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WEAK CONVERGENCE OF TIME-SEQUENTIAL CENSORED RANK
STATISTICS WITH APPLICATIONS TO SEQUENTIAL TESTING
IN CLINICAL TRIALS

By MinG Gao Gu! anp Tze LEuNG Lari?

McGill University and Stanford University

A general weak convergence theory is developed for time-sequential
censored rank statistics in the two-sample problem of comparing time to
failure between two treatment groups, such as in the case of a clinical trial
in which patients enter serially and, after being randomly allocated to one
of two treatments, are followed until they fail or withdraw from the study
or until the study is terminated. Applications of the theory to time-sequen-
tial tests based on these censored rank statistics are also discussed.

1. Introduction. In many clinical trials, a primary objective is to com-
pare time to failure between two treatment groups X and Y. Typically in such
a trial, patients enter the study serially and are assigned to treatment X or Y
according to some random mechanism. Suppose that the trial involves n =
n’ + n’ patients with n' of them assigned to treatment X and n” assigned to
treatment Y. Let T/ > 0 denote the entry time and X, > 0 the survival time
(or time to failure) after entry of the ith subject in treatment group X and let
T/ and Y; denote the entry time and survival time after entry of the jth
subject in treatment group Y. The subjects are followed until they fail or
withdraw from the study or until the study is terminated. Thus the data at
calendar time ¢ consist of (X;(¢),6(¢)), i = 1,...,n, and (Y;(2),87(2), j =
1,...,n", where

! ! + " 14 +
X)) =X;nEN(E-T)), Y()=Y,AGA(t-T7),
(1.1) A denotes minimum,
8i(t) = Iix-xp  8j(t) = Iyy-vy,

and £ (¢}) denotes the withdrawal time, possibly infinite, of the ith (jth)
subject in treatment group X (Y). This notation will be used throughout the
sequel. We shall also let F and G denote the distribution functions of X; and
Y, respectively. Although the sample sizes n' and n” may be random even
though n is fixed, we shall regard them as nonrandom in the sequel since we
can perform the same analysis conditional on n’ and n”.

Received March 1989; revised May 1990

!Research supported by the Natural Sciences and Engineering Research Council.

®Research supported by NSF.

AMS 1980 subject classifications. Primary 62L10, 62G10, 62E20; secondary 62P10, 60F17,
60G44.

Key words and phrases. Time-sequential censored data, rank statistics, martingales, empirical
processes, maximal inequalities, weak convergence, sequential tests, clinical trials.

1403

g]§
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% W2

The Annals of Statistics. MIKOJAS ®

Www.jstor.org



1404 M. G.GUANDT. L. LAI

At a given calendar time £, one can compute, on the basis of the observed
data (1.1) from the two treatment groups, a rank statistic of the general form
considered by Tsiatis (1982):

4

S.(t) = 3 5(6)@u(t, X(1)){1 -
i=1

m/n,t(Xi(t)) }
m/n,t(Xi(t)) + m’:z,t(Xi(t))

" ” ‘ m’n,t(y}(t))
- L OO T ) vt (5)

where Q,(¢,s) is some weight function satisfying certain integrability and
measurability assumptions that will be specified later.and

(1.2)

’ "
n

n
(1.3) m,n,t(s) = Z I(X,-(t)zs)’ my, . s) = Z I(Yj(t)zs)‘

i=1 j=1
The case @, = 1 corresponds to Mantel’s (1966) logrank statistic, which is a
member of the Tarone—Ware (1977) class of statistics (1.2) with

(1.4) Q. (t,8) = ¢(n7'[m, (5) + m, (5)]),

where ¢ is a nonrandom function on [0, 1]. Taking ¥(x) = x in (1.4) gives
Gehan’s (1965) generalization of the Wilcoxon statistic. Letting H,, , denote a
product-limit-type estimator of the common distribution function of H (= F =
G) under H, based on {X;(2), 6,(t), Y;(¢),8,(¢): i <n/, j < n'}[see, e.g., (1.11)],
an alternative generalization of the Wilcoxon statistic proposed by Peto and
Peto (1972) and Prentice (1978) is the statistic (1.2) with @,(¢,s) = 1 — H, (s),
which was subsequently extended by Harrington and Fleming (1982) to the
class of weight functions

(1.5) Q.(t,8) =(1-H, (s)), p=0.

The class of rank statistics (1.2) is equivalent to Gill’s (1980) class of rank
statistics expressible as stochastic integrals with respect to the difference
between the sample cumulative hazard functions @, ,, I, , from the two
treatment groups. Indeed, letting

mln,t(s)ml;,t(s)
m’n,t(s) + m”n,t(s) ’

(16) Kn,t(s). = Qn(t’s)

we can write (1.2) as S,(t) = [7K, (s)d(®, (s) — T, (s)), where we define

/"

n

nl
(1.7) ert,t(s) = Z I(Xisgg/\(t—T;)‘”/\s)’ Nr’zl,t(s) = Z I{Y}sg}’/\(t—TJf’)*/\s)’
i=1 Jj=1

dNn, ,
T t(s)=f[ _ﬁ

Ny,
9 @)=, T 0,51 0, ()

[0, 5] mln,t(u) T
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For s > 0, let #(s) denote the complete o-field generated by

(1.9) L, ne<ep I(xisfgxxsp Ky A Ex, ner<qp i

Igngr< Iy<eneg GAENyagcg Tj i2Lj21

As in Gill’s (1980) class of rank statistics, we shall assume throughout the
sequel for the weight function @,(¢, s) in (1.2) that for every ¢ > 0,

(1.10) {Q,(t,5),0 <s <t} isapredictable process with respect to { #(s)}

[cf. pages 8 and 46 of Gill (1980)]. Thus the Tarone-Ware class of weight
functions (1.4) satisfies (1.10), while the Harrington-Fleming class of weight
functions (1.5) also satisfies (1.10) if H, , is chosen to be a left-continuous
version of the Kaplan—Meier estimator, namely,

AN! (u) + AN? ()
(1.11) H, (s)=1- 1- —= s,
) =1 = I = =, ()

where we use the convention 0/0 =0 and AN(s) = N(s) — N(s — ). The
predictability assumption (1.10) enables one to use martingale central limit
theorems to study the asymptotic distributions of S,(t*) for fixed #*. In
particular, a basic result in the literature is that n~'/2S,(¢*) has a limiting
normal distribution under the null hypothesis H,: F = G and under contigu-
ous alternatives. This enables one to construct a simple (approximate) test of
H, based on S,(¢*) and to compute the Pitman efficacies of the test under
various local alternatives; see Gill (1980). ‘

In the past decade there has been considerable interest in extending the
asymptotic normality of these two-sample rank statistics n~1/2S,(t*), based
on censored data from a fixed-duration trial terminating at a prescheduled
time ¢*, to weak convergence of the process of time-sequential rank statistics
{n"1/28,(t), 0 < t < t*}. Such an extension would enable one to perform a
sequential test as one monitors the data during the course of the trial and to
terminate the study early when the two treatment groups show significant
differences. Previous results in this direction only treat the case F = G. In
particular, assuming the T/ (and T/, ¢}, ¢!, respectively) to be i.i.d., Tsiatis
(1982) showed that (n~1/2S,(¢,),...,n"1/2S,(t,)) has a limiting multivariate
normal distribution for any &, for a large class of two-sample rank statistics.
Sellke and ‘Siegmund (1983) proved tightness and weak convergence in the
case where the S,(¢) are Mantel’s (1966) logrank statistics, without assuming
the T/ (or T/, €&, &) to be i.i.d., and Slud (1984) generalized these results to
weighted logrank statistics with weights not depending on ¢.

In Section 3 we shall establish weak convergence of {n~1/2S,(¢), 0 < ¢ < t*},
both under the null hypothesis F = G and under local alternatives. We also
establish weak convergence of the process {n~1/2(S(¢) — u,(#)), 0 < ¢t < t*}
nder general alternatives (F, G), where u ,(t) represents the drift of S,(¢). A
key idea in our proof of these weak convergence results is to first establish the
weak convergence of a closely related two-parameter process. This key step is
carried out in Section 2 by developing certain maximal inequalities for the
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two-parameter process. While the weak convergence proofs of Sellke and
Siegmund (1983) and of Slud (1984) require the weights @,(¢,s) in the
time-sequential censored rank statistics (1.2) to be the same for all ¢ [i.e.,
Q,(t, s) = Q,(s)] so that {S,(¢), > 0} has asymptotically uncorrelated incre-
ments and can be approximated by a martingale, our new approach, which
dispenses with purely martingale-based techniques by making use of certain
maximal inequalities given in the Appendix, enables us to handle weights @,
that may change with # as is the case with the Tarone-Ware and
Harrington-Fleming classes of statistics defined by (1.4) and (1.5).

