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The nearly nonstationary first-order autoregression is a sequence of
autoregressive processes y,(k + 1) = ¢,y,(k) + e(k + 1),0 < k < n, where
the e(k)’s are iid mean zero shocks and the autoregressive coefficient
¢, =1-pB/n for some B > 0, so that ¢, » 1 as n — ». We consider a
class of maximum likelihood type estimators called M estimators, which
are not necessarily robust. The estimates are obtained as the solution ¢, of
an equation of the form

n—1

Y ¥u(B)(,(k + 1) — dy,(k)) = 0,
k=0

where ¢ is a given “score” function. Assuming the shocks have 2 + §
moments and that ¢ satisfies some regularity conditions, it is shown that
the limiting distribution of n($, ~ ¢,) is given by the ratio of two stochas-
tic integrals. For a given shock density f satisfying regularity conditions, it
is shown that the optimal ¢ function for minimizing asymptotic mean
squared error is not the maximum likelihood score in general, but a linear
combination of the maximum likelihood score and least squares score.
However, numerical calculations under the constraint y,(0) = 0 show that
the maximum likelihood score has asymptotic efficiency no lower than 40%.

1. Introduction. The aim of this work is to study asymptotic properties
of a class of estimators of the autoregressive parameter ¢ of a nearly nonsta-
tionary first-order autoregressive process, and to obtain efficient estimators of
¢. The class of estimators considered are those obtained by solving nonlinear
equations including likelihood equations. We refer to them as “M estimators,”’
but they should not be confused with robust M estimators since robustness is
not one of our concerns. We consider the sequence {y,(k): 0 <k <n)._; of
first-order autoregressive AR(1) processes given by

(1.1) ‘ Yu(k) =&, 5,(k — 1) + &(k),

where {e(R));_ _. is a sequence of iid random variables with mean 0, variance
o2 and finite (2 + 8)-moment for some & > 0. ¢, is allowed to vary with n.
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Specifically,

B

for some B > 0, so that y, tends to look like a nonstationary random walk for
large n. This is the so-called nearly nonstationary (NNS) autoregressive
process. It has been investigated by Bobkoski (1983), Chan and Wei (1987),
Jeganathan (1987), Phillips (1987) and Cox (1990). Also we will assume that
we have some knowledge of the starting value y,(0), either by considering it as
a constant or by assuming it is a random variable with known distribution. In
principle we are interested in the asymptotic behavior of estimators of the
form
n—1 *

(1.3) b, = argflin ki_lop(yn( E+1) — ¢y, (k))

for some criterion function p. Here, arg min , denotes the value of ¢ where a
minimum is achieved. Taking p(z) = u?2, (1.3) gives the least squares estima-
tor (LSE) of ¢. '

It is well known that for fixed ¢, = ¢ € (0,1), the LSE converges to ¢ at
rate O,(n"'/?) and is asymptotically N(0,1 — ¢?), with the usual centering
and scaling. But when ¢ = 1 the LSE converges to 1 at rate O (n~!) and the
normal approximation fails [see, e.g., Fuller (1976), Section 8.5f. White (1958)
was able to represent the asymptotic distribution of the estimation error when
¢,=1lie, B=0in(1.2)] as

" JoW(s) dW(s)
S A O

where W denotes a standard Brownian motion process and = denotes weak
convergence. Rao (1978), Dickey and Fuller (1979) and Evans and Savin (1981)
have obtained representations for this limiting distribution. For the NNS
model of (1.1), Cumberland and Sykes (1982) found that the normalized
processes n~1/%2y ([nt]) converge weakly to an Ornstein-Uhlenbeck process
defined by the It6 stochastic differential equation (SDE)

(1.4) dY(t) = —BY(t) dt + o dW(¢).
Bobkoski (1983) independently proved the latter result, and based on this
convergence obtained
> /oY (s) dW(s)
(1'5) n(¢n ¢n) = ]'01Y2(8) ds ’

where ¢, is given by (1.2). Chan and Wei (1987) obtained similar results for
the NNS model and found that when the parameter 8 goes to « the asymptotic
distribution of the “¢ statistic” [Z7Z1y2(k)]I*/%(¢, — ¢,) is standard normal,
which is in agreement with intuition, since for large g it takes longer for the
NNS behavior to manifest itself.
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In this work we obtain the weak limit of the M estimator when ¢, = 1 —
B/n. Martin and Jong (1977) showed that the generalized M estimator is
asymptotically normal when ¢, = ¢ with |$| < 1. Although these authors
make certain boundedness assumptions (e.g., on the derivative of p), one can
adapt their work to show that under standard regularity conditions [e.g., (2.A)
and (2.B) below]

(1.6) n’*($, - ¢,) = N(0,(1 - ¢*)V,),
where
Ey*(s(1)) dp(w) . dy(u)
Ly V=, u) = —o—> U(u) = T
[Ei(e(1))] " “
A simple variational argument will show the most ‘“‘efficient”” M estimator (the
one m1n1m1z1ng V,) is obtained from p = —log(f ), where f is the density of

the ¢’s, that is, when ¢ is the maximum likelihood estimator, MLE, condi-
tioned on the initial value y,(0). Other efficiency results for the stationary
AR(1) process when the errors are not normal can be found in Johnson and
Akritas (1982). For the nearly nonstationary model where ¢, is given by (1.2),
a similar calculation based on the limit theorems presented here indicates that
the MLE will generally not be the most “efficient”’ M estimator. Indeed, the p
function which works ‘“best” is a linear combination of the LSE and MLE
criterion functions.

