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ON THE BALANCED INCOMPLETE BLOCK DESIGN
FOR RANKINGS!

By M. ALvo aAND P. CaBILIO

University of Ottawa and Acadia University

A total of nb judges rank ¢ objects & at a time according to n
replications of a BIBD with b blocks. The Durbin statistic is commonly
used in this context and is equivalent to the usual analysis of variance on
the rankings. The approach considered here is to introduce the notion of
compatibility so as to define distances between incomplete rankings based
on metrics on the space of complete rankings. Through this device we
define a class of test statistics which includes the Durbin statistic as a
special case, and derive their asymptotic distributions. This analysis also
yields a new interpretation of the Durbin statistic. *

1. Introduction. A total of nb judges are presented % of a possible ¢
objects to rank. Such rankings are conducted independently. The pattern of
objects presented follows n replications of a basic balanced incomplete block
design of b blocks of & rankings of ¢ objects. Within each basic design every
object is considered by r of b judges and each pair of objects is presented
together to A of these judges. For a balanced incomplete block design [Yates
(1936)], the following must hold:

(1.1) bk = tr,
(1.2) A=r(k-1)/(t-1).

Possible values for b, k, ¢, r and A have been tabulated in Cochran and Cox
(1957), pages 469-482.

The question of interest here is whether there exists a degree of agreement
among the judges. The statistic commonly used in this context is due to
Durbin (1951) and is a natural extension of the Friedman statistic applied to
the case of a complete randomized block design. For another extension of the
Friedman statistic to the case of unbalanced designs and combinations of
balanced designs, see Benard and van Elteren (1953), Prentice (1979) and
Skillings and Mack (1981). In this article we consider a general class of
concordance statistics, develop their asymptotic distribution theory (n — )
and compute their relative efficiencies.

We emphasize that the asymptotic results considered herein are in terms of
n replications of a fixed design of b blocks under the restrictions (1.1) and
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1598 M. ALVO AND P. CABILIO

(1.2). This point is not always made explicit in the literature, where the
asymptotics are described in terms of the number of blocks increasing, which
for fixed A, ¢ and k, can only be realized by replicating the design an
arbitrarily large number of times.

L]

2. Notation; the notion of compatibility. Let the column vectors
v; = (Vj(l),...,vj(t))" j=1,2,...,¢

denote the ¢! possible permutations of the integers (1,2,. .., t). Thus {v;} is the
collection of all posmble complete rankings of the # obJects Occasmnally we
may denote a generic pair of elements of this collection by u and 7. Within the
basic design of b blocks, each block represents a different pattern of % objects
to be ranked. Let .

v = (vP1),...,v0(k)),  J=1,...,k)

represent the k! possible permutations of the integers (1, ..., k), correspond-
ing to all the possible k-partial rankings for each of the block patterns indexed
by I =1,2,...,b. When presented with k& objects according to block pattern I
a judge selects a ranking from {v}l)} according to the probability vector

no = (#H,..., w},l!))'.
The (bk!X 1) vector of probabilities for the overall design is
*=(w®, L mRr®, L w Rl D, TR
Setting IT§ = (kD(1,...,1| --+ |1,..., 1), the null hypothesis to be tested is
H,:TI* = II§{ against the alternative H,: IT* = IT}.

We define the following notion of compatibility between a complete and an
incomplete ranking.

DEeFINITION 2.1. A complete ranking » is said to be compatible with an
incomplete ranking v® if the relative ranking of every pair of objects ranked
in »® coincides with their relative ranking in ».

In general, the number of complete rankings compatlble with a specific
incomplete ranking will be

a =tk

Ordering the complete rankings {»;} in some way, we may associate with every
incomplete ranking »*’ a (¢! X 1) compatibility vector, whose ith component is
1 or 0 according to whether »; is compatible to »* or not. The set of
permutations »{" corresponding to the block pattern I thus generates a
(t!X k) matrix of compatibility C;,, whose jth column is the compatibility
vector associated with »{), j = 1, ..., k!. Within each block pattern a complete
ranking is compatible to one and only one partial ranking, so that each row of
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C, contains exactly one element equal to 1 with the rest being 0’s. In addition,
each column of C, contains a = ¢!/k! elements equal to 1.
Finally, the overall compatibility matrix for the design is defined to be

C = (CIIC2I cct ICb).