Properties of the drift function w,(¢) will be discussed in Section 4. In
particular, it will be shown that u,(¢) need not be a monotone function of ¢
even under stochastically ordered contiguous alternatives unless an asymptoti-
cally efficient score function for those alternatives is used. This raises several
basic issues concerning time-sequential tests using S,(¢), which will be dis-
cussed in Section 5 in connection with applications of the weak convergence
theory to construct time-sequential censored rank tests of H,. In particular, it
will be shown that because of the nonmonotonicity of the drift function w,(¢)
at stochastically ordered alternatives where the chosen score function is not
asymptotically efficient (as in the case of nonproportional hazards alternatives
when time-sequential logrank statistics are used), a time-sequential level-o
test based on {S,(2), t < ¢*} that terminates at or before ¢* can achieve both
savings in time and increase in power when compared with the fixed-duration
level-a test based on S,(¢*). This remarkable feature is of particular interest
in the design of clinical trials, for which both power and trial duration are
important considerations.

2. Random fields, maximal inequalities and a basic weak conver-
gence theorem. To obtain weak convergence of the normalized time-
sequential censored rank statistics n~1/%(S,(¢) — u,(¢)) to a limiting Gaussian
process, a key step is to first establish the weak convergence of a stochastic
process (random field) with two-dimensional time parameters (¢, s) in the
following theorem. As will be shown in Section 3, this theorem enables us to
develop a unified weak convergence theory for S, (¢) under the null hypothesis,
local alternatives and fixed general alternatives. Not only does this theory
cover cases in which the limiting Gaussian process has independent incre-
ments, like time-sequential logrank statistics under the null hypothesis previ-
ously studied by Sellke and Siegmund (1983) and Slud (1984), but it also
covers cases like Gehan’s statistics for which the limiting Gaussian process has
correlated increments.

THEOREM 1. Suppose that X,,,, X,,,, ..., X}, arei.i.d. nonnegative random
variables with a common continuous distribution function F,. Let ®, =
—log(1 — F}). Suppose that (¢,;,Ty,;), i = 1,...,k, are independent nonnega-
tive random vectors that are independent of X, ..., X;, and such that

k
(2.1) klim E71Y Pl&, > s,t— Ty =8} =b(¢,s)
-® i=1
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exists and is continuous for 0 <s <t. Assume that lim, _,, F,(s) = F(s)
exists for all s and that F is a continuous distribution function. Define
k

mk(t’ S) = Z’ I(in A AE—Ty) 2 sp
i=1

k .
(2’2) Nk(t’s) = Z I(insfki/\(t—Tki)+As}’

i=1

S
M,(t,s) = Ny(¢,s) — fomk(t, u)dd,(u).
Let 0 < a < 3 and define
(23)  Wit,9) k72 [ [R/mu(t, )] Ly, ir5 0 AMA(2, ).
Then for every T > 0, W, converges weakly in D((0,7] X [0,7]) as k - © to a

zero-mean Gaussian process W that has continuous sample paths and covari-
ance function

Cov(W(t,s),W(¢,s'))

(2.4) _ j;SAslb‘“(t, w)b™*(t',u)b(t At',u)(1 - F(u))—Za dF(u).

We preface the proof of Theorem 1 by the following two lemmas. Lemma 1
is well known; see Gill (1980) and Sellke and Siegmund (1983). The proof of
Lemma 2 is lengthy and is given in the Appendix, which also presents several
basic maximal inequalities used in the proof.

LemMA 1. Let %, (s) denote the complete o-field generated by
(2.5) ' I(in/\ékiSS}’ I(insfki/\s}’ (in A gki)I(in/\fkiss)’ Tki’
‘ i=1,...,k.
Then for all t > 0, {M,(¢,s), #,(s), s = 0} are martingales with predictable
covariation processes

(My(8,-), My(', ))(s) = j;smk(t At u)d®,(u).

LEMMA 2. Given ¢ > 0 and 7 > 0, there exists a finite partition t, = 0 <
-+ <ty =1 of [0,7] such that for all large k,

P{ max sup |W,(¢s)— Wi(t;,s)| ¢} <e.
0<j<N ¢;<t<t;,,,
s=0

Proor oF THEOREM 1. In view of Lemma 2, it suffices to show that for
every N>land 0 <t < -+ <ty=<7, {(Wt,s),..., Wi(ty,s), 0 <s <7}
converges weakly to {(W(¢,s),...,W(¢y,s)), 0 <s <7} By Lemma 1,
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(W, (¢;,8), #(s),s = 0), j = 1,..., N, are martingales with predictable covari-
ation processes {W,(z,, - ), W,(¢,, - ))(s) equal to

. j:[k/mk(ti,u)]a[k/mk(tj’u)]a

Xty ur=1, mactywy=1yMa(t Aty u) dy(u).

Note that for fixed ¢, 1 — m,(¢, - )/k is a (left-continuous) empirical distribu-
tion function based on % independent random variables. Hence by Theorem
1.1.1 and Corollary 1.3.1 of van Zuijlen (1977), for every 0 < 8 < 1,

(2.7) P{m,(t,s) < BEm,(¢,s) forall s} > 1 — 2=%(1 — B) "*B/3.

Moreover, there exists an absolute constant C such that forall n > 1, A > 0,

(2.6)

(2.8) P{sup|my(t,5) - Emy(t,6)| = AkV?) < Ce™2,
s

see Shorack and Wellner (1986), page 797. Let b,(t,s) =k~ !L%_  P(¢,; > s,
t — T,; > s}. Since Em (¢, s) = k(1 — F,(s)b,(t, s) and since b,(¢, s) > b,(¢, s)
for ¢ > t', it follows from (2.1) that for i < j, as & — o,

s k * k ¢
-1 I : )]
k ‘/;) [Emk(ti9 u) ] [Emk(tj’ u)] (Emk(ti’u)>0}Emk(t”u) d k(u)

(2.9) .
- fob-a(t,.,u)b-a(tj,u)b(t,.,u)(l — F(u)) ** dF(u)

uniformly in s > 0,
noting that 2a < 1. Moreover, for i < j,
k1 fI(Emk(ti,u)>0,k’lEmk(tj,u)SS}[k/Emk(ti’ u)]a
X|k/Em,(t;,u “Em t;,u)dd,(u
(2.10) [ /Em(t;,u)] p(t,u) dPy(u)
(1-2a)
=< fI(k—lEm,,(tj,u)sa)[Emk(ti’u)/k] Loz

X(1 = Fy(u)) "t 22 gF,(u) >0 as 56,0.
From (2.6)-(2.10), it follows that for i < j, uniformly in s > 0,
<Wk(ti’ ')’W(tj’ )>(s)

(2.11) —p f:b“"(ti, u)b=*(¢;, u)b(t;, u)(1 — F(u)) ** dF(u)
as k > o,

Note that the limit in (2.11) is Cov(W(t,, 5), W(¢;, 5)), in view of (2.4). More-
over, the jump size of the process W,(¢;, s) is no larger than k*~1/2 (- 0 as
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k - »). Hence we obtain the desired weak convergence of (W,(¢;,s),.
W, (¢y, $)) by a multivariate extension (via the usual Cramér-Wold device) of
Rebolledo’s (1980) martingale functional central limit theorem; see Gill (1980),
page 17. O .

The following corollary of Theorem 1 plays a basic role in establishing weak
convergence of normalized censored rank statistics. Given a function f on an
interval [a, b], let V, _ . _,[ f(x)] denote the total variation of f on [a, b]. For a

sequence of random variables U,, we write U, = O,(1) to denote that {U,} is

bounded in probability, that is, sup, P{|U,| > x) = 0 as x — .

CorOLLARY 1. With the same notation and assumptions as in Theorem 1,
let {n,, /(s), 0 < s <t} be a predictable process with - respect to {F,(s)} for every
t>0. Let 7> 0. Suppose that there exist 0 < a < 3 and a nonrandom func-
tion n(¢,s), 0 <s <t <, such that sup, _,_,Im(¢,0)| < and as k - »,

(2.12)  sup |my (s) — n(t, S)II(k‘lm,,(t,s)ZE) —p 0 foreverye >0,

O<s<t=<rt
sup (Voo (R mu(t,5)) mi ()]
(2.13)  Ost=7
+Vocoze| (1 = F(5)) (2, 8)n(t, )]} = 0,(1).
Then {k~'?(§n, (u)M,(t,du): 0 <t<rt, 0<s <7} converges weakly in
D([0, 7] X [0, 7] as k — « to a zero-mean Gaussian process W* with covari-

ance function

(2.14) Cov(W*(t,s), W*(¥,s")) _[ (e, w)n(t', u)b(t At u) dF(u).