We comment briefly on various difficulties not considered here. In order
that (1.3) produce an estimator which is useful in practice, it is necessary to
include scale estimation [for the scale o2 of the £(i)’s]. We do not consider that
here, although it follows from Cox (1990) that consistent estimates of scale are
readily available, and we will assume henceforth that the scale is known,
although further investigation is called for. Although consistent estimation of
o? is easy, one cannot in fact consistently estimate B, for reasons discussed in
Cox (1990). This fact will have important ramifications later; see Section 3.
One would also be interested in cases where the £(i)’s have infinite variance,
but we cannot treat this with the current setup. Finally, it is important to note
that the estimator in (1.3) with p = —log(f) is not really the exact MLE if one
assumes the process is stationary, since the full MLE would include a term in
the log likelihood from the initial distribution of y,(0). This point is treated in
some detail in Cox (1990) for the Gaussian likelihood. In the terminology of
that paper, the estimator of (1.3) should be referred to as the “conditional M
estimate” [or “conditional MLE” when p = —log(f)]. We have tried to in-
clude the term from the initial distribution (which is virtually impossible to
even compute in the non-Gaussian case) but have been unable to complete the
analysis. Essentially, there is a nontrivial loss of information in regarding
¥,(0) as a known constant [i.e., conditioning on y,(0)]. Nonetheless, our results
on the inefficiency of the MLE are still valid as one may treat any datum as a
constant rather than a random variable whose distribution contains informa-
tion about the parameters of interest, and, of course, in some cases it may be
necessary to treat it as constant.
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The asymptotic results that we present in this work deal with weak conver-
gence of a sequence of stochastic processes with sample paths in Dgd[0, T'], the
space of R%valued functions defined on [0, T'] which are right continuous and
have left limits, to a process with,sample paths in Cgal0, T], the space of
continuous R%valued functions on [0, T']. The sequence of processes we inves-
tigate here are solutions of stochastic difference equations. In a natural way
one might expect that if the difference equation ‘““‘converges” in some sense to
a (stochastic) differential equation, then the solutions of these equations would
be “near” each other.

We base our proofs in the Stroock and Varadhan characterization of the
solution of a SDE as the solution of an associated martingale problem. For a
detailed account, see, for example, Ethier and Kurtz (1986), Section 5.3, or
Stroock and Varadhan (1979), Chapter 6. We obtain the asymptotic results of
later sections from the following diffusion approximation theorem due to
Ethier and Kurtz. Here, C2(R%) denotes the space of functions f: R? —» R
which are infinitely differentiable and have compact support.

TueoreM 1 [Ethier and Kurtz (1986), 7.4.1]. Let a = ((a;;)) be a continu-
ous, symmetric, nonnegative definite d X d matrix-valued function on R? and
b: R? - R? be continuous. Let A be the second-order differential operator on
CI(R?) given by

1 4 d d
Af=-% Zaijaiajf"'zbiaif’ f € C3(RY)
2510 i=1
and suppose the Cral0, ®)-martingale problem for A is well posed.

Forn =1,2,..., let X, and B,, be processes with sample paths in Dgdl0, »)
and let A, = ((A%)) be a symmetric d X d matrix-valued process such that A/
has sample paths in Dy(R) and A, (¢) — A,(s) is nonnegative definite for
t>s2>0. Set F," = (X, (5),B,(s),A,(s): 0 <s <t).

Let 7 = inf{t: |X,(¢)| > r or |X,(¢7)| > r} and suppose

(1.8) M,=X,-B,
and
(1.9) MiMJ/-AY,  §,j=1,2,....d,
are local {F,"} martingales, and that for each r > 0 and T > 0.
(1.10) imE| sup |X,(¢) - X, (¢ =0,
n=e | t<min(T, 1) |
(1.11) imE| sup |B,(¢) - B,(¢t)|*| =0,
n=% | t<min(T, ) |
[ .. .. 1
(1.12) lim E[ sup |A¥(¢) - AY@0)|| =0,
" n—o : J

| t<min(T, 7})

(1.13) sup -, 0

t<min(T, 7))

Bi(t) — jo bi(X,(s)) ds
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and

(1.14) sup  |AH(8) - [(a,,(X,(5)) ds| -
t<min(T, 7;,) , o

where the latter three relations hold for 1 <i, j <d. Suppose that X,(0)

converges weakly to a random variable with distribution v, then {X,} con-

verges weakly to the solution of the martingale problem for (A,v).