As an example, for ¢ = 3 objects presented k£ = 2 at a time, we label the 3! = 6
complete rankings as

v, = (123), vy, = (132), vy = (213),
Vy = (231), Vs = (312)’ Vg = (321)
The incomplete rankings are denoted by
W= (120), W= (21), W= (1-2),
WP =(2-1), ¥ =(_12), o =(_21).

Thus »,, v, and v, are compatible with v{’ and v, v; and v4 are compatible
with »§’. The corresponding matrix of compatibility C; for block pattern 1 is

C=[110100
1%lo 0 1 0 1 1f

The overall compatibility matrix for this design is found to be

1010 10
1010 01
c-|0 110 10
10010 1]
010110
01010 1

3. A general class of statistics and their asymptotic distributions.
For the incomplete ranking problem a general class of statistics for H, may be
defined through the notion of a distance function over the set of incomplete
- rankings. This approach parallels the development in Alvo, Cabilio and Feigin
(1982) in the case of complete rankings. If d(v;, ;) is a right-invariant metric
defined for pairs of complete rankings v;,v;, denote by A = (d(v;,v;)) the
(¢! X ¢t!) matrix of values of d.

DerFINITION 3.1. The distance between the incomplete rankings » and
™ is denoted by d*(v{,»{™) and is defined to be the average of all values
d(v;,v;) taken over all complete rankings v,,v; compatible with »{,»(™),
respectively.

Note that d* is not a metric since in general the distance thus defined
between an incomplete ranking and itself is greater than 0.
“With this definition, the corresponding matrix of values of d* is given by

(3.1) A* = g~2C"AC.

Two metrics of interest related to Spearman’s p and Kendall’s + may be
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defined respectively by

1t )
(32) ds(m,m) =5 ZI(#(q) -n(q))",
q= N

¢

(3.8) dg(n,m) = X {1-sgn(u(p) —u(q))sen(n(p) — n(q))}-
p<q

For these metrics, Feigin and Alvo (1986) show that there is a matrix 7' and a
constant ¢ such that
(3.4) A=cJ-T'T,
where ¢ is the (¢! X ¢!) matrix of 1’s. In what follows, J will always denote a
matrix of 1’s, but its dimensions may differ according to the context. In
drawing conclusions concerning a particular probability model II for the
complete ranking design, IT" AIl, the expected distance between the rankings of
two randomly chosen judges becomes the parameter under consideration, so
that the test statistic is based on the sampling estimates of II'T'TII =
(TTIY(TTI). It follows from (3.1) and (3.4) that

(3.5) A* = ca=2C'JC — (a~1TC) (a~1TC);

consequently the test statistic for testing H, will be based on the sampling
estimates of (T *IT*)Y(T *IT*), where

T* =a™'TC.
Thus define f©@ = (f®,..., fY as the vector of frequencies of rankings for
block pattern I. Set the (bk!X 1) vector
F=(fO s IR, FRL I, DY

and let
0o =fO/m, 1*=f/n.

THEOREM 3.1. Under H, as n — o,
\/;I«—(ﬁ* - H;')‘) =y N(O’ E’(l):)’

where

is of dimension (bk!X bk!) and
S0 = (k) (kI -J)
is of dimension (k!X k).
Proor. Set X; = Vn(I1?¥ — ), where I = (k)~'(1,1,...,1). Under

H,, f® is a realization of a multinomial k! vector, so that from the central
limit theorem it follows that as n — «,

X, =_, N(0,3,).
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On noting that va (IT* — IT%) = (X}|X}| - - - IX}Y, the theorem now follows
from the independence of the X;’s. O

A direct result of the above and the distribution of quadratic forms of
normal deviates gives the following corollary.

CoroLLARY 3.1. Under Hy, as n — =,
(T*X)(T*X) = a %(TCX)(TCX) =_, 3a;27,

where X = Vn (I1* — %), {z,} are independent standard normal variates and
{a;} are the eigenvalues of

T*S%(T*Y = a%(TC)3%(TC) .

We note that the critical values of such quadratic forms may be approxi-
mated by various methods. To mention just a few, Imhof (1961) discusses a
Pearson three-moment x2 approximation, Jensen and Solomon (1972) intro-
duce an approximation of the Wilson-Hilferty type and Solomon and Stephens
(1977) consider a four-moment fit to a power of a x2.

In the next section we conduct the required eigenanalysis for the statistics
generated by the Spearman and Kendall metrics.