ProoF. First notethat for0 <s<t<r,

% [:nk,t(u)Mk(t, du)

= As(k_lmk(t’ u))ank,t(u)Wk(t, du)
= (k7 'mu(2,8)) “ms, () Wi(2, 5)

= [ Wit ) d[ (B matt, w) 0]

Since sup, ., . .In(,0)| < «, (2.12) implies that sup,_, . .Im(¢, 0| = O,(1), so
by (2.13),

(2.15)

(216) oo (1 = F(8))"b2(t, 8)|n(t, 8)| + (k" 'm,(t,9)) | ma,o(5)])

= 0,(1).
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By Theorem 1, W, converges weakly in D([0, 7] X [0, 7]) to a Gaussian process
W with continuous sample paths. From this, together with (2.12), (2.13) and
(2.16), we obtain the weak convergence of (2.15) to the Gaussian process

{(1 - F())b(t,5)} n(t, s)W(¢, )
- [0 W) d[{(1 - F)bw)ne w)];

see Gill (1980), Theorem 2.4.3, and Shorack and Wellner (1986), Theorem
2.8.5. The covariance formula (2.14) for the limiting Gaussian process follows
easily from Lemma 1. O

The following lemma provides a useful tool for checking (2.13), as will be
shown in the next section.

LEmMA 3. (i) Let f, g be nonincreasing functions on [a, b] such that g > 0
and 0 < f<gP for some 1l <p < 2. Then

Vocxsol F(2)/8(2)] 5 —Z5 [ F27/7(a) = F2=0/7(B)]

+ [g77*(a) - g77(B)].

p—1
(ii) For any two functions f, g on [a, b],

Vicasol F(2)8(0)] < (sup] £(2)[Viccolg()]

+(suplg(2) |V, cacal F(2)].

Proor. (ii) is obvious. To prove (i), let a =x; < -*- <xy = b be a parti-
tion of [a, b]. For 1 <i < N,

f(x01) _ f(x;) f(x;) — f(%i41) + [g(xi) _g(xi+1)] f(x1)
8(x;41) g(x;) 8(x;) g(x;.1)8(x;)
f(x;) = f(xi41) 8(x;) —8(x;41)
< ip T 2-p
(f(x;)) (g(x))

where we define 0/0 = 0 [for the case f(x;) = 0]. The desired conclusion then
follows from the inequality (x — y)/x° < (1 — 8) (x! 2 -y ) for0 <y <«
and 0 < 6 < 1, which in turn follows from the well-known inequality dx +
1-8y=x%'"%0D

b

3. Weak convergence of time-sequential censored rank statistics.
In this section we apply Corollary 1 and Lemima 3 to analyze the two-sample
time-sequential rank statistics S,(¢), defined in (1.2). More generally, instead
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of S,(¢), we shall consider

B n , ‘ B m'n,t(Xi(t))
S.(t,8) = i=l’§i(t)sssi(t)Q"(t’ {(‘(t)) 1 m'n,t(Xi(t)) +m, (Xi(2))
oz m, (%)
(3.1) j=1’§(t)ss‘$f(t)Q"(t’ %) m, (Y;(t)) + m, (Y;(2))

= [t W)l () + iy ()]
X{m';t,t(u) dN, (u) —m', (u)d ;L't(u)}’

where m’, ,, m, , are defined in (1.3) and N, ,, N, , are defined in (1.7). Note
that
(3.2) Su(t,8) = 8,(t,%) = (1.2).

Let ® = —log(1 — F) and T = —log(1 — G) denote the cumulative hazard
functions of the X; and Y, respectively, and let

M (s) =N, (s) = [, () dD(u),
(3.3) °
M; (s) = N; (s) = [, () dT(w),

m'n,t( u)m';l,t( u)

() + iy () (2P0 T AT(w).

(34) p(ts) = f:Qn(t,u)

From (3.1), (8.3) and (3.4), we obtain the stochastic integral representation
n=2(8,(8,8) — pa(t,s))

(3.5) = n-12 f:Qn,t(u)[m'n,t(u) +m, (u)] 7

x{m"n,t(u) dM;,t(u) - m/n,t(u) dM;:,t(u)}'
As in Corollary 1, we use the notation V,_,_,[f(x)] to denote the total
variation of a function f on the interval [a, b] and assume that there exist
0 <a < } and a nonrandom function q(¢, s) such that sup,_,..lg(¢,0)| < «
and as n — o,
sup IQn(t, s) —q(t, S)II(n—lm' (H+n"Imly (s)ze) TP 0
(3.6) O<s<t<r ™ ’
for every ¢ > 0,

sup (Vocucl(n72m), (5) + n70m), (5))"Qut,9)]

o<t<r

(37 +Voeoe[{(1 = F(s))W(2,5) +
(1 - G()b'(t,9)} a(t, )]} = 0,(1).
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The following theorem establishes weak convergence of n~1/2S (¢, s) under
local alternatives that are characterized by (3.11) and (3.12) and weak conver-
gence of n~2(S,(t,s) — u,(¢, s)) under fixed (F, G). Note that for the special
case of the null hypothesis F = G, u,(¢,s) = 0 by (3.4). Assuming the exis-
tence of the limits

™3

Y(t,s)= limm 'Y P& >s,t—T =s},

i=1
(3.8) m
b'(t,s) = limm™' Y P{&] >s,t— T > s},
(3.9) n/n—->y asn(=n+n")—> owith0 <y<1,

the theorem expresses the covariance of the limiting Gaussian process in terms
of the function

hg r(t,t*;s) = j;)sq(t,u)q(t*,u){m’(t,u) + m”(t,u)}_1

X{m'(¢*,u) + m"(¢t*,u)} "
(3.10) X{m'(t At*,u)m’"(t, u)m’(t*,u) dP(u)
+m'(t At u)m/ (¢, u)m/(t*,u) dT(u)},
m(t,u) = ¥(1 - F(u))b(t,u),
it 1) = (1 - y)(1 - G(w)' (¢ u).

THEOREM 2. Suppose that (X, ¢, T),(Y;, &,T/), i=1,2,..., j=
1,2,..., are independent random vectors with nonnegative components such
that (¢;,T}) is independent of X; and (¢7,T}) is independent of Y; for all i and
J. Assume the existence of the limits (3.8) and (8.9), in which b'(¢,s) and
b"(t, s) are also assumed to be continuous for 0 < s < t. Define S,(t, s) by (3.1)
and assume that the weight function @, in (3.1) satisfies (1.10) for everyt > 0.
Suppose that X; are i.i.d. with a continuous cumulative hazard function ®

and Y; are i.i.d. with a continuous cumulative hazard function T. Let 7 > 0.
(1) For fixed ®, suppose that as n — «, I - ® such that

(3.11) n*?{(dT/d®)(s) — 1} - g(s)

uniformly in s €I and sup,.;g(s)l <® for all closed subintervals I of

{s €[0,7]: F(s) < 1}. Assume that as n — »,

(3.12) f(:ldl“/d<1> —1|d® = O(n"1/2),

and that the weight function Q, satisfies (3.6) and (3.7) for some 0 < a < %
and nonrandom function q with supy_,..lq(¢,0)| <». Then as n — o,
{n"128 (t,5),0 <t <7, 0 <s < 7} converges weakly in D([0,7] X [0,7]) to a
Gaussian process Z* with Cov(Z*(t,s), Z*(t',s")) = hg o(t,t'; s A 5'), where
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hg r is given in (3.10) and
S
EZ*(t,s) = —y(1 — y)foq(t,u)g(u)b'(t,u)b"(t,u)

X[yb'(¢,u) + (1 — y)b"(¢,u)] " dF(u).

(ii) For fixed ® and T, suppose that there exist 0 < a < 3 and a nonrandom
function q with sup,_,_.lq(t,0)| < © such that (3.6) and (3.7) hold as
n — . Then as n —» », {(n"Y2(8,(¢,s) — u,(t,s),0<t <7, 0<s <7} con-

verges weakly in D((0,7] X [0,7]) to a zero-mean Gaussian process Z with
Cov(Z(t, ), Z(t',8")) = hg 1(t,t'; s A s'), where hgy y is given in (3.10).

(3.13)

Proor. Let U, ¢, s) = n~Y%(S,(t,s) — u,(t,s)), which has the stochastic
integral representation (3.5). Let U(¢, s) be a zero-mean Gaussian process with
covariance equal to that of Z* for part (i) of the theorem, or equal to that of Z
for part (ii) of the theorem. Let %(s) denote the complete o-field generated by
(1.9). As in Lemma 1, {M, (s), #(s), s = 0} and {M,, (s), F(s), s > O} are
martingales with predictable covariation processes (M, ,, M}, +)(s) = 0,

S
(M0 My 2)(8) = [, o5 n(2) dB(2),

(ML, M2 )(8) = fom';,,w*(u)dr(u);

see Sellke and Siegmund (1983) and Slud (1984). Hence, in view of (3.5), an
argument similar to that used in the proof of Theorem 1 can be used to show
that as n — ®, under the setting of part (i) or (ii) of the theorem,
{(Uty, 8),...,Uftp,8), 0<s<s, converges weakly to {(U(¢,,s),...,

U(tp, 8)), 0 <s <sg), for every M>1and 0 <t, < -+ <ty <7 and for
every s, € [0, 7] such that
(3.14) (1 = F(s¢))b'(t1,80) + (1 — G(89))d"(¢1,80) > 0.