REMARK. By the representation mentioned before, the limiting process
corresponds to the diffusion with infinitesimal generator given by A.

The rest of the paper is organized as follows: In Section 2 we formalize our
problem and state the asymptotic theorem. In Section 3 we derive an expres-
sion for the asymptotic mean squared error, MSE, and derive the form of the
optimal M estimator. In Section 4 we give the proof of the main theorem.

2. Statement of the main theorem. Assume p in (1.3) is differentiable
and set ¢ = p as before. Also assume that the following statements for the
function hold:

(2.A) ¢ is continuously differentiable and satisfies the second-order Lipschitz
condition

(2.1) W(2) = w(te) — (¢ = to)(t0) = C(¢ — to) a(t, ),
where C is a positive constant and |a(t, t,)| < 1.
(2.B) £(1), &(2), ... is an iid sequence with Ee(i) = 0, Ee(i)? = 02 > 0 and the

(2 + 8)-order moments of (1), ¥((1)) and ¥(e(1)) are finite for some
6> 0.

(2.C) Ey(e(1)) = 0 and Ey(e(1) = 1.

The assumption E(¢(1)) involves no loss of generality provided Eg((1) # 0.
This normalization simplifies some of our formulas below. Note that a version
of ¢ which includes scale is given by ¢, (x) = o¢(x/0), where ¢, is a fixed
score function independent of o. One would use this score when simultane-
ously estimating scale, which is generally necessary in practice.

Now, for ¢,, tobe a solutlon of (1.3), it is necessary that

(2.2) ¥,(8,) = ):y,,(k)w(y,,(kﬂ) Bu3a(k)) = 0.

The main result in this paper is the following theorem.

THEOREM 2. Suppose assumptions (2.A) through (2.C) hold. Let ¢, = 1 —
B,/n with B a positive real constant. Then under the model (1.1) with y,(0) = p

o, ! —71)-

Tzo®ne(—1):

(a) There exists a sequence {$,} of solutions of (2.2) such that
(2.3) (¢, — b,) = 0,(n7Y).



1114 D.D. COX AND I. LLATAS

(b) For such a sequence
oY (s) dWy(s)
[oY?(s)ds ’

where Y(t) is the Ornstein—Uhlenbeck process defined by the stochastic differ-
ential equation

(2.4) n(d?n - ?n) =

dY(t) = —BY(t) dt + dW(¢),

(2.5) B o2

Y(O) =D N(O’ _2?)7

and [W(¢), Wy(#)]’ is a two-dimensional Brownian, motion with
E[Wi(n)] =E[2(1)],  E[Wi(1)] = E[v*(e(1)],

E[W(t)Wy(2)] = tE[e(1)w(e(1))].

ReEMARK. Implicitly stated in the assumed initial condition for the sequence
of AR(1) processes is that for each n the process is stationary. Thus it is
natural that the initial condition for the Ornstein—-Uhlenbeck process of (2.5)
is the one needed to ensure the stationarity of such a process [Arnold (1974),
page 135]. The result of the theorem holds whenever the distribution of
n~1/2y (0) has a weak limit, then the distribution for Y(0) in (2.5) should be
changed to this limiting initial distribution. In particular, if y,(0) = 0 for all n,
then, of course, Y(0) = 0 should be used in (2.5). See the remark after the
proof of Theorem 3 below.

If we let

t =yn(k + 1) - $nyn(k)’
to=Yu(k +1) — ¢,5,(k) =e(k+1)
in (2.1), then (2.2) becomes, with a(k) = a(¢, t,),

(2.6)

n-1 n—1
Y [2u(R)o(e(k +1))] = (dn — ¢.) X ¥2(R)
k=0 k=0

n—1
@D (b b)) T ek + 1) -1])

A

2 n-1
+(én = a) C L [y2(R)a(R)] = 0.
k=0
The weak limit in (2.4) is suggested by neglecting the last two terms of the
right-hand side of (2.7), so that

| ) ZiZolya(R)w(e(k + 1
(2.8) n(, = 6,) = = OLy—l(ZZ‘(y;(k; 2

The scaling n~! (rather than n~!/2) is nonstandard and results from the near
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nonstationarity. We will now give a heuristic justification for this scaling and
the representation of the limiting distribution given in (2.4). Define

(k) = [e(k), w(e(k)), i (s(k)) — 1]

and let 3 be the covariance matrix of the random vector n(1). Now we define
the stochastic processes Y, (¢) and W, for ¢ in [0, 1] by

(2.9) Y, (¢) =n~'%y,([nt])
and
Wn = [Wl,n(t)’ W2,n(t)’ W3,n(t)]’

(2.10) ~ [nt]
=n"12 ) (k)
k=1

(with the usual convention that summation equals 0 when the upper limit is
less than the lower). The W, , component does not appear in the limiting
distribution but is used in the proof.