4. Asymptotic distributions for the Spearman and Kendall cases.
In this section we derive the asymptotic distribution of the statistic based on
the Spearman metric and show that this statistic is equivalent to the Durbin
statistic. Following this, the Kendall case is considered, leading to a new test
statistic. The matrices T' corresponding to dg and dj are respectively:

(4.1) Ts = (tS(Vl)"“’tS(Vt!))
of dimension (¢ X ¢#!), where
t+1 t+1Y
t5) = (v = v - )
the centered rank vector, and

(4.2) Tx = (t(¥1),- - tx(vn))
of dimension (( ;) X t!), where the gth element of 4(v) is

sgn(v(j) — »(i))
g=0-1)(t-i/2)+(j—-1), l<i<j<t,
so that ¢x(v) is the vector of pairwise concordances or discordances of the
ranking v with the identity rank permutation [see, e.g., Feigin and Alvo
(1986).]

A property of both the matrices Ty and T is that their rows are orthogonal
to the vector of 1’s. This property is also shared by the corresponding matrices
Tg = TgC and Tg = TC. This follows from the observation that the product
of any row vector y with C, results in a vector of partial sums of the elements
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of a partition of y. Thus T4C and TxC are orthogonal to I1%, and the result of
Corollary 3.1 holds equally well for n=Y(T*fY(T*f).

LemMa 4.1.  Let R, denote the sum of the ranks assigned to the q-th object.
Then .

(4.3) o YTsCFY(TsCF) = (;—{—ll)zqz; (Rq - nr( k er 1 ))2

(t+ 1)!

Proor. See the Appendix. O

We now conclude the eigenanalysis of the Spearman case and derive the
asymptotic distribution of the test statistic.

THEOREM 4.1. Under H, as n — ,

(4.5) n"1Gs = (avn) (TsCf)(TsCf) =_ asx?1,
where

ag = At(t + 1)°/(12(k + 1)).

Proor. It is seen that
(k)’C3EC = RICC — bd.
Thus the eigenvalues {a;} of Corollary 3.1 are simply the eigenvalues of
1
WTS CC'Ts.

From Alvo, Cabilio and Feigin (1982), T¢Ts has rank (¢ — 1) and [12 /(¢ +
DITsTs is idempotent. Thus, making use of (4.4) of Lemma 4.1, it follows
that the only nonzero eigenvalue is ag with multiplicity (¢ — 1). Use of
Corollary 3.1 yields the result. O

From (4.3) it is seen that the left-hand side of (4.5) divided by ag is simply
the Durbin statistic, which for this model is

o ook el

o4

Turning to the eigenanalysis in the Kendall case we require the following
decomposition.
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LEMMA 4.2. There exist a matrix A and unique constants 0,0, such that

(4.7) TCC' = 0,Tx + 0,A,
where
(4.8) AT, =1
and
Aa . —Aa?R! (t+1\(t—F
h=Goprrp kD 6=—3 (k+1)(t—2)'

Proor. See the Appendix. O

We may now complete the eigenanalysis in the Kehdall. case. Let
cx=t(t—1)/2, A =2(t+1)1/(3t(t—1)), A,=2t1/(3t(¢ - 1)).

THEOREM 4.2. Under Hy as n — o,
-2 ,
(49) n7'Gx = (aVn) (TxCfY(TxCf) = arxG-1, + @2X’ _

(3
where

A+ D’ At(k - 1) — 2)
T3k+1) T B-2)(k+1)

and the x? variates are independent.

(4.10) a

ProoF. From Alvo, Cabilio and Feigin (1982), (cx) 'TxTx has two dis-
tinct eigenvalues A, and A, with multiplicities (¢ — 1) and (‘; 1), respectively.
From Lemma 4.2, equation (4.7), it follows that

T, CC'Ty = 0,Tx Tk + 6,1.
Thus the eigenvalues of (a®k!) T, CC'Ty are
a; = (Ack0; + 0,)/(a®k!) with multiplicity (¢ — 1)
and

@y = (Aycx8; + 85)/(a’k!)  with multiplicity (t 2 1).

A simplification yields the forms claimed by the theorem. The proof is now
completed through the use of Corollary 3.1 and the arguments in the initial
part of the proof of Theorem 4.1, which remain valid in this case. O

In order to compare the Bahadur efficiencies of the two test statistics under
the same design, we consider the approximate Bahadur slope at an alternative
IT*. Proceeding as in Alvo, Cabilio and Feigin (1982) or Alvo and Cabilio
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(1984), these slopes are found to be
(4.11) ag(IT*) = (IT* — I§) C'T§TsC(IT* — 11F) /(a®bag),
(4.12) ag(I*) = (IT* — I§) C' T T C(I1* — IT§) /(a®ba; ).