Since b'(¢,s,) and b"(¢,s,) are nondecreasing in ¢, the assumption (3.14)
implies that

. . -1 ' -1 4
imint{,_, inf,_ [0 B (o) + n 7t )] > 0

so we can avoid arguments analogous to (2.7) and (2.10) in the proof of
Theorem 1. By (3.4),

-1/2 s(n_lm’n,t(u))(n_lm,;z,t(u))
n #'”(t’s) = _f -1, —-1_n
on mn,t(u) +n mn,t u)

d
n1/2(£(u) - 1)]Qn(t, u)dd(u).

Hence sup,_, 1<j<min™"%u,(;,s) — EZ*(;,s)| —»p 0 under the assump-
tions of part (i) of the theorem.

(3.15)
X
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It remains to show tightness of {U,(¢, s): s,t €[0,7], n > 1}. Take 6 > 0
such that @ + & < 3. Let

M, (1) = @2, u) [, (u) + my (u)] "l (u)
L m’, (1)

T [nim, (w) + nm i (u)]

X[n7tm, (u) +n7tml, ()] Qu(, ).

l+a

-1 //

By ﬁrst applying Lemma 3(G) with f = (n Hn~tml, )3, g =
[n'm, , +n"'m), J'** and p=(1+a+8)/1A+ @) and then applying
Lemma 3(ii) and (3 7) it can be shown that

sup Vooozo| (n72m ()l ()] = 0,(0).

O<t<rt

Hence we can apply Corollary 1 to obtain the tightness of

S
nV2 [l (w) dM ().

The same argument can be used to show tightness of the other component
n~Y%sn, (u)dM; (u) in the stochastic integral representation (3.5) of
UJ(t,s). O

In view of (3.2), we obtain from Theorem 2 the following corollary.

COROLLARY 2. Under the assumptions of Theorem 2, define the censored
rank statistics S,(t) by (1.2). Then as n — o, {n %S, (¢) — n,(¢),0 < ¢t < 7}
converges weakly in DI0, 7] to a zero-mean Gaussian process {Z4, (t),0 < t < 7}
with covariance Cov(Zg (t), Zg ((t')) = hg r(t,t'; t At), for fixed (P,T),
where hg - is defined in (3.10) and p,(t) = u,(t,t) is defined in (3.4).
Moreover, for fixed ®, as n - © and ' — ® such that (3.11) and (3.12) hold,
{n"128,(¢), 0 <t < 7} converges weakly in D[0,7] to the Gaussian process
{Zg () + u(t), 0 <t <}, where

T I LR OL{COLICLY
X ['Ybl(t, u) +(1- 'y)b”(t’ u)] _ldF(u),

The limiting Gaussian process Zg, o has independent increments if the limit
function q(t, s) in (3.6) satisfies the condition

(8.17) q(t;,8)q(ty,8) = q2(t; A Ly, 8), 0<s<t Aty t,t, €[0,7].
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In fact, in this case, Cov(Zg o(t), Zg o(t*)) is equal to

(L =) [T A, u)b (2 A 5 u)B (2 A £ )
0

L]

X[y (t A t*,u) + (1 — y)b"(¢ A t*,u)] "  dF(u).

Condition (3.17) is clearly satisfied if g(¢, s) does not depend on ¢, or more
generally, if q(#, s) is of the form

(3.18) q(¢,s) = Q(8)I5 4y where s(t) = 0is nondecreasing in £.

The following examples show that the Tarone—~Ware and Harrington-Fleming
classes of weight functions Q,(¢, s) satisfy the assumptions of Theorem 2 and
therefore, in particular, the theorem is applicable to the commonly used
logrank, Gehan and Peto-Prentice statistics. Moreover, condition (3.18) is
shown to be satisfied in Examples 2 and 3 below.

ExampLE 1. Consider the Tarone—Ware class of weight functions defined
by (1.4), in which we assume : [0, 1] - (—, ©) to be continuous on (0, 1] and
such that sup, _, <1V, <. <[x*¥(x)] <  for some 0 < & < 3. Letting

(319) q(t,8) = w[y(1 - F(s))b/(£,8) + (1 - y)(1 - G(s))¥'(t,5)],

note that (3.6) and (3.7) are satisfied under assumptions (3.8) and (3.9) of
Theorem 2.

ExampLE 2. Define the left-continuous Kaplan-Meier curve H, (s) of the
combined sample {X,(¢), 8(¢), Y;(¢), 87(¢): i = 1,...,n, j = 1,...,n"} at time ¢
by (1.11) and let 4: [0, 1] —» (-, ») be continuous on [0, 1) and such that

(8.20) VOstl[(l - x)B://(x)] <o forsome0 <p < 3.

Let @,(t, s) = y(H, (s)). For the Harrington-Fleming (1982) class of statis-
tics (1.5), ¥(x) = (1 — x)” with p > 0 and (3.20) is obviously satisfied. In the
context of Theorem 2, for the case G = F or the case G — F, define q(¢, s) =
y(F(s)), which does not depend on ¢ and therefore satisfies (3.18) with
s(¢) = 7, and it will be shown below that conditions (3.6) and (3.7) are satisfied
in either case. For the case F # G, it will be shown that (3.6) and (3.7) still
hold with |

(3.21)! q(t,s) = Y(H(t,s)),
where 1 — H(¢, s) is equal to

o yb(tu)dF(u) + (1 —y)b'(t,u) dG(u)
e"p{_fo v (£, 0)(1 — F(u)) + (1 — y)b"(£,u)(1 — G(u)) }
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To check condition (3.7), take 0 < @ < B such that @ + 8 < 7 and apply
Lemma 3 and (3.20) to

(n~'m', (s) + n_1”"I;z,t(s))m+‘3
VOssst B
(1-H, (s))
(3.22)
X(1- Hn,t(S))B«/f(Hn,t(S))},
noting that 1 — H, (s) = n~'[m/, (s) + m, (s)] and using a similar repre-

sentation and argument for the other (nonrandom) term of (3.7). To check
condition (3.6), first use (1.3), (1.7), (3.8), (3.9) and (2.8) to show that for every
6>0, .

P{O sulz [|n‘1m’n’t(s) — yb'(t,s)(1 - F(s))]
+|n7tml, (s) = (1 - y)b"(t,s)(1 — G(s))|

n‘lN,’,,t(s) ~ vfsb’(t, u) dF ()
n='N; H(s)—(1- 'Y)f b'(t,u)dG(u) ] > 6} -0
as n — «, Using the identity (A, dB, — [AdB = [§(A, — A)dB +

3A, d(B, — B) and applying integration by parts to [§A, d(B, — B), it then
follows that for every ¢ > 0 and 6 > 0,

P{ sup |(1-H, (s)) - (1 - H(¢,s))|
(323) O<s<t=<rT

X1,

{m, (8)+ 'y ()= en) = 5} -0 asn - o,

in view of (3.21) and the integral representatlon
log(1 — H, () = = [ {[mh, () + iy ()]
u<s
+0([m), (u) + m', ()] )} d(N; (u) + Ny, (u)).

ExampLE 3. Let ¢: [0, 1] - (—x, ©) be continuous on [0, 1) such that (3.20)
holds. Let 0 < p < 1. Under assumptions (3.8) and (3.9) of Theorem 2, define

(3.24) Q,(t,s) = ‘/’(‘YFn,t(s) +(1- Y)Gn,t(s))I(m',,,,(s)z(n’)", m, (s)=(n")P}r

where

F,ds)=1-T1(1-AN, (u)/N, (u)),

u<s

G, (s)=1- [T(1-AN; (u)/N; (u))

u<s
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are the left-continuous Kaplan—-Meier estimates of F and G, respectively, Let
q(t,s) = (vF(s) + (1 = v)G(8)) L <sep»
(3.25) s(t) = inf{u: (1 — F(u))b'(t,u) = 0}
A influ: (1 = G(u))b"(¢t,u) = 0},
putting G = F for the setting of Theorem 2(i). Then conditions (3.6) and (3.7)

are satisfied, as can be shown by an argument similar to (3.22) and (3.23).
Note that the limit function (3.25) is of the form (3.18).