Let A be the usual forward difference operator, that is, Am(k) =
m(k + 1) — m(k) and At = n~!. Then (2.8) can be written as

220l Yu(k/n) AW, (k/n)]
YrZ3V2(k/n) At

Let W(2) = [W(2), Wy(2), W5(¢)! be a three-dimensional Brownian motion such
that covariance matrix of the random vector W(¢) is ¢3. It can be proven by
means of the martingale central limit theorem [see, e.g., Ethier and Kurtz
(1986), Section 7.1] that the process W, defined in (2.10) converges weakly to
W. Since Y, converges to Y [Cumberland and Sykes (1982)], the summations
in (2.11) are approximately Riemann-Stieltjes sums for the integrals in (2.4),
and we will show in Theorem 3 that the two summations in (2.11) jointly
converge to the corresponding integrals in (2.4).

3. Optimality. We now explore the optimality of M estimators under a
natural criterion. Our approach is to minimize an asymptotic mean squared
error

(3.1) QYy)=E

J&Y?2(s) ds

JaY(s) dWy(s) }

Surprisingly, we have found that this criterion leads to the finding that the
optimal ¢ function is a linear combination of ¢pg(x) =x and Ypy(x) =
-1 1f(x)/f(x), where f is the probability density function of the innovations
and I, is the Fisher information of the location problem for f. (We assume
throughout this section that f exists and satisfies the usual regularity condi-
tions.) Note that ¢ g corresponds to the least squares score function while ¥y,
is proportional to the usual score function for the MLE. The optimal ¢
function so obtained is not directly useful as an estimator since the coefficients
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of the linear combination depend on the unknown parameter 8. Nonetheless,
it does suggest a two-stage procedure that may work well. The first stage is to

estimate ¢, by say the MLE, ¢, y15, and hence B by f,, yue = n( - ¢, yip)-
One can then find the optimal  function for the estimate Bn MLE and the
second stage consists of finding the solution of the M-estimation equation for
this ¢. However, since B is not consistently estimable, it is not clear that this
will lead to an asymptotically efficient estimator, or even an estimator that will
improve over the MLE.

To prove the claim, we can think of @ as a functional on L2(f) =
{&: [€%(x) f(x)dx < ). We would like to find the minimizer of @ on L2(f)
subject to the constraints in (2.C), that is, [¢é(x)f(x)dx = 0 and
J€(x) f(x) dx = 1. We have shown in the appendix that @ can be written as

(32) Q(¥) = (L1 — Ly)C*(y) + LV(¥),

where
2 - 1
3.3) L1=E{ } L?=a2E{[/()Y ds] }
C(¢) = Cov[e,¢1/0?, and V(¢) = Var[y]/o?

Here ¢ and ¢ are shorthand for ¢(e(1)) and £(1), respectively. Note that all
quantities above are scale invariant. Thus @ is a positive-definite quadratic
functional and since the constraints are linear, the solution to the minimiza-
tion problem is obtained by setting the first variation (with respect to ¢) of the
Lagrangian Q(¢) + A E[¢] + A,{E[¢] — 1} equal to 0 and choosing the multi-
pliers A; and A, so that the constraints hold. This operation followed by an
integration by parts leads to the equation

207%(Ly - Ly)C() + 20 2Ly () f(x) + A, f(x) — A, f(x) =0,

whence

[oYdw,
0Y2ds

Ao? f(x)  Ao?
2L, f(x) 2Ly’

(3.4) Y(x) =kx +

where
k= (1-Ly/L,)C(¢).

It is easy to see that both E(¢) = 0 and the constraint E(¢) = 0 imply A; = 0.
Thus the optimal ¢ is a linear combination of the least squares and maximum
likelihood score functions. Also the constraint E(y) = 1 implies

Ago?

=I7'(k - 1).
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Substitution of the values of the multipliers into (3.4) gives
f(x)
f(x)’

Calculating Cov(y, €) for ¢ in (3.5) gives « and plugging this into (3.5) yields
the optimal score function

(3.5) U(x) =kx + SK - I

(Ly — Ly)x — o2L,[ f(x) /()]
Ly, - Ly(1-0%I;) )

One should note that ¢, depends on B through L, and L,. Furthermore,
evaluation of L, and L, is nontrivial since they are expectations of rational
functions of random integrals whose distribution is montrivial to describe.
Following Williams (1941), one can obtain the moments of the ratio of powers
of the numerator random variable within the brackets in the definition of L,
in (3.3), to be denoted by N, and the denominator random variable, to be
denoted by D, from the joint moment generating function of N and D. Thus,
for example, if A(sy, s) = E[exp{—s,D — sN}] then

(3.7) f0°°A(s0,0) ds, = E[f:e‘sob dso] - E[%]

and
o0 0032 00 .00 N 2

- = 2,—-soD = _
(3.8) [Oft 553M(s0,9)| _ dsoat foftE[Ne o] ds, dt E[D].