Since CII§ = abll, and CII* = abll, where II, and II are ¢! dimensional
probability vectors with IT, = (¢))~'1, then

(4.13) a(I*) = b(I1 = MY T'T(1 — ) (a) "
for both (4.11) and (4.12). From Alvo, Cabilio and Feigin (1982),

4
(4.14) TiTx = S TsTs + A,

where (T§Tg)A = 0 and A is positive semidefinite. Application of (4.14) to
(4.13) gives

ag(Il*) > ag(I*),

so that on the basis of this criterion the test based on the Kendall metric is the
superior of the two.

5. Computational formulas and an example. The statistic Gg in (4.5)
is easily calculated from (4.3). Based on the proof of Lemma 4.2, a computa-
tional form for G may also be obtained. We recall that the ¢ objects are
labeled 1,...,¢. For each pair of objects labeled (q;, ¢5), ¢; < g5, the incom-
plete ranking u*% of judge j is assigned a score a ;(q,, g5), where

sgn(u%(gz) — w%(qy)),  ifjudge j ranks both g; and g5,
a;(q1,93) = (1 - 2u%(q1)/(k + 1)), ifjudge j ranks only g,

(2u%(gs)/(k + 1) = 1), if judge j ranks only g5,

0, otherwise.

This score is a measure of the level of agreement of the relative ranking of the
object pair by judge j as compared to the complete ranking v, = (1,2,3,...,¢).
This measure is 1 or —1 when there is perfect agreement or disagreement,
respectively, 0 when there is no basis for comparison and a fraction between
—(k —1)/(k + 1) and (¢ — 1)/(k + 1) if only one object is ranked. The actual
value of this fraction is the expected level of agreement adjusted by multiplica-
tion by (¢ — 1)/(k + 1).
The sum over all rankings of the scores for the pair (g, g,) is

1 nb
(5.1) ;(TKCf)q = E aj(‘lp‘lz)

j=1

the gth element of (1/aXTxCf), where q is the index of the pair (g,, ¢,), and
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thus

nb 2
(5.2) Gk= X (Zaj(ql,qz)) ~

q:<qy \Jj=1

This form is reminiscent of the one derived by Hays (1960) for the complete
ranking situation, and in fact reduces to it in that case.

The distance between w§ and u*, the incomplete rankings of judges i and j,
respectively, is given by (3.5) as

. 1
(5.3) 47wt u5) = e = G [CDITTCWS),

where C(u*) is the compatibility vector of u*; ¢ = cg = (#(¢*> — 1)/12) in the
Spearman case and ¢ = cx = #(¢ — 1)/2 in the Kendall case. Let

k+1
(5.4) w;(s) = wi(s)d(s,j) + ( 2 )(1 - 8(s,J7)),
where
5(s, j) = {1, ifjudge.j ranks object s,
0, otherwise.
The proof of Lemma 4.1 shows that

Fr1®) T3

is the sth element of (TgC(u%)/a), so that in the Spearman case a simplified
form of this distance is

(t+1 t+1)

t(t+1)(2t + 1)
. _

B ) Y wi(s)0,(5).

AT A
(55) S(”’t’l“"}) k+ 1 i

In the Kendall case the distance becomes

(-1

2 ) a;(qy, Q2)aj(‘I1, qz)-

91<92

(5.6) dx(wi, uj) =

The computational formula for G is illustrated in the following example due
to Durbin (1951). Here t =7, k=3, r=3,A=1,b=7,n=1.

