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A general representation is obtained for the formal Bayes estimator of
a parameter matrix. We assume that the prior distribution is symmetric in
some sense, but it is not specified otherwise. The formal Bayes risk is
minimized subject to order constraints by a variational technique; hence
our representation is called ‘“the variational form of the Bayes estimator”
(VFBE). The VFBE is used to obtain estimators that have good frequency
properties relative to the usual estimators. Such estimators are obtained
for the mean vector and covariance matrix of a multivariate normal distri-
bution. Also, for possibly nonnormal data, we give the VFBE of several
Pearson means. A certain emphasis is placed on the problem of estimating
the covariance matrix. For that problem, our constrained optimization
provides an estimator with very good properties: Its eigenvalues are in the
proper order, and they are not as distorted as those in the sample covari-
ance matrix. The VFBE for the covariance matrix is related to an estimator
of Stein. Of the two, the VFBE deals with order relations in a more natural
way; that is, it is more criterion dependent. In addition, it is easier to
compute than Stein’s estimator, and a brief Monte Carlo simulation indi-
cates that it has better risk properties as well.

Introduction and summary. A general representation for the Bayes
estimator of a parameter matrix ¥ is obtained; it is dubbed the variational
form of the Bayes estimator (VFBE). Some special cases are developed which
outperform the usual estimators in the frequency sense. In this section we
discuss the nature of the VFBE and outline the main results.

The main results pertain to estimating the mean vector and covariance
matrix of the multivariate normal distribution, with an emphasis on the latter
problem. Hence, we start with the following.

Notation. Decision theoretics. Assume that X, p X 1, has a multivariate
normal distribution with mean vector 6 and covariance matrix 3. Assume also
that S, p X p, has a Wishart distribution with matrix 3, 2 —p — 1> 0and X
and S are independent; that is,

(0.1) X~ .#,(6,%) and S~ ¥,(%,k) withXandS independent.
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As separate problems, we consider the estimation of 6 and 3. We assume that
an estimator 6 suffers a loss

(0.2) L(6,6) =(6—06)'3"Y(8-0).
We assume also that 3 suffers

L(%,3) =tr(2£371) — logdet(£3"1) —p or
03) (2, 2) = tr( ) ( )

Ly($,3) =tr(£371 - 1)?,

where L; and L, are treated separately. In addition, we briefly consider the
estimation of several Pearson means under quadratic loss: For X (p X 1) a
vector of independent Pearson variables, § = E[X|8] the vector of means and 0
an estimator of 6, we assume that

(0.4) Lo(8,6) = (8- 60)'Q(d - 0),

with @ = diag(qy, g5,...,q,) a diagonal matrix of specified constants. We
assume that only the modes of the Pearson distributions are unknown, but
this framework does include several nonnormal cases that have appeared in
the literature. The main purpose of this example is to display the VFBE in a
nonnormal setting. See Haff and Johnson (1986) for further results and
references. .

Denote by (¥, W, L) any of the preceding estimation problems. In addition,
denote by II(¥) the prior distribution of ¥. Then the risk and Bayes risk are
given by

(0.5)  p(¥,¥) = E[L(¥,¥)[¥] and p(¥, 1) = E[p(¥, )],

respectively. [Often we write Ey(-) instead of E[-|¥].] Given ¥* and ¥, two
estimators of ¥, then W* dominates ¥ if p(\lf* V) < p(¥, ¥) for all ¥, with
strict inequality at some V. Our strategy is to let the formal Bayes rule
suggest estimators which perform well in the frequency sense. Particularly, we
seek estimators which dominate the usual estimators.

The VFBE. Let A be a random matrix with p.d.f. f(A|¥) with respect to
Lebesgue measure on Euclidean space of appropriate dimension. Then the
marginal density of A is given by

(06) fu(A) = [f(AI¥) dTI(¥).

The VFBE depends explicitly on f;(A). Now we comment on the derivation of
the VFBE and also on the applications of the result.

The VFBE is obtained as follows: For (¥, W(A),L) we ~assume that an
unbiased estimator p(W¥, ¥) of p(W¥, ¥) is available [i.e., E,p(¥, ¥) = p(, ).
(Such risk estimators exist for many estimation problems, and several refer-
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ences are found in the following.) From Bayes’ formula, we thus obtain
(0.7) p(W, 1) = EE4p(¥,¥) = [p(F, V) fn(A) d4,

provided [ If)(:i', ¥)|fn(A) dA < . Given that p(¥, ¥) is written as a function
of W and dW/dA, the last integral is minimized by solutions of the Euler
equations. In this way, we obtain a general representation of the formal Bayes
rule (i.e.,, the VFBE) that depends explicitly on fj;. This representation is
appropriate for an important class of problems that includes (0.1)-(0.4).

Typically, the VFBE is simplified if we assume that II(¥) is symmetric in
some sense. Symmetry is often assumed in the following, but II(¥) is not
specified otherwise. Following reduction by symmetry, we mostly replace
fu(A) (in the VFBE) by a function that is not a formal density in the sense of
(0.6). Such substitutions are in line with our strategy of letting the VFBE
suggest estimators with good frequency properties. These comments are illus-
trated by the following.

The prototypical case. For X ~ .#,(6,I) and II(9) a (possibly improper)
prior distribution, the formal Bayes estimator can be represented by

(0.8) 05 =X + Vlog fn(X)

in which V = (8/9x,,9/3x,,...,d/9x,)"; see Brown (1971) or Stein (1981). This
representation is the prototype of the VFBE. It is our first example and it
motivates the approach that is taken.

One way of using (0.8) is suggested by a result of Stein (1981); namely, if
p =3 and

(0.9) 3.0 fu(X)?/9x2 <0 ae.

[i.e., if fy(X) is superharmonic], then X is dominated by (0.8). [Any superhar-
monic fy; will do here; it need not be interpreted by (0.6).] Another way of
using (0.8) proceeds as follows: If TI(9) is spherically symmetric; that is, if
I1(6) = TI(09) with O an arbitrary orthogonal matrix, then we obtain
fa(X) = w™®?~?/2g (w) in which gy(-) is the density of w = X‘X. Thus (0.8)
becomes

(0.10) bs = [1 - ea(WIX,

in which ¢g(w) = (p — 2)/w — 2(d /dw) log g;(w). Note that w is a maximal
invariant under X —» OX and 6 — 06. If we set gp(w) = const., then (0.10)
becomes

(0.11) bs=[1-(p-2)/w|X, w=XX,

the James—Stein (1961) estimator. It is known that (0.11) dominates X (and is
thus minimax). This example is typical of our results for (0.2) or (0.3) when II
is suitably invariant. That is, for w judiciously defined, the VFBE features
those terms which are prominent in a Stein-like estimator. Thus we might
choose gh(w) in a naive way, perhaps, and then check on the risk properties of
the VFBE.



1166 L. R. HAFF

Observe that (0.11) admits a standard Bayesian interpretation; namely,
(d/dw)log g;(w) may be negligible in (0.10) if II is specified so that some 1-1
function of w has a “vague” distribution. In this connection, however, we
have not found a prior distribution II that yields g;(w) = const. (a.e.).

Finally, some comments on terminology: It is clear from (0.10) that the
VFBE is not unique (since any 1-1 function of w is also a maximal invariant).
Consequently, for any problem (¥, ¥, L), we refer to the VFBE with the
understanding that both w and g (w) have been specified. Also, we will use
the acronym VFBE though our estimator is often not Bayes or even formal
Bayes. [It is Bayes if and only if f; (or gp) is interpreted by (0.6) with II a
proper prior distribution; it is formal Bayes if II is improper.] This abuse of
terminology allows for quick reference, while the precise nature of the estima-
tor (formal Bayes or otherwise) will be obvious from ‘the context.

