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A COMPARISON OF A SPLINE ESTIMATE TO ITS
EQUIVALENT KERNEL ESTIMATE

By K. MESSER!

California State University, Fullerton

It has been observed that to a smoothing spline operator there corre-
sponds an equivalent kernel operator; these two operators have been
compared in a variety of norms [Cox (1984), Silverman (1984)]. In this
paper, we refine the existing bounds for the particular case of the spline
estimator considered in Rice and Rosenblatt (1983) and its corresponding
equivalent kernel estimator. We obtain detailed asymptotic expressions for
the bias and covariance functions of the two estimates and provide rates of
convergence. Direct comparison then shows that the two estimates are
similar. They may differ somewhat in their higher order boundary be-
havior.

1. Introduction. Consider the problem of estimating the function f(x)
from noisy observations y; = f(x;) + ¢, i = 0,...,n, where the errors ¢; are
iid. random variables with finite variance o2 and the design points x; are
equispaced in [0, 1]. Two competing approaches are given by spline and kernel
smoothing.

A cubic spline estimate f(x) of f(x) is given as the minimizer over
functions g of

17 2 2
(1.1) S X (- &(x)) + A [ 82(x) da,
ni-o 0

where g’ represents the jth derivative of g. The smoothing parameter A is
chosen by the user and must approach zero at an appropriate rate; it will trade
the bias against the variance of the resulting estimate.

The idea of a smoothing spline dates to Whittaker (1923), the modern
formulation to Schoenberg (1964) and Reinsche (1967) and the statistical
analysis to Wahba (1975). For more recent work, see Rice and Rosenblatt
(1983), Cox (1984) and Silverman (1984, 1985). A current bibliography may be
found in Eubank (1988).

Of the many possible forms of a kernel estimate f(x) of f(x), we shall
discuss

1

f(x) = b > Ky(x,%;)y;,
i=0

suitable for the case of equally spaced observations, x; = i/n. Here K,(x,¢) is
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818 K. MESSER

often a translation kernel, that is, K,(x,¢) = k((x — ¢)/b) for some univariate
function k(¢). More generally, we shall let K,(x,¢) = k(x/b, t/b) for a bivari-
ate function k(x,t). The bandwidth b plays the same role as the smoothing
parameter A. Kernel estimates have been discussed by many authors; we refer
to Rosenblatt (1971).

In this paper we shall discuss the relation between kernel and spline
smoothing. A connection between the two has been established theoretically by
Silverman (1984) and related approximations to a Green’s function have been
established by Speckman (1981) and Cox (1984). The connection between
kernel and spline smoothing has also been recognized practically and exploited
to provide approximate spline estimates for large scale problems [for example,
see Parker and Shure (1982)].

To see how a connection between kernel and spline estimators might arise,
consider the minimization problem (1.1). It is well known that the solu-
tion f is linear in the observations y; and hence may be expressed as

A 1 id
(1.2) f(x)= W Y G, \(x,x,)y;
i=0

for a weight function G, \(x, x;). It has been observed that, for x; away from
the boundary, there is a fixed kernel function k(¢), given in (2.5), such that

G, \(x,x;) = A'1/4k((x — xi)A—1/4)

and that the kernel approximation of the weight function is excellent in
practice [Silverman (1984)]. In other words, for x in the interior of [0, 1],
computationally the spline behaves much as a kernel smoother with simple
translation kernel 2 and bandwidth A/%. Silverman (1984) has extended
this relation to x near the boundary by introducing a variable kernel
A"1/4K(x,t, ), as well as to the more general case of data distributed accord-
ing to density p(x). In this latter case, which is beyond the scope of this paper,
the proper bandwidth is Al/%p ~1/4(x).