Object Numbers
Rankers 1 2 3 4 5 (] 7
1 2 1 — 3 — — —
2 — 2 3 — 1 — —
3 — — 1 2 — 3 —
4 — — — 1 3 — 2
5 1 — — — 2 3 —
6 — 1 — — — 2 3
7 1 — 2 — — — 3
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The matrix of scores a;(q,, ¢,) is thus

Object Pairs
12 13 14 15 16 17 23 24 25 26 27 34 35 36 37 45 46 47 56 57 67
b 0 «a 0 0 0 ¢ @ ¢c,¢ ¢ ¢ — — — d d d — — —
0 ¢ —d — — a 0 b 0 0 d b d d d — — ¢ ¢ —
—d 0 — ¢ — d 0 — ¢ — a ¢ a ¢ 0 a 0 ¢ — ¢
— —d ¢ — 0 —d ¢ — 0 d ¢ — 0 a@a ¢ a d b O
c ¢ ¢ a a ¢ — 0 ¢ — — 0 ¢ — 0 ¢ — a O0 d
d — — — 0 ¢ ¢ ¢ ¢ a a — — 0 ¢ — 0 ¢ 0 ¢ a
c a ¢ ¢ ¢ a 0 — — — ¢ 0 0 0 @a — — ¢ — ¢ ¢

wherea=1,b=-1,¢=05,d= —0.5.
Summing each column gives £’ _,a;(q;, ¢,) for each pair ¢, < g,. Thus

7
GK = Z E aj(ql, qz)) =39.5.

q:1<gz \j=1

Since for this model n = 1, one would not expect that the asymptotic distribu-
tions would provide accurate approximations to the exact null distributions.
For this data set the observed value of Durbin’s D is 48/7. Whereas the
maximum possible value of D for this design is 12, the upper 5% value of a x?2
is 12.592, so that we could never reject the null hypothesis at this level. This
example was included in a simulation study by Fawcett and Salter (1987)
which indicated that when n = 1 the x? distribution is not a very accurate
approximation to the null distribution of the Durbin statistic. A similar
situation holds in this case for the G statistic. Indeed the asymptotic distri-
bution is 5.883x2 + 0.2x%, and its upper 5% critical value exceeds 5.333
multiplied by (upper 5% critical value of a x2) = 67.153, whereas the maxi-
mum possible value of G is 66.5.

It is important to note that a parallel situation occurs in the complete block
design, where the statistics based on the Spearman and Kendall metrics have
asymptotic distributions (as n — «) which are of the same form as those
considered here. The Spearman case gives rise to the Friedman statistic, and
various approximations to its null distribution have been proposed and are
considered in Kendall (1975) and Quade (1972). Further approximations have
been studied extensively in Iman and Davenport (1980). Similarly, approxima-
tions to the null distribution of the average Kendall statistic are proposed and
studied in Ehrenberg (1952), Hays (1960), Quade (1972) and Alvo and Cabilio
(1984). Various such approximations appear to be quite accurate in the
situations where the y2 asymptotic distributions are inappropriate, that is,
when n, the number of complete blocks, is not large compared to the number
of treatments. The inappropriateness of x2 approximations in such cases is
further emphasized by the fact that one can show that for n fixed the
distributions of these statistics are asymptotically normal (as ¢ — ).

Due to the relationship between the structures of the complete and incom-
plete designs, one would expect that similar results hold for the tests consid-
ered here.
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In the case of the Durbin statistic, various approximations have been
proposed. Kendall (1975) suggests approximating the null distribution of

(A(t +1)
‘(B+1)
(5.7 F= =W
by an F-distribution with degrees of freedom
( E+1 )
trjl - ————
5.8) p— At +1) _2(k+1) _ s )‘(t+1)_1
(58) p r___k i+ 1)’ t+1) )P
t—-1 k-1
The concordance statistic W is defined by
(k+1)
A2 -1)

and achieves its maximum value of 1 when all the incomplete rankings share
one compatible complete ranking.

Clearly the statistic in (5.7) is unbounded. For this example the degrees of
freedom are p = q = 4.25, and the upper 5% value of this F-distribution is
5.97.

Another F-distribution approximation may be derived by conducting the
usual analysis of variance on the ranks. In this case, the null distribution of

(b(k-1) - (t - 1))D
" (t-1)(b(k - 1) - D)
is approximated by an F-distribution with degrees of freedom
(5.10) p=t—-1, q=bk—1)—t+1.

In the example, the maximum value of (5.9) is 4, whereas the upper 5% value
of an F-distribution with p = 6, ¢ = 8 is 3.58.

Although it is possible for either of these F tests to reject H, at the 5%
level, the accuracy of these and other approximations must await further
study.

(5.9)

6. Summary. Through the notion of compatibility between a complete
and incomplete ranking, we have been able to extend distance-based methods
in the analysis of rankings to the balanced incomplete block design. Such an
approach not only leads to a connection between Spearman distance and the
Durbin statistic, but allows for the definition of other concordance statistics
through metrics which are appropriate to the investigator’s needs. Various
examples of such metrics may be found in Diaconis (1988).