The formal manipulations of interchanging differentiation and integration will
be justified shortly. From (4.20) of Bobkoski (1983), we have that the joint
MGF of N and D, when Y(0) = 0, is given by

A(so,s) = E[exp(—s,D — sN)]

(3.6) Ui (x) =

s=

3.9
(3.9) - exp{E—;:—s}[cosh(z) + (B + s)shne(2)] "2,
where
z=(B%+2Bs + 230)1/2 and shne(z) = s1n1rzl(z) .

Expressions for the MGF for other initial conditions are available [Llatas
(1987)]. The choice of Y(0) = 0 is motivated by convenience for checking the
results; see the discussion after Table 1. By the remarks after the statement of
Theorem 2, Y(0) = 0 is a permissible choice if y,(0) = 0 for all n. The fact that
A in (3.9) is differentiable and that the terms in these derivatives will be
eventually dominated by e %%, where K is a positive constant, as s, — =,
allow us to interchange the order of the integration and differentiation in both
(3.7) and (3.8) by application of the dominated convergence and Fubini theo-
rems. In Table 1 we exhibit some of the values of L, and L, calculated using
the integration subroutine DQAGI in QUADPACK.
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TABLE 1
Values of L, and L, obtained by numerical integration

B L, L,
0.200 13.698232 5.921848
0.400 14.104907 6.285748
0.600 14.507015 6.653889
0.800 14.905686 7.025686
1.000 15.301856 7.400631
2.000 17.266291 9.309338
3.000 19.228876 11.252599
4.000 21.198798 13.214063
5.000 23.175399 15.186088
6.000 25.156913 17.164780
7.000 27.141975 19.147965
8.000 29.129653 21.134334
9.000 31.119311 23.123046

10.000 33.110506 25.113539
11.000 35.102916 27.105415
12.000 37.096305 29.098390
13.000 39.090494 31.092254
14.000 41.085346 33.086846
15.000 43.080753 35.082042
16.000 45.076630 37.077746
17.000 47.072908 39.073881
18.000 49.069531 41.070385 .
19.000 51.066453 43.067207
20.000 53.063637 45.064306

A plot of the values obtained presents a very curious feature: They fall in
what seem to be two parallel straight lines. Regression lines were fit to the
values in Table 1 assuming the two lines are parallel, and the fitted equations
are given by

L, = 13.33 + 1.988, L, =537+ 1.988.

These are very accurate in the range 0.2 < 8 < 20.0. The relative error in L,
is less than 0.2% in this range, and the relative error in L, is less than 3.05%.
Over the range 2.0 < B < 20.0, the relative error in L, is less than 0.51%.
These approximations could be useful in the two-stage procedure proposed
above.

We checked the numerical integrations used to produce Table 1 in two ways.
When Y(0) = 0, L, can also be computed from the asymptotic density of the
estimation error for the LSE using the density given in Bobkoski (1983), again
by numerical integration. The results so obtained for 8 = 2, 10 and 20 agree
with those of Table 1 to two decimal places. We also used simulation of the
NNS AR(1) process for sample sizes n = 100, 500 and 1000, for the same
values of B. We generated 10,000 realizations of each such series. The Monte
Carlo results agreed with those of Table 1 with 95% confidence, except for
B = 20, where we believe the bias of the finite sample estimators has not been
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overcome. The existence of such simple and accurate approximations to L,
and L, suggests conjectures that may lead to fruitful research. Further details
may be found in Llatas (1987).

Now we are in the position to calculate values of @ for the score functions
Yrs(x) = %, dyp(x) = — I f(x)/f(x) and ¢ . By (3.2) we have

Q(¥1s) = Ly, Q(¥mL) = L/I,

where I} = ¢*I, is the information when o® = 1. An interesting feature of the
NNS asymptotic relative efficiency of the MLE and LSE is that it is the same
as in the classical setting. See (1.6) and (1.7). Also,

L,L,

T L+ Ly(I - 1)

Q(¥x)

Note that I} > 1 with equality only for the normal density [Rustagi (1976)].
The inefficiency of the LSE w.r.t. the optimal score function is

(3.10) Q(¥1s)/Q(¥x) = 1+ (I; = 1)L, /Ly,

and a minimum is obtained when I}=1, that is, the Gaussian case. The
maximum is obtained when I;= », where the inefficiency is ». The ineffi-
ciency of the MLE w.r.t. the optimal score is 1/I; times the inefficiency of the
LSE. Again, the minimum is obtained when I} =1 and the maximum when
I = o, but for the MLE, the maximum inefficiency is bounded by L,/L,.
Recall that L, and L, depend on B. Assume again that Y(0) = 0, and then the
largest value of L,/L, occurs when B =0 when it is approximately
13.33/5.37 = 1/0.40, that is, the efficiency of the MLE is bounded below by
about 40%. For fixed I}, the maximum inefficiency of both the LSE and MLE
occurs at 8 = 0.

4. The large sample behavior of $,. In this section we will prove
Theorem 2. First, we establish the joint limiting distribution of the sums in
(2.7) as an application of Theorem 1.