To gain more insight into the equivalent variable kernel, we contrast it with
the Green’s function approximation first introduced by Speckman (1981) and
Cox (1984). Consider the mean of the spline estimate, E[ f(x)]. It follows from
(1.2) that E[f(x)] solves problem (1.1) with f(x,) replacing y,. If we now
approximate the sum in (1.1) by an integral, we are led to

min [( f(x) - g(x))" dx + A [g®(x)" dx.
£
The Euler equations for this are
AgW(x) + g(x) =f(x),
£®(0)=g®(1)=g®(0)=g™(1) = 0.

The preceding system is self-adjoint, with solution h(x) given by integration

(1.3)
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against a unique Green’s function G(x, ¢):

h(x) = fGA(x,t) f(t) dt.

It may be seen that G (x, ¢) is approximately of the form A ~1/4k((x — x;,)A~1/%)
for x in the interior of [0, 1]. However, in general, construction of G,(x,t)
requires the solution of a system of linear equations for each value of A and
the system becomes ill-conditioned as A — 0. For details, see Speckman (1981)
or Coddington and Levinson (1955). In particular, G,(x, t) does not scale, as
does a variable kernel.

From both a theoretical and a practical point of view, then, a natural
question is how close a spline estimate is to a particular associated kernel
estimate. Silverman (1984) has established bounds for the difference between
the weight function G, (x,x;) of the spline estimate and an appropriate
kernel K, in sup norm, for a general smooth design. In this general setting,
however, the bound is not sharp enough for the present purposes. For exam-
ple, consider the case of uniformly spaced observations and f e C*0, 1], the
space of functions on [0, 1] with four continuous derivatives, and suppose that
n?A - © as n - ®, A > 0. Then, exploiting the symmetry of the weight
function, it follows from Silverman (1984), Proposition 2 that

limlGn,)‘(x,xi) - A‘1/4K((x - xi))‘_l/4)| <c

uniformly in x,x; for x, x; away from the boundary of [0, 1]. [With a more
complicated variable kernel, as given later, the bound is extended to all x,; see
Theorem B of Silverman (1984).] Such a bound does not guarantee, for
example, that the difference between the bias functions of the two estimates
approaches 0.

The present paper attempts to address the question, what is the practical
difference between a spline estimate and its associated kernel estimate, for
moderate n? It is well known, and follows from Theorems 1 and 2, that the
bias of each of the two estimates is of order O(A) in the interior of [0, 1], and if
£@(0) # 0, of order O(A}/2?) near 0. Hence we should like a bound on the
approximation error between the two estimates to within the previous orders.

We shall obtain such bounds in a particular setting, at the cost of some
generality. We compare the bias and covariance functions of a particular cubic
spline estimate, with uniformly spaced observations, to those of an equivalent
kernel estimate. We shall see, for reasonable choices of A, that both estimates
converge to their respective asymptotic forms at a rate which is O(n~1). We
may then compare directly the asymptotic bias of the two estimates, and see
that, to first order, they are the same. Both estimates exhibit clearly the
boundary bias phenomenon described in Rice and Rosenblatt (1983); the shape
of the boundary bias may differ somewhat in its higher order terms between
the two. This difference may be an artifact of the particular spline estimate
studied, which has been modified somewhat at the boundary. The covariance
functions of the two estimates exhibit a similar relation. We shall give the
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kernel explicitly. In a related paper [Messer and Goldstein (1989)], we show
that it is nearly the previously discussed Green’s function.

Our approach is to exploit a discrete Fourier analysis introduced in Rice and
Rosenblatt (1983). To that end, we replace (1.1) in the definition of the
smoothing spline by

1 2 9 2
(1.4) 7 X i)’ + [[g%(x)’ dx,

where now ©7_,*a, = 3(a, + a,) + L?_}a,. Note that we have averaged the
two boundary observations, y, and y,. This will introduce a perturbation in
the higher order terms of the asymptotic expansion for the spline estimate, but
leaves the qualitative behavior unchanged. The analysis does not readily
extend to the case of nonuniformly spaced data; we are able to obtain these
more precise results only at the cost of considerable generality. Similar results
for higher order splines may be obtained analogously.