4. Asymptotic drift and covariance function of the rank statistics
S,(t). Consider the two-sample time-sequential rank statistics S,(¢) defined
in (1.2). By Corollary 2, under the null hypothesis:- H,: F =G and the
assumptions of Theorem 2, {n~1/2S,(¢), 0 < ¢ < 7} converges weakly in D[0, 7]
to a zero-mean Gaussian process {Z(¢), 0 < ¢ < 7} with covariance function

Cov(Z(t), Z(t*))
(4.1) =y(1- y)/;tAt*q(t, w)q(t*,u)b'(t At*,u)b"(¢t At*,u)

X[yd' (¢ A t*,u) + (1 — y)b"(¢ A t*,u)] " dF(u).

In particular, for the Tarone-Ware class of statistics with weight functions
given by (1.4), in which we assume : [0, 1] > (—,®) to be continuous on
(0, 1] and such that V, _, _;[x“y(x)] < » for some 0 < & < 3, the function ¢ in
(4.1) is given by

(4.2) q(t,u) =¢((1 - F(s))[yb'(¢,s) + (1 —y)b'(t, s)]).

The Gaussian process Z(¢) with covariance function (4.1)-(4.2) does not have
independent increments unless ¢ = constant (as in Mantel’s logrank statistic)
or unless ybd'(¢,s) + (1 — y)b"(¢, s) does not depend on ¢ (as in the case of
simultaneous entry with T; = T, = 0).

Suppose that we modify the Tarone-Ware weight function (1.4) by

(4.3)  Q.(t,s) = ¢(H, (s)), where H, ,(s) is defined (1.11),

as in Example 2, or by (8.24), as in Example 3. Then the function ¢ in (4.1) is
given by q(¢, u) = y(F(u)) for the case (4.3), and by (8.25) with G = F for the
case (3.24). In either case, (4.1) becomes

Cov(Z(t), Z(t*)) = h(t A t*),
(4.4) h(t) = y(1 - y)joﬂpZ( F(u))b' (¢, u)b"(t,u)

X[yb'(t,u) + (1 — y)b'(¢,u)] " dF(u).

Hence, for the normalized rank statistics n~/2S,(¢) with weight functions
(4.3) or (3.24), the limiting Gaussian process Z(¢) under Hy: F = G has
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independent increments. We next consider the limiting drift u(¢) of n~'/2S (¢)
under contiguous alternatives.

Suppose that F = F, and G = F,, where {F,, —¢ < 0 < ¢} is a family of
continuous distribution functions whose cumulative hazard functions &, =
—log(1 — F,) satisfy

[71d®,/d®, - 1]d®, = 0(8) s 6 -0,
0

(4.5) 0~ H{(dDy/dDo)(s) — 1} - &(s)

uniformly in s € I as 8 — 0 and sup, . ;lg(s)| < = for all closed subintervals I
of {s: Fy(s) < 1}. Define the weight function @, by (4.3) or by (3.24). Take
¢ # 0. Under the assumptions of Theorem 2, we obtain from Corollary 2 that
{n™1/28,(t), 0 < t < 7} converges weakly under H,: (F, G) = (F,, F,, 7) to the
Gaussian process {Z(#) + u(¢), 0 < ¢t < 7}, where Z(¢) has mean 0 and covari-
ance (4.4) and

w() = —ey(1 =) [W(F(x))g(u)b (1, u)¥'(t,u)

X[yb'(t,u) + (1 — y)b'(t,u)] "' dF(u).

From (4.4) and (4.6), it follows by the Schwarz inequality that
K(t) -
(4.7)  Var(Z(t)) ~

(4.6)

ey(1-7 [ "g2(u)b'(¢,u)b (¢, u)

X [yb/ (¢, u) + (1= y)b"(¢,u)] " dF(u)

and that equality is attained in (4.7) if ¢ o F is a scalar multiple of g. In
particular, for the choice

(4.8) ¥(x) = —cg(F~'(x)),

which is the asymptotically optimal score function for two-sample rank statis-
tics based on complete (uncensored) data, we have equality in (4.7) and

w(#) = Var Z(s)
(49) = (1= y)c* [ £*(u)b' (6, u)b' (¢, x)

X[y¥'(t,u) + (1 — y)b"(t,u)] " dF(u).

Summarizing, for the time-sequential rank statistics (1.2) with weight
functions Q,(¢, s) of the form (4.3) or (8.24), the limiting Gaussian process has
independent increments under the null hypothesis and under contiguous
alternatives. The variance function of the limiting Gaussian process is A(¢)
given by (4.4), while the drift of the limiting Gaussian process under these
alternatives is the function u(¢) given by (4.6). Moreover, u(t) is a linear
function (scalar multiple) of A(¢) if the score function ¢ is chosen to be a
scalar multiple of the asymptotically optimal score function g - F~! associated
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with these local alternatives via (4.5). However, for other choices of ¢, u(¢)
given by (4.6) need not even be a monotone function of # although h(¢#) given
by (4.4) is always nondecreasing in #, as will be shown in a subsequent
example. .

We next consider the asymptotic properties of these time-sequential rank
statistics under general fixed alternatives (F, G) with cumulative hazard func-
tions @, T. Defining the random drift w,(¢) = u,(¢,¢) by (3.4) and assuming
the setting of Theorem 2(ii), it can be shown that

n~lu,(t) =»p y(1 - )
s() (1= F(u))(1 - G(u))b'(t,u)d"(¢t,u)
(4.10) X-/;) y(1 - F(u))b'(t,u) + (1 - y)‘(l - G(u))b'(t,u)

X q(t,u)(d®(u) —dI'(u)),

the convergence being uniform in 0 < ¢ < 7, where s(¢) is defined in (3.25). By
Corollary 2, {n~Y*(S,(¢t) — u,(¢), 0 < ¢t < 7} converges weakly in D[0, 7] to a
zero-mean Gaussian process {Zy, (¢), 0 <t < 7} which usually does not have
independent increments when F # G.

The following simple example in the case of logrank statistics shows that
the limit of n~'w ,(¢) in (4.10) or the limiting drift u(¢) in (4.6) may not be a
monotone function of ¢ even for stochastically ordered alternatives. Let F, be
the exponential distribution with constant hazard rate A > 0, and define for
0>0,

exp( — (1 — 6)Ax}, 0<x<l,
(4.11) 1-F,(x) = {exp(361/2 — (1 + 6/2)Ax}, 1<x<3,
exp(—Ax), x> 3.

Let F = F, and G = F,. Clearly {F,, 6 > 0} is stochastically ordered; in fact,
F, > F, for 6 < @'. For 6 > 0, the hazard rate of Fj is A,(x) = (1 — 9)A(< A) if
0<x<1 A ) =@ +6/DA(>A) if 1 <x <3 and A, x) =2 for x> 3.
Therefore the function g in (4.5) is given by

-1, 0<x<1,
(4.12) g(x) =1{3, 1<x<3,
0, x> 3.

Hence, for the time-sequential logrank statistics [with Q,(¢, u) = 1], the limit-
ing drift w(¢), given by (4.6) for contiguous alternatives 6 = cn~'/2 > 0, is
increasing for 0 < ¢ < 1, decreasing for 1 <¢ < 3 and constant for ¢ > 3,
under the assumption that b'(¢,u)b"(t,u) > 0 for all 0 < u < ¢. Moreover,
under this assumption, the limit of n~'u(¢) in (4.10) for a fixed alternative in
the family (4.11) is again increasing for 0 < ¢ < 1, decreasing for 1 < ¢ < 3 and
constant for ¢ > 3. This shows that a level-a test of Hy: F = G based on the
logrank statistic S,(¢,) with 1 < ¢, < 3 can have higher power at the stochasti-
cally ordered alternatives (F,G) = (F,, F;) with 6 > 0 than that based on
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S,(t;) evaluated at a later time ¢, > ¢;, providing therefore both savings in
time and increase in power.

5. Applications to sequential testing problems and concluding re-
marks. Assuming a Lehmann (proportional hazards) family of the form
1-G(s) =1 - F(s))'% Jones and Whitehead (1979) considered the use of
time-sequential logrank statlstlcs S,(¢) [given by (1.2) with @, = 1] to test
sequentially over time the one-sided null hypothesis Hj: 6 < 0. They sug-
gested plotting S,(¢) versus V,(¢), where V (¢) is Mantel’s (1966) estimate of
the variance of S (t) under F = G:

51 V() = [Otm'n,t(s)m';,xs)

x[m,n,t(s) +m, (3)]_ d(N, ,i(8) + N, t(s))

They argued heuristically that {(V,(¢), S,(¢)), ¢ > 0} should behave approxi-
mately like {(v, W(v)), v > 0}, where W(v) is the standard Wiener process
under 6 = 0, and is a Wiener process with drift under alternatives @ close to 0.
Using this Wiener process approximation, one can therefore simply replace
(v, W(v)) in a sequential test for the drift of a Wiener process by (V,(2), S,(¢))
to construct a corresponding time-sequential logrank test for H;. In particular,
Jones and Whitehead considered the case where the sequential test based on
(v, W(v)) is a sequential probability ratio test. Earlier, Armitage (1975), Chap-
ter 7, suggested using similar approximations to construct repeated signifi-
cance tests of H,: 6 = 0 based on time-sequential logrank statistics. The
Sellke-Siegmund (1983) weak convergence theory for time-sequential logrank
statistics provides a rigorous asymptotic justification of the heuristics of Jones
and Whitehead under H,: 6 = 0. Moreover, in view of (4.9), the heuristic
argument that {(V @),S (t)) t > 0} should also behave like a Wiener process
{(v, W(v)), v = 0) with EW(v)/ v = constant, under contiguous proportional
hazards alternatives, is also valid asymptotically since the function g in (4.5)
reduces to a constant and @, = 1 for the logrank statistics.