TueOREM 3. Consider the model (1.1) with initial value y,(0) as in the
statement of Theorem 2. Suppose that assumptions (2.A) to (2.C) hold. Con-
sider the sequence of processes on Dy3[0, 1) defined by

n=1/2y,([nt])
[nt]

n-1 kgl ya(k — 1) (e(k))]

[nt]
n*ﬂégﬂk~nw@w»—ﬂ

—

(4.1) X, () =
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Then X, = X as n = », where X is the continuous process on [0, 1] given by
¢ ¢ !
(4.2) X(t) = [Y(t),joY(s)dwz(s),[oYZ(s)dWs(s)],

where W is the three-dimensional Brownian motion defined below (2.11) and
Y is the Ornstein—Uhlenbeck process defined by (2.5) with initial condition
having the stationary distribution.

Proor. First, note that we represent W by
(4.3) W(t) = T'b(2),
where b(?) is a three-dimensional standard Brownian motion with covariance

(tI) and T = (y;;) is the Cholesky factor for 3, that is, I' is a 3 X 3 lower
triangular matrix such that I'T" = 3. Now the process X(¢) satisfies the SDE:

~BX,(t) 1 0 0
dX(t) = 0 de+ [0 Xi(2) 0 ldw(e)
(4.4) 0 0 0 X2

= b(X(t)) dt + G(X(t)) dW(?)

= b(X(2)) dt + G(X(¢))I'db(2)
with initial condition X(0) = (Y(0), 0, 0). The last equality in (4.4) follows by
(4.3) and It&’s formula [Arnold (1974), page 90].

The functions b and G do not depend directly on time and they have
continuous partial derivatives of first order that are bounded on {|x| < M} for
all M > 0. Consequently, by Corollary 6.3.3 of Arnold (1974), (4.4) has exactly
one continuous solution. Moreover, the process X(¢) is a three-dimensional
diffusion process on [0, 1] with drift vector b(x) and diffusion matrix a(x) =
GXIT'xX)G'(x) = Gx)XG'(x) [Arnold (1974), Theorem 9.3.1., page 152]. In
this case a(x) equals

2
J11 O19%;  O13%;
— 2 3
(4.5) a(X) = | 019%;  OgX] Og3%7 |-
013%2  0paxd  ogqxd
13%1 23%1 33%1

Thus X(#) is a solution of the associated martingale problem for the infinites-

imal operator of the d1ﬁ'us1on that 1s,
52

i=1j= 1 6 c?x
with initial measure equal to LaW(X(O)), which should be equal to the weak
limit of Law(X,(0)) to have the appropriate limiting distribution. We claim
that Law(X(0)) is the three-dimensional degenerate normal N(0,0@c2/28),
where 0,; equals 0 unless i =j = 1. Our claim follows from the definition of
X,(0) and the fact that

Y,(0) = ¥ ¢k(nV2(—k))
k=0




NEARLY NONSTATIONARY AUTOREGRESSIONS 1121

converges weakly to a random variable distributed as an N(0,0%/28) by an
easy application of the Linderberg—Feller central limit theorem to the triangu-
lar array defined by

T, ,=n"Y%ke(~-k), 0<k<n?
Now, X, is a solution of the following stochastic difference equation
k _BXI,n( k/n)
AX,,(-;) = 0 ]At
0
(4.7 1 0 0 \
+|0 X .(k/m) 0 Aw,,(_)
0 0 X2 ,(k/n) "

with W, defined in (2.10) so it is natural to think that X, will approximate the
continuous process X. We proceed to prove this by finding three-dimensional
processes B,(¢) and 3 X 3 matrix-valued processes A () such that the condi-
tions of Theorem 1 are satisfied. From (4.7) it follows that
0 At +n~ %, (k + 1),
0

where
£(R) = [e(R), n" 2y, (k — Dd(e(k)), n Y2k — D[d(e(k)) - 1]] .

Let G, =0X,(j/n): 0<j<k). Since E[£,(k)|G,_1]=0 the predictable
compensator of X, is given by

[nt]—1
B,(¢) = ¥ (E[AX,(k/n)|G:]}
(4.8) " e :

=|-B Y Y,(k/n)At0,0
E=0

and writing X ,(k/n) = AX,((k — 1)/n) + X, ((k — 1)/n), one can see that
(4.9)  M,(k/n) =X, (k/n) — B,(k/n) = n""%,(k) + 8,(k),
where §,(k) is G, _, measurable. Thus one can show A, the compensator of
M, (k/n)M'(k/n), is

[nt]-1

A,(t)= ¥ (E[M((k+1)/n)M,((k+1)/n)
k=0

(4.10) ~M,(k/n)M,(k/n)|G,]}

[nt]-1

=n"! Y E[gx,(k+ 1)&(k + 1)|Gy].

k=0
It follows from the last equality of (4.10) that the increments A (¢) — A (s),
t > s, of the process so defined are nonnegative definite.
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What is left now is to verify the ‘‘continuity’’ conditions (1.10) to (1.12) and
the “approximation” conditions (1.13) and (1.14) of Theorem 1. We start with
the approximation conditions. For condition (1.13) we must show
B, ,,(t) [ by(X,(s))ds| -

sup p 0.