The asymptotic distributions of statistics in this class are investigated for
the case that n, the number of replications of the model, becomes arbitrarily
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large. Such asymptotic distributions turn out to be the distributions of weighted
sums of squares of independent standard normal variates whose weights are
the eigenvalues of transformed covariance matrices.

The required eigenanalysis was carried out both for the Spearman and the
Kendall metric. In both cases the asymptotic distributions have forms similar
to those found in the complete block situation. Consistent with what has been
observed in the complete case, for n very small the asymptotic distributions do
not appear to be accurate approximations to the upper tail probabilities of the
exact null distributions.

The asymptotic behaviour as b - « with n fixed has yet to be addressed,
but if the complete case is any guide the asymptotics will be quite different
from those derived here.

We are presently engaged in a study of such asymptotic behaviour, as well
as an examination and comparison of approximating distributions.

APPENDIX

This section contains the proofs of Lemmas 4.1 and 4.2. For what follows
we recall that cﬁ?, the (i, j)th element of C,, is either 1 or 0 depending on
whether »; is or is not tompatible with »{".

ProOF OF LEMMA 4.1. Denote the (¢ X #!) matrix of rank vectors {v;} by T',.
The (i, j)th element of T C, = ¥ ,,v,(i), where the sum is taken over all v,,
which are compatible with v, Define the indicator

5(q,1) = { 1, if gth object is ranked within the block pattern [,
’ 0, otherwise.

We first show that the (g, j) element of TC, is

(t +1)! W : k+1
(A1) (TyC)s = Gy |2 DA GiCa. 1) + (1= a(a. )| 5= |.
where i(q, {) is the label of the gth object in the incomplete pattern [.

To this end assume without loss of generality that the partial ranking
viP(@) = i,i =1,..., k. If the qth object is ranked and is given rank i by v{",
then the number of complete rankings compatible with v(’) which assign rank
s to this object is

{(f:%)( )(t—k)' ifl<i<s,0<k—-i<t-—s,
0, otherwise.

On using a variation of a well-known combinatorial identity [see Riordan
(1968), page 10], it is seen that the sum of the ranks for the gth object is

SR S R G

On the other hand, if the gth object is unranked in block pattern [, then
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among the complete rankings compatible to »{", the rank s is awarded with
frequency

t—1 T _
(t _1)(t E—1)! fors=1,2,...,¢t.

-k
The sum of the ranks for sucha an object is thus
t _ E+1)(¢t+1)!
t—1
—-k-1!= .
E’ls(t—k—l)(t k1) ( 2 )(k+1)!

Thus the gth element of T4Cf is given by

t+1
(TsCf ) = [TVCf— (T)JCfL

(t+1)! E+1 t+1
[ o155
(¢t +1)! (k + 1)
O A

which gives the result (4.3).
Turning to (4.4), let V;, = (k + 1! /(¢ + D!T\,C; and denote its elements by
{vfllj)}, where

E+1
(A2) v = 8(q, Hy°(i(g, 1)) + (1 - 6(q,z))(‘:zr_),

g=1,...,t,j=1,...,k
and let
V= (ViIVyl -+ V).
Then (VC'),,, the (q, D)th element of VC’ is given by

Y X vfe) =3 X vi(i(g,1))8(g, et}
T 1

(A.3) B+1
+T T () a- s
[

The first term on the right-hand side of (A.3) is the sum of the ranks awarded

to the gth object over all the different incomplete ranking patterns which rank

that object and are compatible with the complete ranking v, = (1,2,...,t).

This may also be interpreted as the sum of the ranks assigned to the gth

object in one replication of the incomplete design when all judges agree with

the complete ranking v,. From Kendall (1975) this is simply r + (g — 1A.
Thus

k+1
(A4) (VC'Ypp=r+(qg=1)A+ (b— r)( 2 )
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and hence

eoae oy )

A similar expression holds for every element of T,CC’, and (4.4) now follows
on recalling that Tg = T, — ((¢ + 1)/2)J and noting that

b+l (DI k1 -
2 C(B+1)! 2

Proor oF LEMMA 4.2. Let S(p, q) = sgn(v,(p) — v,(¢)) and n;; = (CC");;.
If constants 6, 6, are to satisfy (4.7) under conditions (4.8), then

Ty CC'Tj = 6, Ty T + 0,1.