Instead of using logrank statistics, one can use other rank statistics (1.2)
with weight functions @,(¢, s) of the form (3.24) or (4.3) to construct repeated
significance or other sequential tests of Hy,: F = G or Hjy: F < G. As shown in
Section 4, the limiting Gaussian process for these time-sequential rank statis-
tics has independent increments under the null hypothesis and under contigu-
ous alternatives. An extension of (5.1) to estimate the variance of S,(¢) under
F=Gis

2 V() = /O‘Q,%(t,s)m'n,t(s>m';,t<s)

X[, (s) +mly ()] 2 (N, () + Ni (5));
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see Gill (1980), where an alternative estimator
¢ _
Uu() = [ Qa(t, ) [, ) + m (5)] 7

x{(my, (5))" AN () + (i, (5))” AN, ()]

is also discussed. As pointed out by Gill (1980), pages 103 and 104, there is no
clear choice between V,(¢) and V,(¢) since one estimator has a smaller limiting
value (when normalized by n) than the other for some (F,G) pairs but the
situation is reversed for other (F, G) pairs. We propose to use

(54) V(1) = {V.(2) + V(1)) /2

as a comparison between these two choices. For @, of the form (8.24), it
follows from (3.25) that

(5.3)

(5.5) n=V,(¢) =p OS("wz(vF(s) + (1~ v)G(s))m'(t,s)m"(t,s)
x[m'(t,s) + m'(t,5)] " d(D(s) +T(s))/2,

where m’ and m” are defined in (3.10), y is given in (3.9) and s(¢) is given in
(8.25). Since s(t), m'(¢,s) and m"(¢,s) are nondecreasing in ¢, the limit
function in (5.5) is also nondecreasing in ¢, which is an obvious advantage in
view of the independent increments property of the limiting Gaussian process
under F' = G, noting also that the limit functions

(8~ [ *Pu2(yF(s) + (1 - y)G(s))m/ (¢, s)m' (¢, )

m'(t,s)d®(s) + m"(t,s) dI'(s)
{m'(t,s) + m'(t,5)}"

)

s(¢)
0

n~Wo(8) —p | TWA(YF(s) + (1 = v)G(s))m' (2, ) m' (2, 8)

m'(t,s) d®(s) + m'(t,s) dT(s)
(m/(t,s) + m'(t,s))°

however, need not be nondecreasing in ¢ unless ® =T

The independent increments property of the limiting Gaussian process
under Hy: F = G for the time-sequential censored rank statistics (1.2) with
weight functions @, of the form (3.24) or (4.3) is basic to the relatively simple
Wiener process approximations for calculating type I error probabilities of the
associated sequential tests [cf. Siegmund (1985), Chapters 3-5]. If the limiting
Gaussian process has correlated increments, as is the case with the
Tarone-Ware weight functions (1.4) with nonconstant ¢, the type I errors of
the corresponding sequential tests are much harder to evaluate by the Gauss-
ian process approximation; see Slud and Wei’s (1982) sequential test using
Gehan’s statistics.

)
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In summary, we have established in Corollary 2 of Section 3 weak conver-
gence to Gaussian processes for time-sequential two-sample censored rank
statistics, under the null hypothesis F = G and contiguous alternatives and
also under fixed general alternatives. The examples in that section show the
wide scope of applicability of the results, which are further specialized in
Section 4 to the Tarone—-Ware and Harrington-Fleming classes of statistics.
Conditions (3.17) and (3.18) characterize the settings in which the limiting
Gaussian process has independent increments under the null hypothesis and
contiguous alternatives and are satisfied by censored rank statistics S,(¢) with
weight functions @, of the form (3.24) or (4.3). This independent increments
property of the limiting Gaussian process enables us to construct sequential
tests based on S,(¢) by using relatively simple Wiener process approximations,
and (5.4) provides an estimate of the asymptotic variance of S,(¢) under F = G
for the implementation of these tests. In Section 4 it is shown, however, that
the asymptotic drift of S,(¢) may level off or even decrease with increasing ¢
under stochastically ordered alternatives for which the weight function @,
associated with S,(¢) is not asymptotically optimal, such as the nonpropor-
tional hazards alternatives (4.11) in the case of logrank statistics. Since the
asymptotic variance of S,(¢) continues to increase with ¢ because of the
asymptotically uncorrelated increments property under the null hypothesis
and contiguous alternatives, the efficacy of S,(¢) may actually decrease with
increasing ¢, therefore allowing sequential tests to achieve both savings in
sample size and increase in power over fixed-duration tests. Simulation studies
illustrating this remarkable phenomenon and details of the implementation
and performance of various time-sequential rank tests of Hy,: F = G and of
the one-sided hypothesis Hy: F' < G will be presented elsewhere.

APPENDIX: PROOF OF LEMMA 2

To prove Lemma 2, we shall make use of some basic maximal inequalities
that are given in the following two lemmas. First, Lemma 4 states the
continuous-parameter version, due to Lenglart, Lepingle and Pratelli (1980), of
the Burkholder-Gundy-Davis inequality for martingales and also an exponen-
tial inequality [cf. Shorack and Wellner (1986), page 899] for continuous-
parameter martingales. Next, we extend the Longnecker-Serfling inequality
to a form that is applicable to our setting in Lemma 5, which can be proved
by an induction argument similar to that used in the proof of Lemma 2 of
Longnecker and Serfling (1977).

LEMMA 4. Let {Z(s), #(s), s = 0} be a martingale with right-continuous
sample paths that have left-hand limits. Take any a > 0.
(i) For any q > 1, there exists a universal constant C,, depending only on

q; such that
E(supIZ(s)r’) < Cq{E[(Z>(a)]q/2 + E[sup]AZ(s)Iq }

s<a s<a
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where (Z)(s) denotes the predictable variation process of the martingale
{Z(s)} and AZ(s) = Z(s) — Z(s — ).
(ii) Suppose that sup, _,|AZ(s)| < c. Then for any A > 0 and 7> 0,

P{ sup|Z(s)| = A,({Z)(a) < 7} < 2exp{—3(A%/7)¥(Ac/T)},

s<a

where Y(x) = 2x~ (1 + x)[log(1 + x) — 1] + 1}.

LEmMMA 5. Let g > 0 and y > 1. Let {Z,, n > 1} be a sequence of random
variables defined in the same probability space and let {g,} be a sequence of
nonnegative integrable functions on a measure space (2, 8, u). Suppose that
for every fixed x € &, g,(x) is nondecreasing in n < N and that

(A1) E|Z,-Z)| < {/,gz”[gi(x) - g;(x)] d/.c(x)}Ay foralll<j<i<N.

Then there exists a universal constant C, ., depending only on q and vy such
that

(42)  E(sw|z,-2[) < C,{ [ [en(x) - &) dux))

n<N

We now proceed to prove Lemma 2. The first step in the proof is to replace
the half-line [0, ] by n(k) = O(k”) points to tho < ' <ty naq Which may
‘depend on the entry times T,,,...,T,,. This is the content of the following
lemma.

LEmMMA 6. With the same notation and assumptions as in Theorem 1, let v
be an integer greater than or equal to 7. Let 0% = 0 and define 0}' inductively

by

(A.3) Fk(G}‘) - Fk(ﬂf_l) =k7¢D forl<j<k'l,

recalling that F,, is a continuous distribution function on [0, ). Let

(Ad) F={0}U{w} UfoF +Tp:i=1,...,k;j=0,... k"' -1},

and order the distinct elements of I, as 0 = tk 0< * <t k= Then

n(k) < k” + 2, and for every n > 0 such that 1> a + 7,

P{ sup sup  |W,(t,s) — Wi(t o1, )| zk‘1/2+a+"} —O(k"*9).