Literature. Perhaps dozens of articles have referenced Stein’s inequality
(0.9) and its implication for minimax estimators. George (1986) used (0.9) to
construct multiple shrinkage estimators (where 3 = I). For the Pearson curves
problem (0.4), Haff and Johnson (1986) gave the appropriate generalization of
(0.9) after a transformation to natural variables. Also, implicit in Corollary 4.5
of Haff and Johnson (1986) is a specialization of (0.9) for gn(w).

1. The main results.

The constrained VFBE. First we develop a scheme for improving upon
(0.11) and certain of its analogues. One major difficulty with these estimators
is the following: When the VFBE is modified by replacing f (or g) by a
function that is not a marginal p.d.f., the result can be dominated by certain of
its truncated versions. [It is known, e.g., that (0.11) suffers this defect. ]
Therefore, we are guided by the solution of the following problem: For W
constrained to a complete class, and under suitable regularity,

(1.1) minimize [ p(¥, W) fr(A) dA,

given that fii(or gyp) is any function for which this problem is well posed. [In
particular, this problem is well posed if fj; (or gp) is interpreted by (0.6) and if
the integral is finite.] The solution of (1.1) describes the class of estimators
with which we start. Our strategy is to exploit this class in order to find
estimators with good frequency properties. In particular, it is enlarged by
allowing naive choices for f; (or g) which initially are suggested by results
on Stein-like estimation.

The constrained problem (1.1) is solved by using a slack variable technique,
and we return to (0.10) and the equations that follow it to introduce the main
idea. First, since II is orthogonally invariant, the feasible estimators are of the
form (1 — ¢(w))X in which ¢ is real. From Anderson [(1984), page 91], any



VARIATIONAL FORM OF BAYES ESTIMATORS 1167

such estimator is dominated by (1 — ¢*(w))X in which ¢*(w) = min{1, ¢(W)}.
A complete class is thus formed by the spherically symmetric estimators with
¢(w) < 1. In the following, we show that the solution of (1.1) subject to
o(w) < 1 is given by ,

(1.2) 6 = [1 — min{1, p5(W)}]X,

which dominates (0.10). The slack variable technique is accompanied by a
finite algorithm. In this example, the solution (1.2) requires a single step only.
[Note that gp(w) = const. yields the positive-part James—Stein estimator.]

Our main results on estimating means pertain to the unconstrained case.
Though certain extensions of (1.2) might well be worthwhile, the main contri-
bution of (1.2) in the present article is to motivate our work on estimating
covariance matrices.

Estimation of the mean vector. AssumethatX ~ .#,(0,I)and S ~ %,(3, k)
with both # and 3 unknown, X and S independent. First, the natural
extension of (0.8) is given by the general formula for the VFBE. A generaliza-
tion of (0.9) is then obtained under which this estimator is minimax. A special
case of this minimax result appears in Bilodeau and Kariya [(1989), Sect. 4].
Finally, the natural extension of (0.10) follows from the assumption that
T1(6]3) is an elliptical distribution. A special case of the latter was used by Lin
and Tsai (1973) to develop minimax results. Our discussion on estimating
means concludes with a brief illustration using Pearson curves.

Estimation of covariance matrices. Denote by A, > A, > -+ 21,20
andl; >1,> -+ >1, > 0 the ordered eigenvalues of 3 and S, respectively,
and set A =(A,...,A,) and 1 =(,,1,,...,1,). Assume II(2) is orthogonally
invariant, that is, [1(03 0% = I1(3), so the VFBE is completely determined by
estimates of A. For a certain gp(l), the analogue of ¢ [see (0.10)] is an
estimate of A introduced by Stein (1975) in a Rietz lecture. (This is our
unconstrained solution, the “rough estimate.”’) This estimate is not always
faithful to the natural order A, > A, > -+ > 2, > 0. Hence, the natural
constraint in (1.1) is ¢; =2 @5 > **+ 2 ¢, > 0, where ¢, = o;(), i =1,...,p,
are the feasible estimates. The minimization is done by the same technique
that gave (1.2), and completely analogous results are obtained. Further, our
constrained estimates of A are seen to correct the well known distortion in the
spectrum of S.

It is natural to compare our estimator of 3, with that of Stein (1975), who
obtained the rough estimates of A by heuristic minimization of the unbiased
estimator of the risk function (not the Bayes risk). He adjusted these by a
pooling algorithm that gave a set of nonnegative estimates and then did
isotonic regression on the result to impose the proper order. Several Monte
Carlo studies have indicated that Stein’s estimator does remarkably well in
spite of its ad hoc nature. In fact, it might be the best estimator (in terms of
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risk) that has appeared in the literature. There are indications, however, that
our present estimator has some advantages and offers further improvement
yet. A brief synopsis of these indications follows.

1. Our constrained minimization is criterion dependent; that is, it is dictated
by the loss function L,. Isotonic regression, on the other hand, is a separate
criterion. Thus we expected some improvement over Stein’s estimator in
terms of risk. However, increased efficiency was not observed in our Monte
Carlo output until we took values of p in the range 15 < p < 20. The
constrained VFBE then performed significantly better than Stein’s estima-
tor (in the statistical sense), but the reduction in risk relative to the usual
estimator was only about 2%.

2. More favorable comparisons were made under L,, even though our own
estimator takes on an ad hoc nature in this case. Here, we rescaled the
estimators (derived under L,) as in Lin and Perlman (1985). This made
comparisons under L, possible. For this case, the constrained VFBE out-
performed Stein’s estimator by some 4-10% (L,). The results so far (for
both L, and L,) were obtained for p € {5,10,15,20} and %k = 2p. We
checked other combinations with p < 2 < 2p. In particular, for p = 20,
k =21 and 3 = I, the VFBE was best (L,) by 20%—a surprising result.
For 3 =1, the favorable comparisons gradually dropped off to 9% as %
increased from 21 to 40 (or 2p).

3. Stein’s estimator appears intractable for risk calculations, and we have not
yet obtained dominance results for the VFBE either. Such results are not
out of the question, however, especially for p = 2 or 3. To start with, the
unbiased estimator of the risk function is valid and obtainable for the
VFBE. It is valid for Stein’s estimator, also, but it seems practically
unobtainable in this case. [The validity of the unbiased estimator of the risk
function for both of these follows essentially from the same argument that
shows that the unbiased estimator of the risk function is valid for the
positive-part versions (1.2).]

In addition to the work on estimation, some useful computational results
are found in this article. Lemma 4.2 and Theorem 6.1 together provide an
effective means of computing unbiased risk estimators in fairly complex situa-
tions. The point is illustrated by our results for loss function L,. (Most of the
L, details have been omitted, but they are available upon request.)

Several workers have either used our basic approach or referenced the
computational results since the first version of this article was submitted.
Among others, Muirhead and Verathaworn (1983) used our method to esti-
mate eigenvalues in a two-population setting. Dey and Srinivasan (1985) and
Dey (in several papers) have used Theorem 6.1 in various estimation problems.
Also, Loh (1988a, b) made effective use of the slack variable technique. Loh’s
papers provide further evidence that our method is more efficient than Stein’s
(in terms of risk). Finally, the analogue of our variational method was worked
out in the discrete setting by Alcaraz (1990), and minimax results were
obtained for the estimation of several Poisson means.



VARIATIONAL FORM OF BAYES ESTIMATORS 1169

2. The general Euler equations. Assume that A is a random matrix
with p.d.f. f(A|¥) with respect to the Lebesgue measure on R"™. Assume
further that ¥ = (¥,,¥,) in which ¥; € R?:, i = 1,2. The vector ¥, is the
para.meter of interest and ¥, may, be regarded as a nuisance parameter. If
nuisance parameters are not present then we set ¥ = ¥,. [In (3, $ L, ;), for
example, ¥ = 3, is the parameter of interest and both S and 3, are embedded
in RP®*1/2] Throughout, we assume that L(‘I'l, ¥,) has been specified and,
importantly, that an unbiased estimator p(¥, ¥,) of p(¥,, ¥,) is available. In
this section, the VFBE of ¥, is defined by the solution of a system of Euler
equations.