Thus

(A5) X 8(p,9)S;(p,q)mi; =6, L S¥(p,q) + 6, forall p#q
i, P

and

(A6) X S(p,a)S;(s,9)m; = 6,1 Si(p,q)Si(5,9), s#p#*q.
i,J i
Summing (A.6) over s, using the fact that
t
L Si(s,9) = —2p(q) + (¢ +1), s+#q,
s=1

we obtain
= L 8P a){2v,(9) = (¢t + Dny; = X Si(p,9)S(p, 0) i,
Yy

an
= _012 Si(p,9){2vi(q) - (¢ + 1)} - 012 S¥(p,q).

Adding (A.5) and (A.7) and summing over p(+ q) gives

" X (60) - =) (w0 = 5

2

t+1)2
=05(¢ — 1) + 46, ) (Vi(‘I) - T) .
The left-hand side of (A.8) is 4 times the gth diagonal element of TsCC'Tg,
which by (4.4) is equal to

(¢ + 1)! ( t+1)2.

E R G
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Thus (A.8) becomes
N (t+ 1)! P 36,
(+1)! ' @+

On the other hand, (A.5) must hold in particular for p = 2, ¢ = 1, so that
6,, 0, must also satisfy
(A.10) (TxCC'Tk)1, = X Si(2,1)8;(2,1)n;; = 6,!+ 0,.

iJ
In order to compute the left-hand side of (A.10), we enumerate the possible
values of the elements (TxC),,, = L%_,8,(2, 1)c;,,, m = 1,2,...,bk!, and the
frequencies with which these values occur. Recall that c;,, = 1 whenever v, is
compatible with the incomplete ranking indexed by m. Such a partial ranking
may rank both, or one, or none of the objects 1 and 2. This leads us to consider
four cases.

(A.9)

Case 1. The incomplete ranking indexed by m ranks both objects 1 and 2.

If this incomplete ranking is denoted by vj(’), then because of compatibility
8:(2,1) = sgn(v(2) - v(1))
and since there are a = ¢!/k! compatible complete rankings, then
t!
(T4C) 1 = sen(12(2) - V,‘-”(l))ﬁ
for all Ak! such cases.

Case 2. The incomplete ranking indexed by m ranks neither object 1
nor 2.

This case can only occur if ¢ — 2 > k. Given any compatible complete
ranking for this case, the ranking produced by permuting the ranks given to
objects 1 and 2 is also compatible. Thus (TxC),,, = 0.

Cast 3. The incomplete ranking indexed by m ranks object 1 but not 2.
- We consider incomplete rmhngs which award rank j = 1,2,..., k to object

1, with the remaining (k — 1) ranks in natural order. The number of complete
rankings » for which »(1) =i and »(2) > i [and thus S(2,1) = 1] is given by

(0! i—1
(k- —-3) - (k—-Jj) - 1)!(j_ 1)(t-k - 1)!

. . t—i)[i—-1
=((t-1) — (& —J))(k _j)(j - 1)-
Similarly, the number of » for which »(1) =i and »(2) <i [and thus

(A.11)
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S(2,1) = —1]is given by

(i—1)! ;
1(j - DG —j - 1)! (k J)(t -k -1)!

~-n[23)( )

Both (A.11) and (A.12) are valid only if 0 < i —j < ¢ — k. Thus (TxC),,, for
this case is the sum over all i such that j <i <t — %k +j of the difference
(A.11) minus (A.12). Another variation of the combinatorial identity used in
the proof of Lemma 4.1 [see Riordan (1968), page 9] and some simplification
shows that this sum is equal to (¢ + 1 — 2jX¢! /(k + 1)!). The total number of
such terms is (r — A)(k — 1)! for each j =1,2,...,k.

(A.12)

CasE 4. The incomplete ranking indexed by m ranks object 2 but not 1.

By analogy to Case 3 typical terms have the value —(k + 1 — 2 ¢! /(k +
D for j=1,2,...,k.
To conclude the proof, we use the above information to write

)2 ¢! 2
(TKCC'T}()u:/\k!(;‘,) + 2(r = A)(k - 1)! Z { 1)'(k+ 1- 2j)} ,
which on simplification becomes
(A.13) (TxCC'TY),, = Aa2k!|1 + = 20k

' KT R 3 (k+1)

The lemma now follows on using (A.13) in solving for 6, and 8, in (A.9) and
(A.10). O
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