O0<t<1

But the absolute value equals

n~12y ([ns]) ds — [ntZ]: 1n‘1/2y (k) At

B
(4.11) f"

- B(¢ - Int)/m)I¥u(0)| < 70| < D1

Since ||Y, |l is bounded in probability [Bobkoski (1983), page 25], the last
quantity goes to 0 as n — «. Condition (1.14) will also follow by the same type
of argument and the boundedness of ||Y,?|l. for ¢ = 0,1, 2,3, 4. To prove the
continuity conditions, let 7, be the stopping time defined in Theorem 1. Thus
for t < 7, we have | X, (#)] <r and, in particular,

(4.12) |Y,(¢)| <r fort<r].

Hence the continuity condition (1.12) for A, is easily verified when we note
that it reduces to proving that

(4.13) llmn 1E[sup|Y(([nt] - 1)/n)|J] =0 forj=1,23,4,
t<t)

which is obvious by (4.12) since we are evaluating the process at a time point
strictly smaller than 7. In the same way, the condition for B, reduces to

(4.14) 11m 1 (B/n) E[tsquz(([nt] - 1)/n)] =0,

which follows again by (4.12).
Finally, for the condition on the X, process, it is sufficient to verify

,}l-il':oE[ ksup [ (k) — (2B/n)e(k)y,(k — 1) + (B/n)"yi(k — 1)]- =0,

lim E[n‘2 sup [yn(k - 1)[¢(e(k)) - 1” - =0,

n—o k<nt!

lim E[n-3 sup [y2(k — [ (e(k)) - 1]] =0.
. n—o k<nr]

But each one of those conditions holds by (4.12), Lemma 1 and the assumption
on the moments of ¢, (¢) and ¢(e). Hence Theorem 1 guarantees the weak
convergence of X, to X. O
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REMARK. In the proof of Theorem 3 it is not necessary to make the
assumption that y,(0) has the stationary distribution. The result will follow as
soon as Y,(0) has a weak limit. In particular, the result is true when one
assumes Y, (0) to be constant.

LemMmA 1. Let {n(k)};_, be a sequence of iid random variables with finite
1 4+ 6-moment. Then

(4.15) 1E[ n(k)] -0 asn > .

O0<k<

Proor. We have the left-hand side of (4.15) is bounded above by

E[n max [5(k)[ ] <n=n lz: Eln(k)|"*

= 0(n™?). O

We next prove the weak convergence of the terms in the Taylor expansion in
(2.7 and, in particular, the joint convergence of [L}_1Y,%(k/n) At,
Z1Y,(k/n) AW, (k/n)} to the random vector [ [§Y %(s) ds, [§Y(s) dWy(s)].

LEMMA 2. Under model (1.1) and assumptions (2.A) to (2.C), the sequence
of four-dimensional random vectors

-1
Y Y2(k/n) At
k=1

n—1

¥ |Y3(k/n)|At
k=1

n —

Z n(k/n)AW2,n(k/n)

T Y2k /n) AW, (k/n)
k=1

converges weakly to
Z-= [/OIYz(s)ds,/ol|Y3(s)|ds,[O‘Y(s)sz(s),folyz(s)dm(s)].
Proor. Consider the transformation g: Cysl0, 1] - R* such that
g(x) = g([x:(t), 25(2), x5(2)]')
= [fole(s) ds,j;1|xf(s)|ds,xz(l),x3(1)]l.

It is easy to see that this is a continuous transformation. Now let Z, = g(X,,)
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and Z = g(X), where X, and X are the processes defined in Theorem 3.
Then Z, converges weakly to Z by the continuity principle [Theorem 5.1 of
Billingsley (1968), page 30]. O

We now prove our main theorem in the same fashion that Cramér showed
the asymptotic properties of the maximum likelihood estimator [Cramér (1946),
Chapter 33].

ProorF oF THEOREM 2. By means of (2.7) we can write ¥,({) = 0, after
multiplication by n~2, in the form

(416) n=?y, ({) = TO n ({ ¢n)T1 n ({ ¢n)T2 nt ({ ¢n) T3 n

=0,
where
n—1
Ty, =n"' YL Y (k/n) AW, ,(k/n),
k=1
n—1
Tl,n = Z Ynz(k/n) At’
(4.17) S
Ty, =n""2 Y YX(k/n) AW, ,(k/n),
k=1
n—1
T3,n = n1/200n Z IYn3(k/n)|At
k=1
and

n—1 _ln—l
0, = LEIIYE(k/n)I] Z Y (k/n)a(k),

which is bounded by one. Theorem 3 1mp11es that Ty, is O,(n"Vand T, ,
0,(n~1/2), while Lemma 2 implies that Tj , is 0,(n'/?) and T, converges
weakly to a random variable, which is positive with probability one. (This last
claim follows from the fact that if Y = 0 a.e. then necessarily W = 0 a.e. which
is a contradiction.) Hence if vy is an arbitrarily small positive number there
exists an N such that for all n > N there exist finite positive constants
M,, M,, M,, M5 such that