Now assume that (¥,, ¥,, L) is invariant under a transformation group and
that the invariant estimators are of the form

(2.1) ¥, = a[A, ¢(w)] € R”

for a specified function a[-, - ] in which (a) w € R™ is a maximal invariant (b)
¢ is arbitrary, ¢: R™ — RY?; hence a: R"*? - RP: for positive integers n, m,
q and p,.

The class of estimators under consideration is given by the following subset
of the invariant class.

DEFINITION 2.1 (Feasible estimators). Assume that (¥, ¥,, L) is invariant
under a transformation group and that the invariant estimators are given by
(2.1). The feasible estimators are those in (2.1) for which an unbiased estima-
tor p(¥r,, ¥,) of p(¥,, ¥,) = E, L(\¥,, ¥,) exists and can be written as

(2.2) p(¥,¥,) = £[w, o(W), do(w)],

where : R™*(m*D4 R in which de(w) = [(9¢;/0w;XW)], ¢ X m. If the
problem is not invariant under a transformation group, then we set w = A
and the feasible estimators are those of the form 11’ = a[A, ¢(A)] = ¢(A),
q = p,, for which an unbiased estimator of the risk functlon exists.

LITERATURE. Conditions under which unbiased estimators of the risk func-
tion exist for various situations are found in the papers of Hudson (1978), Haff
(1979b, 1981), Berger (1980), Stein (1981) and Haff and Johnson (1986).

The VFBE is given by the following theorem.

THEOREM 2.1. Let g(w|¥) be the p.d.f. of w given ¥ with support on
w C R™. Let II('¥) be the (possibly improper) prior distribution of ¥ and set
gn(w) = [g(w|¥) dII(¥). For the problem (¥, ‘l’l, L), assume that a formal
Bayes estimator exists and is a feasible estimator. In addition, assume the
following.

() The function [w,e(w),de(w)]=lw, o(w),de(w)lg(w) is twice
continuously differentiable, R™*(™+17 - R,
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(ii) For any constant ¢ and any vector B(w) = (B{(w), By(w),..., Bq(w))t
such that alA, o(w) + eB(W)] is a feasible estimator, we have

1/2
f[gn(w)lﬂ (w)l( (0/09},) ) ]d7—> 0 asj—

foreachi=1,2,...,q. The integral is over T}, the surface of w;, j = 1,2,.
where w; is an increasing sequence of simple regions such that w; T w. Also, 7
is surface measure and ¢, is that argument of 4 associated with the variable

dp;/dw,,.

Finally, if the problem (¥, 11'1, L) is strictly convex in 'Fl, then the formal
Bayes rule is unique and must be a solution of

(2.3) Vo= [VVE] 0+ [V ][V, log gn(w)],
in which V, = (3/3¢,,8/0¢,,...,3/3¢,), Y, = (3/0w,,d /3w, . ..,3/dw,,)* and
Vy = 0/9¢};), g X m, with ¢}; = d¢,/dw;.

NoraTioN. For future convenience, let us write [L] = [R1] + [R2] where
[R1] depicts the first term on the right-hand side of (2.3) and so forth. This will
simplify the presentation of special cases.

Proor oF THEOREM 2.1. The uniqueness of the formal Bayes rule
alA, o(w)] follows from the convexity of the loss function. Now set J[¢] =
Juw,/ Tw, o(w), dp(w)ldw and let e; be the ith unit vector in R It is seen
that the differential of o, [¢]in the zth direction is given by

(@/ae)ifo + stiellms = [ |00/~ K 0/ {(0/0610 /1|

+./;_‘J<G’ V>Bi dT

in which (G, v) is the usual inner product of

’ / / t

G = (379¢1,0/79¢)3, - -, 3] 9¢}m)
and » is the outward unit normal on TI;. The differential must be zero at the
extremal <pn(w) Note that the surface 1ntegra1 in the last equation goes to 0 as
Jj — ® by virtue of condition (ii) in the theorem. Thus, the first integral must
be zero for each j, and this together with the arbitrary nature of B; implies

m
(8/3¢,) /— X (9/0w,)[(3/9¢) /] = O
c=1
i=12,...,q,at ¢y(w). These equations can be written as

(3r/30)8n = X [(5%/0w. 36ic)8n + (9#/291) (%8n/?w)| = O,
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i=12,...,q. Finally, (2.3) is obtained by dividing both sides of the last
equation by g. We omit further details. O

REMARK 2.1. Denote the unique solution of (2.3) by ¢p(w). This defines
alA, ¢;(W)], a representation of the formal Bayes estimator that we call the
variational form of the Bayes estimator (VFBE). Note the explicit dependence
upon V, log g(w).

REMARK 2.2. In (2.3), the notation V,, + indicates postmultiplication of V,,
by a scalar 4, followed by partial dlfferentlatlon as indicated; thus the ﬁrst
term on the right-hand side of (2.3) is

[Veve]'n = [Va(ver)'] -

REMARK 2.3. Conditions (i) and (ii) of Theorem 2.1 are suggested by
m-dimensional extensions of results found in Gelfand and Fomin [(1963),
pages 152-154].

REMARK 2.4. We can extend Theorem 2.1 by allowing the arguments of .
to include all the second-order terms 9%p,(w)/dw; dw;. A case in which this
structure is actually present is briefly discussed in Section 7.

3. Estimation of the mean vector. Assume the normal Wishart setup
(0.1) with 6 to be estimated subject to (0.2). In this section, the solutions of
(2.3) are given for several special cases and a minimax theorem is proved
where 3 is unknown. The solution of (2.3) is also displayed for the Pearson
case.

Recall that E(8|X), the usual expression for the Bayes rule, is computed by
minimizing the posterior expected loss. The usual expression must be equiva-
lent to the VFBE and connections between the two are illustrated among the

special cases.
First, we need p(0 0) [recall (2.2) and (2.3)], and this estimator follows

from two identities.

1. The normal 1dent1ty of Stein (1981): For X ~ .#,(6, 3) and ¢: R? —> R?, we
have
(3.1) E, (X - 0)'S"'(X) = E, Vo(X),

where ¢ is almost differentiable and Vip(X) = 3, d¢,(X) /9x;.
2. The Wishart identity of Stein (1977a, b) or Haff (1979a). Let S = (s;;) ~
}7’ (3, k) with 3 unknown. Also, let D = (d;;) be a p X p operator matrix,
d;;=(1/2X1 + 5,;Xd/9s;;), where §;; is the Kronecker delta. For suitable
p X p matrices V = (v;;) we have

(3.2) tr Eg(VS™1) = 2tr E5(DV) + (k —p — 1)tr E5(S™'V),
in which DV = (3,d,;v,;), p X p. See Haff (1979b or 1981) for conditions
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under which this identity is valid. See also Haff (1981, 1982) for certain
generalizations.

Recall that the operators in (2.3) are given by
V, = (9/3¢1,0/005,...,9/3¢,)', axX1,
V, = (3/0wy,3/0w,,...,d/0w,),, mx1,
and
Vo =(9/9¢5), gXxXm,

where, in the latter, ¢;; = dp;/0w;. These are distinguished from V in the
normal identity (3.1), except that V and V,, will coincide whenever A = w. We
assume throughout that the conditions of Theorem 2.1 are satisfied, and we
shall use [L] = [R1] + [R2] to designate (2.3).

ExampLE 3.1 (Prototypical case). Again, let X ~ N, (8, I). The solutions of
(2.3) are given for both asymmetric and spherically symmetrlc prlors For the
latter case, we derive (1.2) since this result motivates our main application,
that is the estimation of 3 under L,.

