by the first 2 eigenvectors of the sample covariance matrix of Y,
providing it is well-defined. Let Y, € 2 have mean-centered, orthonormal
columns. Then arbitrarily close to Y, one can find Y € 2 s.t. ®(Y) is any
k-plane through the origin. That is, ® maps every neighborhood of the
singularity Y, onto I'.

As in the last example, this has inferential implications. Consider the model
in which the data come from a multivariate normal population. Assume the
plane ¢, spanned by the first 2 eigenvectors of the population covariance
matrix is well-defined, though unknown. Then for any positive confidence
coefficient, the likelihood ratio confidence set for ¢ based on this model and
computed at Y, will equal all of T. A confidence set for ¢ at a data set near Y,
would also be huge.

Call a singularity Y, mild if, as in example 2.3, it has a neighborhood % s.t.
(ZnN 27) + T. Call Y, severe if, as in Example 2.4, for every neighborhood %
of Yy, (N 2”) =T. In a qualitative sense, the size of the oscillations (and
hence instability) of ® is greater near a severe singularity than near a mild
one.

Having seen that robustification cannot purge ® of singularities, there is at
least the hope that ® can be stabilized somewhat by replacing severe singulari-
ties by mild ones. However, the next theorem and example suggest that, in
general, this can be done only at the cost of creating new singularities. If R is



SINGULARITIES OF PLANE-FITTING 1665

a RID and Y, € % define €3(Y,) to be the cone
Cr(Yo) = {(1 - )Y, +tY,: 0 <t < 1,Y, € R(T)).

2.5 THEOREM. Suppose P satifies (2.2) and Y, € '\ & is not a severe
singularity of ®. Then for any RID R: T —» &, ® has a singularity in
€r(Yy) \ {Y,}).

2.6 ExampLE (Example 2.4, continued.). Let Y, be as before and take
FP=F,. Suppose n > 3p and the first 2p rows of Y, are 0. Let R, be the
RID described just before (2.2). By changing rows p + 1 through 2p in R,,
one can obtain a RID R whose last n — 2p rows are 0 and s.t. the columns of
R(¢) are mean-centered for all & It is easy to see that @ is defined and
continuous everywhere on €5(Y,) \ {Y,}.

3. Sketches of proofs. We prove Theorem 2.5 first. A good reference on
algebraic topology is Munkres (1984).

ProoF oF THEOREM 2.5. Suppose there is a neighborhood % of Y, and a
RID R: T » & s.t. (%N 27) # T and ® has no singularities in €z(Y,) \
{Y,). Let the cone on I', C(I'), be obtained from I X [0, 1] by identifying
I' X {0} to a point. Let 7: T" X [0,1] —» C(I') be the natural projection. Define
Z: C(T) » €x(Yy) by Zom(§,8) = (1 — 8)Y, + sR(&), (¢,8) €T x[0,1]. Z is
well-defined and continuous.

For ¢t € (0,1], let A, =m(T X (0,¢]. Pick £ €(0,1) s.t. Z(A,)) € %. Let
S C % be the set of singularities of ®, let ¢(Y) = limy,y ®(Y') (Y € '\
) and if a € A, let ¢(a) = ¢ Z(a) €T. Then ¢ is continuous on A,,
o(A,) # T and, by (2.2), pom(£,1) = ¢ for ¢ € I'. We will show that this is
impossible.

Consider the following commutative diagram.

A, L oA & R@x{1)
<p’l \“P 14’
I’ — r

n

Here i, j and 7 are inclusions (I" is defined later). Since =(I' X {1}) is a
deformation retract of A; and ¢ o i: w(I' X {1} - T is a homeomorphism, ¢, is
an isomorphism. Similarly, A, is a deformation retract of A; so ¢, = @, °j4
is an isomorphism.

By hypothesis, there exists &, € I' \ ¢(A,). Let I' =T \ {£,} and let ¢':
A, - I" denote ¢ regarded as a map into I". Since @, is an isomorphism,
04 o(¢,)7! is injective. But T' is a compact connected manifold without
boundary. Hence, by duality, H,(I';Z/2) is nontrivial (d = dimT, Z =
integers) while H,(I"; Z/2) is trivial, which is a contradiction.
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Proor oF THEOREM 2.2. The result is immediate from Theorem 2.5 and
the following with m = k. O

3.1 Lemma [Lemma 4.1, page 34, Ellis (1989)]. There exists an infinitely
differentiable RID R: T — &. For any such R, if m <p and np >(n +p —
m)m — 1)+ k(p — k) + p + 1, the set

{Y, € & there exists Y € €3(Y,) \ R(T') such that dim Y < m}

has Lebesgue measure 0.
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