P[|Ty .| <n"My] >1-

-

’ P“T1,n|>M1]>1_
(4.18)
P[|Ty .| <n V2M,| > 1 -

-

BIR AR IR AR

P[|T; | <n'/?Mg] > 1 -
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Thus with at least probability 1 — vy:
n2W, (L) > —Mon~t = My(¢ - ¢,) — Man™V2|¢ — ¢,

(4.19) 9
— Mznv2(¢ - ¢,)" for (<o,
and
(420) n_Z\I’n(g) < MOn_1 - MI({ - ¢n) + M2n_1/2|£ - ¢n|

+ Mgn2(L - $,)° for{=4,.
Now, choose n large enough so that

2M 2M, \? M
2 0+ | 222 M [ < =2
n I’Ml 2 (Ml 3 N 2

and for such n, let
2M,
M’

2M,
M,

{2=¢n+n_l

{1=¢n_n_l

Equation (4.19) gives

1

2M, 2M,\*
n=2W (f,) > —~Mgn~' + 2Myn" ! - n-3/Zl M"M2 + ( ") M3}

> (M —%)n'1>0
0 2 b

while (4.20) gives

2M, 2M,\*
n=2¥ ({,) <Myn~'—2Mn~1 + n“”z{ MOM2 + (—0) Ms]
1

MO
< (_MO + T)n_l < 0.

Thus, since ¥,({) is continuous, the equation ¥.(¢) = 0 will, with probability

exceeding 1 — vy, have a root, ¢,, between {; and {, as we wished. Moreover,

4M,

M,

and consequently the proof of part (a) is complete.
For part (b) we note

n~1 with probability 1 — y

I¢;n _d)nl <

nT, ,
Tl,n + T2,n - ($n - ¢n)T3,n .

It follows from the preceding discussion that Ty, — ($, — ¢,)T; , converges
in probability to 0 while, by Lemma 2, (nT, ,,T; ,) jointly converges to
(/8Y(5) dWy(s), [(Y?(s)ds). Thus the weak convergence of the right-hand

(4.21) n(d, — ¢,) =
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side of (4.21) to the random variable in (2.4) is guaranteed by a straightfor-
ward application of Slutsky’s theorem and Theorem 5.1 in Billingsley (1968).
0O

e

APPENDIX

Let W(¢) be the three-dimensional Brownian motion defined in Section 2. As
noted in the proof of Theorem 3, we can represent this process by

W(t) = T'b(t),

where b(¢) is a three-dimensional standard Brownian motion with covariance
(tI) and T = (y;;) is the Cholesky factor for 3, that is, I' is a 3 X 3 lower
triangular matrix such that I'l” = 3. Using this representation, we can prove
that Q(¢) can be expressed as in (3.2). By It6’s theorem [Arnold (1974), page
90], we can write

AL ['Y(s) dWy(s) = 72 [ ¥(s) dbi(s) + 72z [ V(s) dby(s).

Note that W, = y,,b; and, consequently, the process Y defined by the SDE
(2.5) is independent of b, and bg.
From (A.1) we have

JoY(s) dby(s)

JaY(s) dby(s) |°
[&Y%(s) ds

aY?2(s) ds

Q(Y) = (v21)°E

] + (')’22)2E
(A.2)

+ 2751792 E

(Jo¥(s) dby(s))(fs¥(s) dbz(s))}_
(3¥*(s) ds)”

Define F, = o(b(s), 0 < s < t)and F = o(b,(s), 0 < s < t). We claim that
for any FV-adapted random function A(¢) we have

E[/Olh(s) dby(s) F{D] -0

and

F®

E[(folh(s)dbz(s))z = folhz(s)ds.

This can be proven by first looking at F;V-adapted step functions and making
use of the fact that b, and b, are independent. Then the usual limiting
argument gives the result. Consequently, since {Y(¢): 0 < ¢ < 1} is F adapted,
one obtains that E([3Y(s) dby(s)|F{P) = 0. Thus the expectation of the cross
product in (A.2) vanishes since [lY(s) db,(s) and [}Y %(s)ds are FV adapted.
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Also

E[M] =F [fole(s) ds]_zE

@
J&Y%(s) ds Fy

(fO‘Y(s) dbz(s))z

- E[fole(s) ds]_l.

From all this discussion @ reduces to

1Y(s) db, 2 -1
Q(Y) =v5HE M_)____(_S_)_] + ‘Yng(fOle(s) ds)

1Y2
(A.3) JoY*(s)ds
_ 7§1L1 7§2L2 .
=5t

Plugging the values of y,; and vy,, into (A.3) gives expression (3.2). O
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