(1) TI(9) asymmetrical. In terms of (2.1), we have ¥ = 9, A = w = X and
n=m=q =p. Now, for convenience, we write the feas1ble estimators as
0 = a[X, ¢(X)] = X + ¢(X) where ¢: R? - RP. It readily follows from (3.1)
that an unbiased estimator of p(ﬂ ) is given by

(33)  p(d,.0) = £[X, ¢(X), do(X)] = p + 2V'p(X) + o(X)'o(X),

in which d¢(X) = Vo(X), p X 1. The terms in (2.3) are [L] = 2¢(X), [R1] =
and [R2] = 2V log £,(X); thus (2.3) becomes ¢ (X) = Vlog f;(X), which de-
fines

(3.4) 0 = X + Viog f(X).

How is (3.4) related to the more usual representation? Apart from our
method, (3.4) is obtained from E(6|X) if one observes that Vf(x|9) =
—(x — 6) f(x|0) [see Stein (1981), page 1140]. Surely this can always be done;
that is, the usual expression for the Bayes rule always gives the VFBE, after it
is transformed by appropriate identities. [Note that the last equation is a key
step in the derivation of (3.1) (with 3 = I).] Such conversions are academic,
however, since they require that the VFBE be known in advance. On the other
hand, (2.3) provides the appropriate generalization of (3.4) for a large class of
useful models. The main point, of course, is that the VFBE can be used to find
estimators with good frequency properties. While our method is endemic to
problems where an unbiased estimator of the risk function is available, such
problems do account for most of the published work on Stein-like estimation.

(ii) TI(6) spherically symmetric. Again ¥ = 6. Now A = X, w = X’'X and
the feasible estimators are of the form 0 = (1 — ¢(w)X for ¢(w) real; n =
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and m = ¢ = 1. From (3.1), the unbiased estimator of the risk function is
given by

p(0,,0) = p — 2V [a(W)X] + [¢(W)X]'[¢(W)X]

=p — 4w¢' (W) — 2pp(W) + we?(w).

(Recall that the definition of ¢ is specific to the problem.) Since (1 — p(w))X is
dominated by [1 — min{1, ¢z(w)}] X [Anderson (1984), page 91] we introduce
the “slack variable”

(3.6) s(w)’ =1 - o(w),
and then solve (2.3) for the extremal ep(w)? =1 — ¢(w). This determines an

estimator for (1 — ¢ (W)X in which ¢y(w) < 1.
The solution is obtained as follows. First, from (3.5) and (3.6) we obtain

ﬁ(f*,,, 0) =p — 4w¢' (W) — 2pp(W) + wo?(w)

(3.5)

(3.7)
= —p + w + 8we(w)e' (W) + 2(p — w)e(w)® + we(w)*.

Denote the last expression by x[w, e(w), de(w)] in which de(w) = ¢'(w). In
(2.3) we have V. = d/de so that [L] = 8we'(w) + 4(p — w)e(w) + dwe(w)3,
The other operators are V., = d/d¢ and V, = d/dw. Thus [R1] = 8s(w) +
8we'(w) and [R2] = 8we(w)Xd /dw)log g(w). In summary, (2.3) becomes

e(W)[(p - 2)/w — 1 + &(w)* - 2(d/dw)log gn(w)| = 0,
from which it follows that
en(w) =0 or eg(w)®=1-(p - 2)/w+ 2(d/dw)log gn(w).
Consequently, we obtain
(3.8) 8 =[1-(p-2)/w+2(d/dw)log gn(w)] "X,

in which r*=r if r > 0 and r*= 0 if r < 0. (Recall that g is any function
for which the minimization is well posed.)

We shall let (3.8) and its analogues suggest naive choices for g;. In (3.8), for
example, g;(w) = const. is an important reference since it gives the positive-
part James—Stein estimator. [It is easily seen that the formal Bayes risk does
not exist if gr(w) = const., so this choice extends the solution class (3.8).] This
strategy is gainfully employed within the context of (3, %, L,), a problem for
which we have much less intuition.

LireraTURE. See Berger (1980) for ample references wherein generaliza-
tions of p(0¢ 0) (3.5) are used to find minimax estimators of §. Among these,
one should see Stein (1974, 1981). Efron and Morris [(1976a), Berger (1976a,
b, 1980) or Hudson (1978). Various theorems from these papers can be used to
impose conditions on g (w) under which (3.8) is a minimax estimator. In this
connection, see Efron and Morris (1976a), Theorem 2, page 16]; see also
Berger [(1976b), Theorem 1, page 257].
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We should mention that Brown (1971) used variational arguments of a
different character than those presented in the present paper. Also, one should
see Brown (1988) for a different derivation of positive-part estimators and a
discussion of their properties. Other results on positive-part estimators are
found in Bock (1987).

ExampLE 3.2 (Estimation of § when 3 is unknown). Now consider (8, §, L)
in which X ~ N,(6, %) and S ~ W,(3, k) with 3 unknown; £ —p — 1> 0 and
X and S are independent.

(i) I1(6, 3) asymmetrical. In this case, we set A = w = (X, S) and ¥ = (6, 2)
in which ¥; = 6 and ¥, = 3.. The feasible estimators are now among functions
of the form a[X, ¢(W)] = X + ¢(W) with W = (X, S) and ¢(W) € R’ [n =m =
(p% + 3p)/2 and q = p). From (3.1) and (3.2), the unbiased estimator of the
risk function can be written as

AW, o(W), do(W)]
(3.9) = 4¢(W)'Dp(W) + (k — p — 1)p(W)'S™ (W)
+ 2Vip(W) + p.
Here [L] = 4D¢ + 2(k — p — 1)S™ 1, [R1] = 4D¢ and
[R2] = 2V log g + 4[ D log gple-

Thus it follows that (2.3) has the unique solution ¢(W) =[(k —p — 1)S™! —

2D log g;17'V log gy, and thus the appropriate generalization of (3.4) is

(8.10) bz=X+ [(k—p—1)S~' — 2D log g(W)] 'V log gr(W).

To verify [R1] and [R2], match W = (X, S) with an element in R" as follows:
X, fort=1,2,...,p,

We= \s, fort=t;=(2p —i)(i - 1)/2 +j +p, provided i <.
One thus obtains V,, ¢ = (21,,,4®), p X n, in which the elements of ® are
given by d./9¢;, with ¢, =d¢,/dw,, i=1,...,p, t =p + 1,...,n). Particu-
larly, ,

p i-1
‘9/"/’990;1 = ¢i8t,t,~,~ + % Z xq,’cat,t,-c + % Z ¢cat,tci
c=i+1 c=1
in which 8, , is Kronecker’s delta on ¢ and u. Further details are omitted.
(ii) I1(6]2) elliptically symmetric. Lin and Tsai [(1973), page 143] gave a
class of prior distributions I1(6, 3) which depend on 8 only through 63~
[see also Tiao and Zellner (1964) and Villegas (1969)]. Here the formal Bayes
estimators are of the class a[X, ¢(w)] = (1 — (W)X, with w = X*S~ X and
¢(+) a real-valued function. [Now A = X and ¥ is given as in (i).] From (3.9) it
follows that the unbiased estimator of the risk function is

AW, 0(W),do(W)] =p — 2pe(W) — 4wy (W) — 4w’p(W)¢ (W)
+(k —p — 1)we*(w)
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in which d¢(w) = ¢'(w). It is left for the reader to show that (2.3) has the
unique solution

(p — 2) — 2w(log gn(w))'
w[(k —p + 3) + 2w(log gz(W))]
The formalism g (w) = const. yields
(3.11) 8s=[1-(p - 2)/w(k —p +3)IX,

the James—Stein (1961) estimator for this situation. Again, for w suitably
defined, it appears that the most important aspect of the Bayes estimator from
the frequentist point of view is featured by the VFBE.

en(w) =

Minimax estimators. Here we give a minimax theorem for the VFBE of
Example 3.2(i). In particular, Stein’s ‘“‘superharmonic condition” (0.9) is ex-
tended to this setting. After some preliminaries, the result is stated as Theo-
rem 3.1. A special case of the minimax theorem appears in Bilodeau and
Kariya [(1989), Section 4].