In summary, the present results support the empirically observed excellent
fit between certain kernel and spline operators. Further empirical work is
called for; for some data sets the equivalent kernel estimate may be computa-
tionally more convenient than the corresponding spline estimate. This will be
pursued elsewhere.

The remainder of the paper is organized as follows. In Section 2 the
approximating kernel is presented and discussed. Section 3 contains the main
assumptions and results. Section 4 contains proofs of theorems and Section 5
contains concluding remarks.

2. The kernel estimator. Here we present the approximating kernel
and define the approximating estimator. Note that the kernel depends on the

bandwidth 5. Let
e 11
sin[{ — | }.
V2
Let K;(x,¢) for x,¢ € R be given by

x—t x t 1-x 1-¢
K 4[5 t) iz i o[ £) 4 o[ L% (L
o(%,8) ( b ) ‘F{ b b A
(2.6) ' t 1 1-¢

x -x -
+k(3)(—) (3)(_ + (3)( ® )

b k b k b k b

Notice that smoothing with a smoothing spline corresponds to smoothing

with a variable kernel estimator; that is, the shape of the kernel K;(x,t) as a
function of ¢ will depend on the point x at which f(x) is to be estimated for x
near the boundary. Such modified kernel estimates have been investigated by

Rice (1984) and Gasser and Muller (1979) in the context of boundary bias
reduction.

t

(2.5) k(t) = E%e_"'/ﬁ{cos(ﬁ
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As a final complication, the identification (1.4) of the boundary observations
for the spline induces a wrapping of the equivalent kernel around the interval
[0, 1]. Hence we take as equivalent kernel

(2.7) Ky(x,t) = Kj(x,8) + K)(—1 +x,t) + K)(1 +x,¢).

This wrapping arises from the first few terms of the Poisson summation
formula. [Cf. Feller (1966), page 630; for example, see the remarks following
(4.12)].

Finally, we define the equivalent kernel estimate f, with kernel K, and
bandwidth b, as

- 1 7
(2.8) f(2) = — L Ky(%,%.)y;

=0

where Y* is as in (1.4). The appropriate bandwidth is b = A1/4,

Here we have modified the usual estimate at the endpoints, as for the
spline. The modification here is not necessary; it amounts to using an extended
trapezoidal quadrature rule and will improve the rate of convergence of the
bias of the estimate to its asymptotic form for x near the boundary.

REMARK 1. The derivatives 2®(¢) and k®(¢) decay exponentially away
from the boundary. Hence in the interior of [0,1], K,(x,t) behaves as the
translation kernel k((x — ¢)/b).

REMARK 2. It can be shown that for b = Al/4,

(2.9) sup | Ky(x,t) — Gy(x,8)| = O(b~ e~ /020);
x,t
see Messer and Goldstein (1989).

ReEMARK 3. Comparison of K,(x,t) with the equivalent kernel in Silverman
(1984), Section 5, shows asymptotic agreement at the above rate for K,(x, 0) as
well as for x, ¢ in the interior of [0, 1]. The two are not in exact agreement as
can be seen by expanding the latter kernel using trigonometric identities.

3. Assumptions and results. We first introduce some notation. Then we
state the assumptions under which the results of this paper will be proved.
Finally, we state and discuss the theorems of the paper.

We will find the following notation useful. Let |Igll = (flg(x)? dx)'/? denote
the L2 norm on [0,1]. Let the space of functions H%0, 1] consist of all
functions £ on [0, 1] such that A® exists and is absolutely continuous with
|R®]|| < . Let Ak = h(1) — h(0) and let E be the expectation operator.

We make the following assumptions:

AssuMPTION 1. The unknown function f satisfies f < H*0,1].



822 K. MESSER

AssuMPTION 2. The observation points x; satisfy x;, =i/n,1=0,...,n.

AssumpTION 3. The errors ¢; are independent identically distributed mean
0 random variables with finite variance o2.

AssuMPTION 4. The kernel estimate f is given by (2.8), where K, (x, ) is as
in (2.7).