1<n<n(k) ty p_1St<ty p,
>0

ProoF. In view of (A.4), given any i €{1,...,k}and n e_ {1,...,n(k)}, we
can choose j =j(i,n) €{0,...,k"~! — 1} such that

(A 5) [tk n— l’tk n] = [ Jj@,n) + Tku i, n)+1 + T]”] (O;I:V—l = °°)
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Since Ny(¢,8) = Lilix,, <, n—Ty)* A sp it follows that for fixed n < n(k),
{Nu(th,ns®) — Np(tp, n—1,%) = 2}
c{X,, <&, and iy, — Ty <X, <t , — T, for at least two i’s}

c {sz [0%; 0y, OF:. n)“] for at least two i s} [by (A.5)].
Therefore by (A.3),
(A8)  P{N,(t,n,®) = Ni(ty,n_1,%) = 2} < (g)k‘%"l) < k¥4,

Since m,(¢,5) = LiLx, r¢,. nt—1,)* = s it follows that for fixed n < n(k),

{fo Limitynes w0y matty, yunNe(th, > ) 2 2}

c {my(tp, no1» Xan) # my(ty, ., X,p) for at least two h’s)
c{3h,+h,e(1,...,k} and iy,i, € {1,..., k} such that
teon1~ Thiy < Xk,hl <tpn = T4, and

thn-1~ Thiy <X n, <thn— Th i)
Hence by (A.5) and (A.3),
© k ot
(AT) P{]; L tn sy # macty o Ne (B, n -1, A1) 2 2} < (2)k2k 20-1)

< k—2v+6‘
From (2.2) and (2.3), it follows that for ¢, ,_, <t <t, ,,
kY27 Wy(t,8) = Wit no1,8)|

S
| [ ) M8, )
S
_fom;a(tk,n—v u)I(mk(th,,,_l,u)zl)Mk(tk,n—l’ du)
< [Np(tg, 05 ®) = Ni(ty o1,)]

)
+j;) I{mh(t,,,n_l,u)ae mk(th,n,u))Nk(tk,n’ du)

(A.8)

S w e
+ [ [md s ) = 4 (s )] d(0).
Since the function x — x'~ is increasing in x > 1,

LIyt 1) = My (8, o1 )] d Dy (1)
(A.9) 0 .
< [ Imat n w) = mu(ty,nmn,0)] d(0).
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Let Z, (s) = My(¢,, ,,8) — My(t; ,_y, s) and let F,(s) denote the complete
o-field generated by (2.5). Then {Zk 20 (8), #(s), s = 0} is a martingale with
sup,|AZ, (s)l <1 as. and therefore by the exponential inequality in Lemma
4(i),

]

P( U {sup|Zk,n(s)| > k2173 ik < (Z, (%) < ik"})
i=1\ s

(A.10) g
<2Y exp(—3ik"’®)

i=1

for all large k. Since (Z, ,)(s) = [§lm(t; ,,u) — m,(¢; ,_1, W) dP,(u) and
Z), (8) = Ny(t}, ,,8) — Nty _1,8) — Z, . 2(s), we have for £7/3 > 4,

(Maltam®) = Ntnno®) < 1,
A1) [Tl w) — (e )] d,w) = 7]
cU { sup| Z, .(s)| = ik?1/3, 1ik" < (Z, ,)(®) < zk”}
i=1 s

From (A.6)-(A.11), it follows that for all large %,
sup P{ sup kY2 Wi(t,8) — Wy(tenonos)| = 4 + %k"}

n<n(k) thon-1<t=<tp ,
<k 4 pm2%6 4+ 23 exp(—3ik"/®).
i=1
Since n(k) = O(k*), the desired conclusion follows. O

The next step in the proof of Lemma 2 is to make use of Lemma 6 and the
exponential inequality in Lemma 4(ii) to show that the interval [0, 7] can be
replaced further by nonrandom partition points 7/ defined in the following.

LemMma 7. With the same notation and assumptions as Theorem 1, let
by(t,s) =k ILkP(¢,, >5,t — T, >sh. Let 0 <y <1-2a,0<8<vy/2 Let
= 0 and define

ha= inf{t < (Tik’ 7]: [w[bk(t’ s) = bk(Tik’ 3)11—2“
(A.12) °
X(1 - Fi) ™ dFy(s) > 577,

inf @ = 7, noting that b,(t, s) is nondecreasing and right-continuous in t. Then

P{ sup sup |W (2, 5) — W,(7k,5)| > k‘s} >0 ask - .

i f!‘st<ri"+1, s=0
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ProoF. From (A.12), it follows that there are O(k”) partition points 7} of
[0, 7]. In view of Lemma 6, it suffices to show that

P{ sup sup (sup W,(t,8) — W,(F,s ) > k‘a} -0
(A13) { i te T, tk<t<l, 820' * k( )|

as k — o,

where 7, is defined in (A.4). For 7} <t < 7% |, by the definition (A.12) of
k

(A.14) f:[bk(t, s) = by(7h,s)] (1 - Fy(s)) > dFy(s) <k

Moreover, {W,(¢, s) — W,(z£, s), #:.(s), s > 0} is a martingale with predictable
variation process

(Wi(t, ) = Wi(7%, - )X(s)

S
= kza‘l{j; mp 2 (t, U)I(mk(t,u)>0)[mk(t’ u) = my(rh,u)] d®y(u)
s
+j;) [m;a(t’ u)I(mk(t,u)>°)

2
_m;a(q-ik, u)I{mk(,,&,u»o)] mk(Tik, u) d@k(u)}

< 2[:[mk(t, u)/k —m,(f, u)/k]l_za
XI(mk(t,u)zl)(l - Fk(u))_ldFk(u)’

using the inequalities 0 < 2a < 1land1 —x*<1 —x < 1for 0 <x < 1. Since
myt,u) 2 1=k 'Lily, .., = kY, it then follows that for r} <t <7f |,

<Wk(t, * ) - Wk(Tik, : )>(°°) < 2j;m{[mk(7i’z+1 > u) - mk(,rik, u)]/k}l_za

(A.15)

XI g1y o1 — Fy(w) "' dF ().

fl(xkj zu)2 k™
We next make use of (A.14) and (A.15) to show that for every 0 < 8 < 1,

P{ sup sup (Wy(2,") — Wy(rf,  ))() = 6k"}
i 1’,-”5t<1‘f+1
k
(A-16) < P{k"1 Y Iix,,>wy > B~Y(1 — Fy(u)) for some u > 0}
j=1

+ O(k"exp(—k°)) as k—o
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for some 8 > 0. Take 0 < p < 1 such that (1 — pX1 — 2a) > y. On the event
E, = ﬂ {mk(Tik+1 - ,S) - mk(Tikys)

2

< 2max(k?, E[m(rk, — ,8) — m,(7F,s)]) forall s > 0}
k
N{E™Y Y Ix, 0 <B7Y(1 - Fy(s))foralls >0},
j=1

since E[m,(r} , — ,s) — m (v}, 8)l/k = (1 — F,(s)by(rk, , — ,5) — by(zF, 5)],
we obtain from (A.14) that

,/:{[mk('rik+1 —,8) — my(tk, 5)| /&)

-1
XI(k—IZ§=11(ij23)Zk_l)(l - Fk(s)) dFk(s)

1-2a

1-2a

<2k77 + 2(k*7h)
xf Ly e o1 = Fu(8)) T dFy(s)
Elm (k.1 —, 8)—m(z}, o) <k? ¥

<2k + 2k~ P20 Jog(k /B) < R

for all large k. Therefore, in view of (A.15), the left-hand side of (A.16) is
majorized by P(EY) for all large k. Since there are O(k”) partition points 7% of
[0, 7], Lemma 8 below shows that P(EY) is majorized by the right-hand side of
(A.16).

To prove that (A.13) holds, we shall assume without loss of generality that
(y/2 >)8 > v — (3 — a). By the exponential inequality in Lemma 4(ii), for all
large k, say k > k,, we have for every i and for all ¢t € 7, with ¢ > 7},

P|sup|W,(¢,5) — W(7k,s)| = &2,
s>0

(Wy(t, ") = Wi(7#, ))() < 6R?T|T,,, .. .,Tkk]

< 2exp(—k7"2/13).