NotaTioN. For a p X p matrix V, let V(VV?) be that p X p operator
defined by the premultiplication of VV’= (3%/dx,0x;) by V. For a scalar
function &, we set V(VV*)h = V(3%h /x; 9x;).

LeEmMA 3.1. For suitable functions h: R? - R, we have

(91og h/ox;)(3log h/dx;) + 202 log h/dx; dx; = [49*h'/? /ox; dx;] /M
or, equivalently, for any p X p matrix V,

(Vg h)'V(Vilog k) + 2tr[V(VV)log k] = 4tr[V(VV*)]|hY/2/h1/2,
ProorF. The proof entails routine calculus only; we omit the details. O

In addition, we need the product rule for an operator D whose elements are
linear combinations of 3/ds;;, i, j = 1,2,..., p [e.g., operators of the kind @D
or (D) where @ is a matrix]. The result, Lemma 3.2, is used extensively in
the following.

LEmMMA 3.2. Let A and B be matrix functions of S. Assuming that all
partial derivatives and products exist as needed, we have

D(AB) = (A'D*)'B + (DA)B.

Proor. Perform the formal multiplication and differentiate coordinate-
wise. We omit the details. O

THEOREM 3.1. Assume that X ~ N,(0,3) and S ~ W,(3, k) with X and S
independent, 0 and 3, unknown, k —p — 1> 0 and p > 3. For W = (X, 8S),
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let H(W) be a p X p symmetric matrix, and let g(W) be a positive-valued
function. Assume also that

0 = X + H(W)V log g(W)
is a feasible estimator (recall De/inition 2.1). Then 6 is a minimax estimator if
¢(W)'[4D + (& —p - S~ — H '] o(W)
(3.12) + 4tr[H(VVY)] gn(W) 2 /g (W) '/
+ 2[V'H][V log g(W)] < 0,
where ¢(W) = HW)V log g(W), p X 1.
ReEmMARk 3.1. Notice that the second term in (3.12) coincides with the
Laplacian in (0.9) if we set H = I. The first and third terms of (3.12) are due to

the fact that H is essentially an estimator of the covariance matrix. (The latter
point is clarified in the following.)

REMARK 3.2. One can show that the James—Stein estimator (3.11) satisfies
inequality (3.12). [Set H=[1/(k —p + 3)IS and gp(W) o X‘S™1X)~?~2/2;
hence ¢(W) = HV log g(W) = —cX/X’S™ !X with ¢ =(p — 2)/(k —p + 3).
Also use the fact that D(X!S™!X) = — S IXX’S~!; see Haff (1982), Lemma
6(ii).]

Proor oF THEOREM 3.1. It follows from (3.9) that

$(8,0) — p(X,0) = 49(W)'Dp(W) + (k —p — 1)p(W)'S™'p(W)
+ 2 Vip(W).
A routine calculation shows that
2V'%(W) = 2[V'H][V log g;] + 2tr[H(VV*)]log gy

= 2[V'H][V log gr] — [V log gy ]'H[ V log gy;]
+[V log gn]’H[V log g] + 2 tr[H(VV‘)]log &n

= 2[V'H][V log g ] — (W) H ™ 'p(W)
+ 4tr[H(VV*)]|gl/2/gl/?

(from Lemma 3.1). Thus the unbiased estimate of the difference in risk
becomes

p(8,0) — B(X,0) = o(W)'[4D + (k —p — 1)S™' — H '] p(W)
+ 4tr[H(VV*)]gl/2/gk/? + 2[ VH][V log gp]
and the proof is complete. O

We will show that H is generally regarded as an estimator of 2 by relating
the VFBE (3.10) to the more usual representation of the Bayes rule. The
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relationship follows from these equations:
85 =X+ [(k —p - 1)S7! - 2D log go(W)] 'V log g (W)

(3.13) =X+ [fE‘IQ(EIW) d'E] _lV log gn(W)

- [fz‘lq(EIW) dE]_l[ffE'IBp(B,EIW) do dz].

Here p(6, 2|W) is the posterior p.d.f. of (9,3) and q(ZIW) = [p(6, 3|W) d6.
From the second equation in (3.13) it is clear that H is an estimator of 3. The
third equation is the standard result one obtains by minimizing the posterior
expected loss (actually a trivial calculation). These are related as follows. The
second equation in (3.13) is obtained from the first one by using

(3.14) -2Dloggn(W) = —(k—p - 1)S7' + [ [37p(6,3IW) d0 d3,

the proof of which is left for the reader. The action of D in (3.14) is a key
ingredient in the derivation of the Wishart identity (3.2). From the second line
of (3.13), we obtain the third one by using

Vlog gp(W) = — [[[z-lp(o, 3|W) do dE]X
(3.15)
+ff2-10p(o, S|W)deds

(the proof is again left for the reader). In its slightly disguised form, the
gradient in (3.15) is used in the derivation of the normal identity (3.1).

We conclude this section with an illustration of the VFBE for some nonnor-
mal cases. See Haff and Johnson [(1986), page 47] for the verification of certain
details.

ExamMpPLE 3.3 (Pearson curves). Let X, p X 1, be a vector of independent
variates in which the p.d.f. of X; is defined by

~ e S e

oI \% %) = — Xil¥;)»

dx Boi + Bu%x; + Baixf

i=1,2,...,p, with the mode «; the only unknown parameter. Here ¥; is the
mean, ¥; = (8;; + @;)/(1 — 2B,;) and an estimate is required of the vector of
means V¥, p X 1, under the loss function (0.4). Let ¢;(x;) = (By; + ByX; +
By, x3) /(1 — 2B,), i =1,2,..., p, be the ith component of ¢, p X 1, B,; # 3.
Finally, consider the general class of estimators ¥ = X + ¢(X), o(X) a p X 1
vector (w = X). From Haff and Johnson (1986), the unbiased estimator of risk
is

p
21X, o(X), de(X)] = glqi[zci(xi) dp,(X) /9x; + ‘Pi(x)2 + ci(xi)] )

do(X) = diag(9¢,(X) /0%, .., 09,(X) /0,).
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The terms in (2.3) are [L] = 2Q¢(X), [R1] = 2Q(d¢,/dx,,...,dc,/dx,),, p X
1, and [R2] = 2@ diag(c,X)),...,c,X )V log f,]. It follows that the ith
component of the solution of (2.3) is given by

ein(X) = de;(X;)/dx; + ¢;(X;)(9/0x;)log fr(X)
= ¢;(X;)(8/9x;)log[e;(X;) fu(X)]

and hence the ith component of the VFBE by ¥, =X, + ¢,;(X), i
,2,...,p

4. Estimation of the covariance matrix: Unbiased estimators of
risk functions. Assume that S ~ W,(3,%), k —p — 1> 0, with 3 to be
estimated under L, or L, in (0.3). In "this section, we provide the unbiased
estimators of p,(£,3), i = 1,2, up to certain matrix derivatives. These deriva-
tives are specialized in Section 5 for orthogonally invariant estimators. With
their determination, the estimation problems (3, £, p;), i = 1,2, are treated in
Sections 6 and 7, respectively.

We note first that L(£,3) = tr(£31) — logdet(3) + logdet(3) — p and
that the last two terms have no effect on comparisons between estimators.
Thus we omit them and define p(£, 3) as

(4.1) pi(2,3) = Ex[tr(3371) — logdet(3)].

Now expand the second loss function as L,(2,3) = to(T3 1) — 2tr(£3 ") +p
in which T = £37'%, so that

(4.2) px(£,3) = E5[tr(T= 1) — 2tr(£37Y) + p|.