AssuMpTION 5. The spline estimate [ is defined to be the minimizer over
functions g € H*[0, 1] of (1.4).

AssuMpPTION 6. The bandwidth b = A'/* and A depends on 7 in such a way
that A - 0, An > ©as n — .

The following theorem bounds the approximation error for the integral
approximation to the bias of the kernel estimate.

THEOREM 3.1. Let

_ 1 .4
B(x) = E[Of(,:)K,,(x,,:) dt — f(x).

Then

. - 1 11
|(Ef(x) - f(x)) - B(x)I < (m?ﬁmfxl fFO(1 + 0(d)).

Proor. This follows from the standard error bound for an extended trape-
zoidal rule of numerical integration [e.g., see Apostol (1969), page 604] and
from the simple bound [(82/3t®)K(x,t)| < 1/2V2. O

REMARK 4. A better rate of convergence can be obtained by using a higher
order Newton—Coates-type quadrature rule in the definition of f. The present
bound may be large for small A, as has been pointed out by a referee. For
example, in Rice and Rosenblatt [(1983), Figure 1], n = 50, A = 107¢ and the
bound is about .373 max |f|. For this example, the asymptotically optimal
value of A in terms of integrated mean squared error is about (.652/n)%/3. A
fourth order quadrature rule might be more appropriate in this setting; we
have used the trapezoidal rule for simplicity.

REMARK 5. From (2.9), we see that the kernel will inherit properties from
the Green’s function. Integrating by parts, we may then exploit known proper-
ties of the Green’s function [viz., G,(x, t) satisfies (1.3) as a function of ¢ for
fixed x # ¢ and has the appropriate discontinuity in the third derivative for
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x = t; see Speckman (1981), Messer and Goldstein (1989)] to establish
t=1
B(x) = _b4fb_1Kb(x, £) FO(t) dt + b3K,(x,t) fO(t)
=0
(3.10)

t=1

F”(x ) -+ O(be /D),

R Al

The two boundary terms on the rlght give rise to the boundary bias of the
kernel estimate. The integral term is easily seen to be of order O(b*). The first
boundary term is of order O(b3), unless f® satisfies the appropriate bound-
ary conditions. The second boundary term is of order O(2), since the differ-
entiation introduces another factor of b~ 1. Notice that these boundary terms
drop out if f satisfies f@(j)=0 for i = 2,3 and j = 0,1. These are the
principle boundary bias terms of the spline estimate as well.

The next theorem bounds the difference between B(x) and the bias of the
spline estimate. The second statement of the theorem compares the bias of the
spline to B(x) in the special case where the boundary bias terms drop out.

THEOREM 3.2. Let B(x) be as in Theorem 1. Then if nA — =,
Ef (x) - f(x)
= {B(x) = Dy(2)(=A2AF® + V2X/4(£O(0) + f(1)) + O(A)))
X(1+ 0(1/n)),

where D, (x) is as in (4.18), |D,|l= O(1/Vn) and the bounds O(-) are
uniform in x.

We turn to the covariance of the smoothing spline. Let K,* be the kernel as
in (2.7), but now with k(-) replaced by £*(-) = k(-) + D,(-) in (2.6) and D, as
in (4.18). Let f* be the corresponding kernel estimate. We have:

THEOREM 3.3.

cov(f(s), £(2)) = cov( f*(s), F*(¢))(1 + o(1/n)),

where the term o(1/n) is independent of s, t, and f.

4. Proofs of theorems. The proofs of Theorems 3.2 and 3.3 rely on a
Fourier analysis of the minimization problem defining the smoothing spline, as
in Rice and Rosenblatt (1983). Proposition 4.1 may be essentially found in that
paper.

We first establish some notation.