Since J, has O(k”) elements while there are O(k?) partition points 77, it
then follows that

P( U U {sup|Wk(t,s) - Wk(Tik’s)| = k_a’

i teTy:itk<t<rl, 520

(A.17)
(Wi(t, ") — Wk(“'ik’ ’)>(°°) =< 6k_y})

= O(k”*"exp(—k?~%/13)).
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From (A.16) and (A.17) together with Theorem 1.1.1 of van Zuijlen (1977), the
desired conclusion (A.13) follows by letting 8 — 0. O

The following lemma, which has been used in the proof of Lemma 7 and will
also be used later in the proof of Lemma 2, follows from Corollary 1.3 and
Theorem 2.1 of Alexander (1985), noting that for fixed ¢, < to,

k

my(ty,s) —my(t;,8) = 1 I(x,,,./\g,,izs, ty—5 =Ty > t;—s)
1

LemMmA 8. With the same notation and assumptions as in Theorem 1, given
any 0 <p <1and n > 0, there exists 6 > 0 such that as k — o,

sup P sup m(ts,8) — my(2y,s) ] -
0<t)<ty<rt s: E[m(ty, 8)—m, (¢, $)=k? Emk(tz’s) - Emk(tl’s) -
= O(exp(—£k%)),
sup P{ sup [my(ts, 8) — my(ty,8)] = 2k"}
0<ty<to<t \s: E[m(ty, 8)—my(ty, s)I<k®
= O(exp(—£%)),
m,(t,s) l
sup P sup ———— — 1| > | = O(exp(—£k?)).
t20 {s:Emk(t,s)zk” Em(t,s) ( )

ProOF oF LEMMA 2. Let A, denote the set of all partition points 7} of [0, 7]
introduced in Lemma 7. Then A, has O(k”) elements. Take any 0 <p < 1
and define

~ s
Wk(t’ 8) = ko712 j;) m;a(t’ u)I(mk(t,u)zl,Emk(t,u)sz)Mk(t’ du)'

Note that for every t, {W,(z,s) — W,(z, s), F(s), s > 0} is a martingale. Let
0 <A <@ -p)X1l - 2a). From Lemma 8 it follows that

P{ sup (Wy(t, ) — Wy (2, -))() = k"‘}

teA,

* 1-2a
= P{ Suf/; [mu(t, u)/k] Iy <oy, wy < 209)

teA,

(A.18) 3 .
X(1 = Fy(u)) dFy(u) = k"‘} + O(k7e %)

k
< P{k‘1 Y Iix, >0 =B (1 - Fy(u)) for some u > O} + O(k7e™*")
1

as k »
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for every 0 < B < 1. To see the last inequality above, note that m (¢, u)/k <
k~'Lil, . ., and that k=@ ~PX1729 = o(k~*). Hence, making use of Theorem
1.1.1 of van Zuijlen (1977) and Lemma 4(ii), we obtain from (A.18) by letting
B — 0 that for every 0 <6 <A/2,

(A.19) P{ sup sup|Wk(t,s) - Wk(t,s)| > k"s} -0 ask > x.

teA, s=0
Choose positive numbers g, p such that
(A.20) q(1/2 -a)>1, p{e(l/2-a)—-1}>1+q.

Let t, = 0 and define ¢, inductively by
(A21) ¢, = inf{t >t fw[b(t,s) - b(t;,s)|(1 - F(s)) > dF(s) = EP}.
0

There are finitely many, say N — 1, such points in the interval (0, 7). Redefine
ty by ty=17. As k > o, b(t,s) = b(t,s) by (2.1), and the convergence is
uniform in ¢ € [0,7] and s > 0 since b,(¢, s) is monotone in ¢ and in s and
since b is continuous; moreover, F,(z) — F(«) uniformly in u, and F,, F are
monotone and continuous. Therefore, by (A.21), for large k,

—2a

(A.22) max [:[bk(tj+1,s) — bu(t, 9)|(1 = Fy(s)) > dFy(s) < 2¢.

0<j<N

Moreover, in view of the continuity of b and the uniform convergence of b, to
b, it follows from (A.12) that as & — o,

(A.23) sgpj:[bk(f,.kﬂ, s) — by(7t,8)] (1 = Fy(s)) ™™ dFy(s) — 0.

To prove that the conclusion of Lemma 2 holds for the partition points ¢;
defined by (A.21), it suffices to show, in view of Lemma 7, that for all large £,

P{ max sup (supW t,s) — Wy(rk .\, s )2:—:/2}55,
{OS.f<NtEAk,thtStj+1 szO| k( ) k( w0 )I

where i,(j) = max{i: 7} < ¢}, recalling that A, consists of O(k?) partition
points 7% <7¥ < ... . By (A.19), it further suffices to show that for all
large &,

A24) P{ max |su max Wy(7k,8) — W, (7% ., s)|| = ¢ 3}33.
(424 {OSJ<N[szgik(j)si<ik(j+1)| «(h9) = Wi )l] /

Fix j=0,...,N—1. Since (W, (rF, 5), #(s), s =0) is a martingale,
{max; ;,.; <ii+lWalrh, ) — Wi(ef ), 8)I, Fi(s), s = 0) is a nonnegative
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submartingale, and therefore

E Tk o) _ Wk q)
(o | max  [W(ehss) ~ W)

(A.25)
q

q
< (—) E( max IWk(Tz’k’a) - Wk(Tii(j)’a)lq)’

q-1 (D <i<izG+D
by Doob’s (1953) inequality, where we take any a > 'ri’;( j+1) hoting that
(A.26) W,(t,s) = Wy(t,a) foralls >aandt < LTI
Recalling that 0 < y < 1 — 2a in (A.12), let

A, = U {mu(7F, u) — my(7}, u) = max(k@-7/0-20/2,
r<i

2E[m(r}, u) — my(rk, u)]) for some u]
It follows from Lemma 8 that
(A.27) P(A,) = O(k* exp(—k?)) ask — .
Let i,(j) <r <i <i(j + 1). A similar argument as in (A.15) shows that
(Wy(rh, ) = Wa(rF, *))(a)

1-2a

(A.28) 52']:[mk(7ik,u)/k — my(k, u)/k]

XL gmycet,wz w1 = Fi()) 7" dFy(w0).
Since {Em (7%, u) > k*} c {1 — F,(u) > k~1*#}, (A.28) implies that
(A.29) (Wi(7F, -) = Wi(7E, -))(a) < 2log k.
Moreover, on AS, since either m,(rf, u) — m,(rF, u) < RA-7/A-20/2 o
m(tF, u) — my(v%, u) < 2E[m (v}, u) — m (%, w)], (A.28) implies that for
all large &,
(We(rk, ) = Wa(7h, )X (a)

< 2k~1-20+7)/2 o0

(A30) 4 4 ["[by(rk, u) = by(ek, )] (1 = Fy(w) " dFy(u)

= 5_/:°[bk(7'ik, u) = by(tf, u)]l_za(l - Fk(u))_za dF,(u) on AS,
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where the last inequality follows from (1 — 2a + y)/2 > y and
® 1-2a —2a
fo [Bu(7h u) = by(rk, )] 77 (1 = Fy()) 7> dFy(u)

>k~ by (A.12).
Combining (A.29) and (A.30), we have

E[(Wy(rk, ) = W,l72,))(a)]

< (2log k)’ P(A,)

(A.31)
q/2

A.32 - 1 -2a 24 a2
(A82) {5[0 [ba(E, 1) — by(rk, u)] 72 (1 - Fy(w)) ™ dFk(u)}
* 1-2a —2a /2
for all large k, by (A.27) and (A.31). Since the absolute value of the jump size
of the process {W,(r},s) — Wy(r}t, s), s >0) is no larger than k* /2=
o(k~7/2), it then follows from Lemma 4(i) together with (A.31) and (A.32) that
there exists a constant C > 0 such that for all {,(j) <r <i <i,(j+ 1),

E|W,(rF, a) = Wy(r,,a)[’

© 1-2a 2 q/2
< of [Te(et w) = Balrt )] (0 = By aF,(u))

IA

o g (1-2a)q/2
C{jo [bu(7F, u) — by(F, u)|(1 — Fi(w)) “dFk(u)}

aq
*® —2a
x{[o (1 - Fy(w)) dFk(u)} ,
where the last inequality follows from the bound [5g'™2*du/ul0,») <
{fog du /ul0, ®)}! =2 for any nonnegative function g and finite measure u on

[0,). Since g(3 — @) > 1, we then obtain by Lemma 5 that there exists
C* > 0 such that for all large &,

E( max  |Wy(r},a) - Wk(ﬂioya)lq)

i,(<i<i(G+1)
(A.33) = C*{j:[bk("'ii(jﬂ)’ u) - bk(Ti’;(j)’ u)]

s q(1/2-a)
X(1 = Fy(w) ™ dFy(w)
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From (A.25), (A.26), (A.33) and (A.22) together with the Markov inequality,
it follows that for all large %,

P{ max [sup max IWk(Tf,s) - Wk(fi’:(j),s)I] > 8/3}

0<j<N| 50 igD<i<iG+1)

Jj=0

3\? q qc*Nil 26P q(1/2-a)—1
< — —
a (e) (q—l) (2¢7)

Xf:[bk(fz"imn’ u) = by(rk )| (1 — Fu(u)) ™™ dFy(u)

< Cerat/2=0-4 [, (1, u)(1 ~ Fy(w)) > dFy(v),

where C = C*(6q)?/(q — 1)9. Since p{q(1/2 — a) — 1} — q > 1 by (A.20) and
since b,(7,u) < 1, the desired conclusion (A.24) follows, provided that ¢ is
sufficiently small. O
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