(It will be convenient to keep the constant p in this case.) In (4.1) and (4.2),
the unbiased estimator of a general term E tr(YE‘l) is needed, where V =
V(S,3), in order to provide p,(2,3) and p,(2,3). Note that the desired
estimator is implicit in the Wishart identity (3.2).

The unbiased estimator p(2,3) follows immediately from (3.2); that is,
merely replace £ by V in (3.2). The result was due to Stein (1975).

THEOREM 4.1 [Stein (19'{5)]. Let £ be an estimator of 3 for Iy)hich 3.2)is
a valid identity with V = 3. Then the unbiased estimator of p(2,3) is

(4.3)  $y(2,3) = 2tr(DE) + (k- p — Dtr(S7'8) — logdet(£).
Proor. An immediate application of (3.2). O
Now we provide (£, 3), the unbiased estimator of (4.2).

THEOREM 4.2. Let $ be an estimator of 3 for which (3.2) is a valid
identity when V is replaced by each of £, £37 1238713 and $D3X. Then the
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unbiased estimator po(2,3) is given by

ps(£,3) = 8tr(£D28) + 8tr(DE)” + 8(k — p — 1) tr(S~'$DS)

(4.4) —(k=p - D[tr(S™8)]" + (k —p - 1)(k - p - 2)tr(S718)’
— 4tr(DE) - 2(k —p — Dtr(S712) + p.

Proor. In (4.2), the term tr(T3~!) is quadratic in the coordinates of
37! = (o). Hence two applications of (3.2) are required. Here we need to
differentiate matrix products, and Lemma 3.2 is needed for this. Also, we need
the fact that tr{(AD)'C] = tr(ADC?®), which is routine to verify. Further
details are omitted since they are tedious and add nothing to the presentation.

O

The reader who is unwilling to sort through the proof might wish to check
(4.4) for a special case. For example, set £ = (1/k)S. It is elementary that
po(S/k,3) = p(p + 1)/k. This value is readily obtained from (4.4) by using
the fact that DS = (p + 1)I/2, p X p.

5. Orthogonally invariant estimators: Calculus on the eigenstruc-
ture. Recall that (4.3) requires the derivative D% and (4.4) requires both
D% and D2%. We assume henceforth that II(3) is orthogonally invariant. The
formal Bayes estimators under both L, and L, are thus orthogonally invari-
ant and are given by

(5.1) $ = Re(L)R,

in_which L = diagly,l,,...,1,), 1, 21,> -~ >1,. RR*=R‘R=1 and
(L) = diag(e(L), p,(L), ..., (pp(L)) with qo,(L) >0,:i=1,2,...,p. For this
class of estimators, we give a formula for DY from whlch DS can be
obtained by iteration.

Set R = (r;;). The following derivatives appear in Stein’s (1977a) notes:

dim l-=r-«r . and
(5.2) mn lJ (1/2) Z [rza/(l a)] [rmarnJ + rnarInJ]

a+ J
In a more general setting, they appear in Wilkinson (1965). As a complement
of Lemma 3.2, these equations are now given (without proof) in matrix form,
that is, in terms of the action of D = (d;;), p X p. Theorem 5.1 then provides
a useful formula for D[R (L)R‘].

LemMa 5.1. Let 1,,1,,...,1, be the eigenvalues and R, R,,...,R, the
corresponding eigenvectors of S, a p X p positive definite matrix. Also, let D
be the p X p operator defined in (3.2). Then we have

(a) Dll=RlRtl,po, i=1,2,...,p,
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and
(b) DR; =I!R; wherel*=3) 1/(1,-1,).

a#i
L]

The following is the main result of this section.

THEOREM 5.1. Let (L) = diag(¢,(L), px(L), ..., ¢,(L)) in which ¢(L) is
differentiable on {1, > 1, > -+ >1,}. Then
D[R¢(L)R!] = Re™(L)RY,
in which ¢™(L) = diag(e{™(L), ¢§(L), . .., (L)),
(L) = 3 X [ei(L) — ea(L)]/(1; — 1,) + 9, (L) /01,

(53) a#i
i1=1,2,...,p.

REMARK 5.1. From Theorem 5.1, it is clear that D™3$ can be obtained by
recursion provided that ¢(L) is smooth enough.

Proor oF THEOREM 5.1. From Lemma 3.2 we obtain
DRgR' = (¢R'D)'R’ + [(R'D)'¢|R* + (DR)¢R".
Denote these successive terms by A, B and C, respectively. First, we show
that A =RNR’ in which N =diag(n,,ny,...,n,), n;=Q/2)Z;.;0s/
d, — 1,). The matrix
A= (Z ‘PbZ 9 dairjb) = %(Z h rjaria‘Pb/(lb - la))
b a

b a#b
= %Z Z Rasz‘Pb/(lb - la) = Z RN(b)Rt - I,
b ab b
in which N® is a diagonal matrix N® =1 if i =b and N® = (1/2)¢,/
(, — 1) if i +# b. The claim for A is established by noting that £ ,N® — 1 =
1/2)L,.;05/A, —1,). Next we show that

B = Rdiag(0p,/dl;,0¢,/0l,,...,00,/dl,)R".
The derivative is (R’D)'¢ = (X ,r,; d,;¢;;). Further,
Z raj daiq’j = Z rajz (a‘Pj/alc) dailc = Z rajz (3‘Pj/3lc)racric
a a c a c

=2 (3¢,~/0lc)(2 rajrac)ric = (9¢;/0L;)r;;.

Hence, (R'DY¢ = [(3p;/dl;)r;;]. The claim for B now follows from
[(R'DYIR! = (L (3¢, /3l )r,,x;,) = T (3¢,/3l, )R, R Finally, we show that
C = RMR', M = diag(m,, m,,...,m,), where m; = ¢;l* (recall Lemma 5.1).
This is immediate since (DR)oR’ = (IfR, I3R,, ..., 3R )eR’ =
Rldiagd7},13,...,1)leR’ = RMR’. In summary, it is readily seen that A +
B + C = Re™(L)R’ and the proof is complete. O
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6. Results for loss function L,.

Preliminary remarks. Denote by A; >A;> -+ 2A, >0 the ordered
eigenvalues of 3 and recall that an orthogonally invariant estimator of 3 is
obtained by specifying ¢,(L), an estimator of A;, i = 1,2,..., p. In this section,
an estimator of Stein (1975) is compared with an estimator suggested by the
VFBE under L, (both are orthogonally invariant). The two estimators are
closely related, but they impose the natural constraint [¢,(I) > ¢,(L) > - --
> ¢,(L) = 0] in different ways.

Stein’s (1975) method of computing ¢,L), i =1,2,...,p, subject to
@1L) = ¢y(L) = -+ = ¢,(L) = 0 has a certain drawback; namely, his correc-
tions of initial (disordered) estimates are not driven by the risk function. (A
brief summary is given below.) By comparison, our 6wn method proceeds as
follows: Since [p(X, 3)fp(S)dS = [p(X, 3)gp(l) dl in which 1 =
(,,1,,...,1,) and gn(l) is the marginal p.d.f. of 1, our estimates of A; > A, >

* 2 A, > 0 are constructed from the solution of

minimize [5($,3)gn(!) dl
(6.1)
subject to ¢;(L) > ¢p(L) = -+ 2 ¢,(L) 20

The prior II(3) is orthogonally invariant, but not specified otherwise. Conse-
quently, g is not determined by a particular prior distribution. We will start
with the solution class indexed by the set of all g for which (6.1) is well
posed. Then we will examine a naive choice for g; which is suggested by
Stein’s (1975) work.

In the unconstrained solution, the substitution g(I) = det(S~!) yields
eigenvalue estimates identical to Stein’s unconstrained estimates. This choice
for g is used throughout since it enables us to compare the two estimators. It
is not clear, however, that this is optimal in any way. In particular, it is not
clear that det(S~!) is the marginal distribution for any improper prior distri-
bution. The problem of choosing gy; is virtually an open one.