We shall denote the kth Fourier coefficient of g by g,, where g, =
/dg(x)e® = dx. We take the Fourier transform g of g to be [~ _g(x)e *** dx
and the corresponding inverse transform to be (1/2w)(®.8(x)e'** dx. By
f*g(x), we mean [~ _ f(¢)g(x — t) d¢t, where f may be understood to be 0 for ¢
outside of [0, 1].
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Let a, = (2mik)~Y, b, = @wik)"2 and r, = 2wik)~* Then if fe H*,
fo=Afa, — AfMy, +Af( a,b, — Af®r, + fOr,.
Given a sequence c, define c{"! as

c;en] = lim E ck+sn
v
for k=0,...,n — 1.
We may use the Parseval relation to recast (1.4) defining the smoothing
spline in terms of the Fourier coefficients of f and g. We obtain the equivalent
problem

" n—1
min |= — ["] + £ _ Agal + AgDObM — (gPb, )™
g ‘/—— 8o kZl \/—— & g by (gk k)
{22 + T T e+ T 2l
k+0 s s#0

which may be minimized term by term for fixed k. Here,

A

P = ‘/— Z y; exp(2mwijk/n).

Note that E[§,] = Vnfi",0 <k <n.

After some algebra, we obtain the following expressions. The reader is
referred to Rice and Rosenblatt [(1983), Lemma 2] and expression (3.30) and
(8.31) for details. Note that our r}"! is their r, and our f{? is their m,.

PropoSITION 4.1. Let ¢(x) = E[ fXx). Then
d(x) —f(x) = A(¢ — f)As(x) — A(¢D — fD) Ay(x)
—Af®PA(x) + AfPAy(x) + (%),

where the functions A,(x) and I(x) are as follows:

n—1
T Y I

s k=1 £n]

n—-1 r .
Az(x) = Z Z {bk+sn _ k+tsn bLn]}e—2‘n'z(k+sn)x’

A+
(4.11) T
[n Tk+sn —2mi sn)x
T o N R B

n-1
Ay(x) = - Z { e Thtsn _r£+sn} ~2mitk+sn)x

Y e A+

n—-1

[n] k sn —2mi sn)x

(412) I(x) = Z kz {(f(4)rk) A ++ Eﬂ _fk+sn k+sn}e Zmitk+sn) .
s =1
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Further,

(4.13) Ab— Af= !"il (fé2>bk)["]&&”]}{"i1 laf ) }_1

lem1 A + rj*! ao1 A+
and
n— 2 !
Ap® — AfO1 - {1+ Zl o
(414 aop A+

n—1 ( £@p \Mpln] n-1 |pr2 | 7t
—{Z M_k}{lJr v L&I_} )

o1 A+ aop A+

We now derive Theorem 3.2. The function I(x) in Proposition 4.1 will give
the principle contribution to the bias in the interior of [0, 1]; the remaining
terms will be boundary bias. We first show:

ProOPOSITION 4.2.
I(x) = =MA"Yokysx fO(x)) + e(x),
where |e(x)] < A" n 73| F@IA + o(1)).

We may interchange the order of summation in (4.12) to obtain

[r]
L (fE08%) :
4.15 = - ~2miks
(4.15) kzl DY
Note that
(4
@p2ylr _ Tk O (2mi(k + sn))
(fi96%) 2Zmik)’ SZ;O fidsn(2mi( )

For k < n/2, we may bound the right-hand sum in absolute value by || f®|le,,
where

0 <&, < (2mn) *(L(4) + 279).

Here /(t) is the Reimann zeta function. For k > n/2, k =n — j, we have
similarly

|(£062)"™ = 19| <l @l
In a like manner we obtain
(2mik) " + &, k<n/2,
(2mi(=j)) * + e, k>n/2.
Substituting into expression (4.15), we have
n/2 f®

_ _ k —2mikx n—4
(4.16) I(x) A _%‘,/2 /\(217ik)4 n 1e (1 + O( )) + 6(x),

rjtl =
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where the term O(-) is uniform in % and where

n/2 ¢, (2mk)*
@ RSl
B@I <l Y 2=

The previous expression will contribute the main approximation error in the
interior of [0, 1]; it may be easily bounded by c| f®|IA~1n"3, where ¢ is a
constant less than 1.