On the method of solution: Similar to (8.6), we introduce slack variables
&4(L), 5(L), . . ., £,(L) defined by

2

(6.2) @1—¢2=¢l, @2~ ¢3=e¢3, s $p =8

and we give a finite algorithm for solving (6.1) in terms of the &’s. The
solutions are close analogues of the positive-part solutions (3.8).

Finally, why compare the VFBE with Stein’s (1975) estimator? One stan-
dard for judging the frequency performance of new estimators is the minimax
estimator of James and Stein (1961). It has constant risk and it dominates
(1/k)S, the unbiased estimator. In recent years, however, Stein’s (1975)
estimator has often been the standard, and there are two reasons why this is
so. First, the constant risk minimax estimator never beats (1/k)S by very
much [see Stein (1977a, b) for comparisons]. Second, the Monte Carlo results
of Lin and Perlman (1985) indicate that Stein’s estimator beats (1/k)S and
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various other competitors by a substantial amount—over a significant portion
of the parameter space, anyway. (Stein’s estimator does best when A; = ¢,
i=12,...,p, and its performance decreases as the A’s become more disper-
sive.) We should add that Lin gnd Perlman (1985) devised other estimators
which perform well in particular situations, as did Dey and Srinivasan (1985).
See Haff (1979a, b, 1980) for related work. Overall, it appears that Stein’s
estimator and the VFBE outperform any of the others when the eigenvalues
are close, with the VFBE doing best.

Stein’s (1975) estimator: A brief sketch. The specialization of (4.3) for
orthogonally invariant estimators follows from Theorem 5.1 and a simple
identity,

T Y (0 -0/ —1,) =2 T (@ — 0/ — 1,)

b b#i i b>i
= 22 Z ¢:./(1; — 1).
i b#i
For the latter simply combine the (i, b) and (b, i) terms. Thus the unbiased
estimator of the risk function is given by

pi(2,3) =2 ¥ oi(L)/(1; - 1) + 2% dg,(L) /0L,

i b#i i

(6.3)
+(k-p - 1Y ¢(L)/1; - ¥ log¢,(L),
i i
which appeared first in Stein’s (1975) Rietz lecture.
Stein (1975) ignored the partial derivatives in (6.3) and minimized the
resulting approximation of §,. This approach yields rough eigenvalue esti-
mates, namely,

(6.4) 5= la/[(k -p+1+21,)Y 1/1,-1)|, a=12,...,p.

i#+a
Note that the constraint in (6.1) might be violated by these; that is, they can
be out of order and any but the first (a = 1) can be negative. For the
denominators in (6.4), let us set

(65) auL)y=(k-p+1)+21,) 1/(1,-1,), a=12,...,p.
i+a

Stein corrected the estimates (6.4) by using (a) an algorithm which pooled
adjacent pairs (I,, a,) to ensure positive eigenvalue estimates, followed by (b)
an isotonic regression on these positive estimates. See Lin and Perlman (1985)
for a detailed description of steps (a) and (b). [Also see Barlow et al. (1972) for
the standard work on isotonic regression.] In the following, a return from steps
(a) and (b) is simply called Stein’s correction, and we denote these corrected
terms by &j, i=1,2,...,p. Accordingly, Stein’s (1975) estimator of the
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covariance matrix is given by

(6.6) $s=RFS(L)R’, where 5° = diag(35,...,5).

The solution of (6.1). In (6.2), note that the ¢; are recovered by
(6.7) o (L) = Y e(L)?, i=1,2,...,p.
t>i

Now rewrite (2.3) in terms of the slack variables; viz., in the notation of (2.3)
(where p, =) we have

£lle),de()] =2 ¥ Y7/, -1,) + 4) Y &,05,/0l; .

i b#it>i G ot=i
(6.8)

+(k-p-1DEL /)T et~ T log[ze?],

t>i t>1

in which w=1=(,,1,,...,1)), & = (¢, 65,...,¢,) and de = (3¢,/9l)), p X
p. The terms in (2.3) are thus given by

[L] = ( Zl {4811 Z 1/(la - lb) + 4aei/ala

a=1 b+a
-1
+2(k - p - De(1/1,) - 2e,~[z ] })
t>a
a p X 1 vector,
i
[R1] = (Z 488i/6la), p X1,
a=1

(notice that [R1] cancels with the second term in [L]) and

[R2] = (48,~ Zl'. alogé,'n(L)/al.,), p X1

a=1

Finally, the ith equation of the system [L] = [R1] + [R2] is given by

&Y [2% 170, -1,) + (k- p - 1)(1/1,)
(6.9) a=1| b+a

~1/¢, - 201og gn/ala] -0,

i=1,2,...,p. This is a triangular system of equations whose solution is

readily described.
For the remainder of this section we interpret the solution of (6.9) in terms
of 95, a =1,2,...,p [recall (6.4)]. Accordingly, we henceforth set

(6.10) gn(l) a det(S71),
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so that d log g;(1)/3l, = —1/1,. From the latter, the system (6.9) becomes
X [(e) 7 = (ea)] =0, i=1,2,...,p
a=1 .

or, schematically,
1/¢1=1/9, or & =0,
1/e1+1/¢3=1/¢1 + 1/¢; or £,=0,
(6.11) .

p p

Y 1/ei= Y 1/¢, or ¢,=0.
a=1 a=1 *

[Recall that ¢(L) =X, ,eI)% i =1,2,..., p.] This system is solved by a

finite algorithm, and a FORTRAN routine is available from the author upon

request. Let us denote the solution of (6.11) by ¢’ > @5’ > -+ = ¢ and

hence the VFBE by

(6.12) 34 = RoH(L)R! where o = diag(ef,..., o).

A qualitative comparison. Let us informally compare the eigenvalue esti-
mates in (6.6) with those in (6.12). Among &3, @3, ..., &, (Stein’s correction)
we find pooled estimates of the kind

(6‘13) ‘?Js = @s‘n ‘Pj+2 (l + l_]+1 + lj+2)/(a + Qi1 + aj+2)

for example [recall (6.4)], where in general the actual number of consecutive
rough estimates that are pooled depends on the pattern of violations. [Again,
see Lin and Perlman (1985) for details.] By comparison, ¢f, o3, ..., o typi-
cally include harmonic averages of consecutive rough estimates. Thus, the
VFBE analogue of (6.13) is given by

(6.14)  off = oF, = oF, =3/[(1/¢}) + (1/0}11) + (1/6543)]-

If the required order is not violated by the rough estimates, then it is seen that
o= =9¢5i=12,.

On correcting the eigenvalue distortion in the sample covariance matrix.
From Jensen’s inequality, it follows that E[(1/k)1;] > A, and E[(1/k)1,] < A,,.
Furthermore, this distortion is greatest whenever ¥ = o2I. It can be seen that
the VFBE corrects this distortion in natural way. In particular, let ¢Z,.. ., <pp
be the eigenvalue estimates which define the VFBE with gp(!) « det(S -1,
Then it can be seen that

(1) (1/k)1, < <p}:‘r a.e.
and

(i) [(1/R)L] = o7,
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where ¢f = h/Y ! (1/¢5) and h satisfies p > 2h — 1. The proof of this
statement is routine, so the details have been omitted.

The Monte Carlo re;‘sults. We close this section with some Monte Carlo
comparisons between g and ¥. First, note that the best scalar multiples of
S for L, and L, are given by S/k and S/(k + p + 1), respectively [see Haff
(1980)]. In each case, we denote the ‘“best scalar multiple’’ by 20, since its
value will be obvious from the context. The simulated risk functions of 3, and
$, are compared relative to that of 3,

While £ and £, were obtained under L, we can still compare them under
L, in a meaningful way. That is, suppose that £ is derived under L,. Then )
can be examined under L, if it is rescaled as kE/(k +p+1). [Lln and
Perlman (1985) thus compared k2/(k + p + 1) with various other estima-
tors under L,]. For our purposes, we are compelled to examine this rescaling
since the VFBE’s under L, are fairly complicated.

The simulation was done as follows. For each p € {5, 10, 15,20} and & = 2p,
we generated 100 i.i.d. matrices from a W,(, k) distribution. These observa-
tions svere then transformed into W,(Z, k) matrices for each of

3, = diag(1,1,...,1),
(6.15) 3, = diag(2p,1,1,...,1),

3, =diag(p,p - 1,p — 2,...,1).
(We can assume 3, is dlagonal since the problem is orthogonally invariant.) At
each combination of p, L;, i = 1,2, and 3, [in (6.15)], we computed P28 E(J)
and £, j = 1,2,...,100. Then we proceeded as follows.

(a) The 100 pa1red differences (p.diff.’s) L(£Y,3) — L3P, 3), j =

1,2,...,100, were used to compute

mean p.diff. + 2 standard deviations (of mean p.diff.),
an approximate 95% confidence interval for R(2g,3) — R(2,, 3). At each
combination of p, L;, i = 1,2, and 3, this interval appears as the top entry in
Table 1.

(b) We recorded L, the sample mean loss for £g, £, and £, (at each
combination). Also, followmg Lin and Perlman (1985), we recorded the per-
centage reduction in the average loss (PRIAL) relative to £,; that is, we
recorded

L(£,,2)-L(%,3)
(£, 3)
for both ﬁs and f)H. In Table 1, the bottom entry (at each combination)
records the ordered pair
(6.17) (PRIAL:Stein’s estimator, PRIAL:VFBE).

As indicated above, 20 depends on the loss function being used and,
accordingly, £ and £, are rescaled by k/(k + p + 1) for comparisons under
L,.

(6.16) PRIAL = 100
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TaBLE 1
Mean p.diff. + 2 standard deviations (of mean p.diff.) and
(PRIAL:Stein’s estimator, PRIAL:VFBE)

p="5 p=10 p=15 p=20
L,

s 0.034 + 0.030 0.060 + 0.029 0.056 + 0.025 0.087 + 0.026
e (63%, 65%) (79%, 81%) (85%, 87%) (89%, 90%)
s 0.004 + 0.017* 0.040 + 0.020 0.058 + 0.023 0.097 + 0.020
b (49%, 49%) (70%, 72%) (80%, 81%) (84%, 85%)
s —-0.012 + 0.020* —-0.012 + 0.020* —0.002 + 0.014* —-0.005 + 0.011*

¢ (45%, 45%) (48%, 48%) (47%, 471%) (49%, 49%)
L,

s 0.180 + 0.028 0.354 + 0.032 0.479 + 0.040 0.615 + 0.040
e 30%, 39%) (41%, 51%) (47%, 56%) (49%, 58%)
s 0.099 + 0.020 0.269 + 0.020 0.437 £ 0.034 0.538 + 0.020
b (23%, 29%) (38%, 45%) (43%, 52%) (46%, 53%)
s 0.036 + 0.020 0.044 + 0.020 0.054 + 0.020  0.076 + 0.014
¢ (24%, 26%) (22%, 23%) (21%, 22%) (22%, 23%)

*The observed difference in risk between Stein’s estimator and the VFBE was not significant at
the 95% level. The other differences were increasingly significant with increasing values of p.

The simulation was done for increasing values of p, since we conjectured
that the VFBE should do increasingly better than Stein’s estimator as p
increases. (This was based upon the fact that our constrained optimization is
more criterion dependent than Stein’s correction, so we should be doing
better.) For the given levels of p and k = 2p, our conjecture was confirmed,
but the (L,) differences in PRIAL were small. In particular, for L,, the VFBE
outperformed Stein’s estimator at 3, and 3, by only 1-2% in PRIAL terms.
The differences for 3, were not significant at all.

For loss function L,, however, the differences in performance were more
pronounced. At 3, and 3,, the VFBE was best (in PRIAL terms) by some
4-10%; at 3., it was best by 1-3%.

We also performed simulations for various & at each fixed p. For p < k <
2p, our results were more striking than those reported above (for p = 2k). To
cite one example, for p = 20, £ = 21 and X = 3, we recorded [L + 2 standard
deviations (L), PRIAL] at both loss functions for both Stein’s estimator and
the VFBE. The results were as follows:

L, Stein’s estimator: 4.08 + 0.48, 78%,

VFBE: 3.60 + 0.48, 80%,
L, Stein’s estimator: 7.47 + 0.18, 25%,

VFBE: 5.54 + 0.38, 45%.

(6.18)
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While the 2% improvement in PRIAL under L, was typical of all of our results
for that loss function, the 20% improvement under L, was a bit surprising.

One parting remark about these simulations: There are important applica-
tions in which p > 100, say, for which efficiency of estimation is a vital
concern. The performance of the VFBE relative to Stein’s estimator in high
dimensions (> 20) has not been determined. Future simulations on this scale
would be of practical interest.

7. Results for loss function L2 A brief summary. The formal Bayes
estimators of 3 under L, are again of the form £ = Ro(L)R’. In this case,
however, the risk calculatlons are fairly complicated, so the unconstrained
version of the VFBE is stated without proof. Nonetheless, we record a corol-
lary of Sharma (1983) which provides an independent confirmation of the
result.

From Theorems 4.2 and 5.1, it can be seen that p,(£, 3) can be expressed as
a function of the ¢;, i =1,2,...,p, and certain first and second partial
derivatives of the ¢,. Consequently, we can minimize

(7.1) po(3,10) = [ #a(£,3)gn(L) dL

(and thus obtain the VFBE) by extending Theorem 2.1 in a natural way.
(Details are available upon request from the author.)

Denote by 7 the set of p X p positive definite matrices and by &(p) the
orthogonal group of p X p matrices. Then we have

p  k-p-1y2 p
ao«|] e e,

in which

*(L) = ~k/20tr(—3 " HLH'/2)dII(3) dH.
g (L) = [, [ 217 etn(-% /2) dTI(Z)

[See Muirhead (1982) or Anderson (1984).]
The VFBE is given by the following.

THEOREM 7.1. Assume that 1I(3) is orthogonally invariant and that (7.1)
is a valid expression for the formal Bayes risk. If the VFBE exists, then it is
given by ReB(L)R’ in which the diagonal elements of ¢2 are given by the
solution of a linear system

Ad=C
in which ® = (¢;,¢,,...,0)), p X1, A=(a;), p ><p, with
62 a 1 L .
al2 o, e & *(L) i=J,
a;;= s
( )[ log g*(L) — -~ log g*(L)|,  i#J,
J

and C =(c;), p X 1,¢;= —9/dl;log g*(L),i =1,2,...,p
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ProoF. Omitted. O
The proof of Theorem 7.1 is very tedious. However, the statement is
supported by an important special case. Under the conjugate prior distribution

(7.3) 3P~ W,[(1/y)I, k'] with &’ and vy specified.
It is known that the Bayes estimator is given by
(7.4) $p,=(S+yD)/(k+F +p+1).

The estimator specified by Theorem 7.1 must be identical to that in (7.3), of
course, a fact actually confirmed by Sharma (1983). Sharma’s observation is
recorded as the following corollary.

CoroLLARY 7.1. Let ¢B(L), p X 1, be the solution of A® = C, with the
latter specified by Theorem 7.1. Further, let dTI(3,~ ') be given by (7.3) with k'
and vy both specified. Then

Sp=ReB(L)R'=(S+yI)/(k+k +p+1).

Proor. The result readily follows from g*(L) = [[17_(I; + y)]~***)/2,
Further details are omitted. O
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