It remains to evaluate the principle term in (4.16). The function A~ 1/%k,1/
has inverse Fourier transform (%A + 1)~! as may be verified by a contour
integration. Thus the principle term in (4.16) is the partial Fourier series
expansion of the function
(417) —AZ )«‘1/4f(4)*kA1/4(j—x),
the differentiability of which is established by a dominated convergence argu-
ment. It follows that (4.16) converges to (4.17) by the Poisson summation
formula. We need only consider the terms j = 0 and j = +1, as the sum of
the remaining terms decays as Al/%e~1/( V2N f@| uniformly in x. The
difference between the truncated sum (4.16) and (4.17) may be bounded in
absolute value by || f®||n~%Al/2.

Next we examine the first four terms of Proposition 4.1; we shall see these
are the boundary bias functions of the smoothing spline. We have, by a similar
analysis of (4.13):

PRrOPOSITION 4.3.
ACEf = f) = (—AV2Af® + 2/ N/ 4L(fO(0) + FO(1)) — ron)

X(1+0(n"A8)) + ¢,
where

Fon = —2V2 X4 [P FO(RO(EA4) di(1 + O (e OP)),
0
and where |e| < || f®ln="A 75741 + o(1)).
Similarly, from (4.14) we have:

PROPOSITION 4.4.
A(Ef® — f@) = {—2y/2)1/4 1(f<2>(0) + (1)) + AV2AFO — 1)

X(1+0(n" /%) + ¢,
where
A= 272072 folféfgn(t)k(z)(t)t_l/“) dt(1 + O(e‘l/(ﬁA1/4))),

and where |e| < (Af® + || f@Pn=3/2 if A < 1.

The expressions for r,, , and r, , arise from a Poisson summation argument
similar to that for (4.17). Here f,,, and f,44 refer to the even and odd parts

even
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of f about the point 1:
foven = 3(f(2) + f(1 — %)),
foaa = z(f(x) = f(1 = x)).
In order to compare the boundary bias of the spline to the kernel estimate, we

need an explicit representation of the functions A,(x). Theorem 3.2 will follow
from Propositions 4.1-4.4 and the following:

ProrosITION 4.5.
Ay(x) = kO —x/\_l/“) + k(3)((1 - x)A‘1/4) + D, (x) + e5(x),
Ay(x) = /\1/4(k(2)( —xA1/4) + k(z)((l - x)/\‘l/“)) + g4(x),
Ay(x) = X2 (ED(=xA7 V%) + EDO((1 — x)A 7)) + (%),
Ag(x) = N4 (R(—2A7%) + E((1 — x)A71/%)) + g4(x),
where |e(x)| = O(n~2) uniformly in x and where ||D,| = O/ Vn).
It remains to demonstrate Proposition 4.5. A Poisson summation argument
shows that )
” A - A(3_j)/4(k(j)( —xA"4) + k(j)((l — x)/\_1/4))|| = o(X7~2)/8);

see Rice and Rosenblatt [(1983), Lemma 3]. Proposition 4.5 requires us to
refine this bound. Let

(2mik)!
Bi(x) =AY —— 5 ——e Tk
kE#0 /\(27le) +1

By a Poisson summation argument, we see that
Bi(x) = A(3—j)/4(k(j)( —xA" /%) 4 k(j)((l _ x)/\‘1/4)) + O(e‘l/(‘/z_"l/4’).

A short computation shows that

1 sgn(j(k))kC(lk/nl)
2mii(k) 2in?

for k=1,...,n — 1, where

alp =

. k, k<n/2,
J(k) = {k -n, k>n/2,

and where C(¢) = (3¢Xcoth(s¢) — 1/(7t)). Substituting into expression (4.11)
and switching the order of summation, we obtain

-1 /2 (2mik)C(k/n)
2(mn)® s A@2mR) + 1

—2mikx

Ay(x) = By(x) +

(4.18) .
2mik

> (27ik)

i e—Zwikx + S(x),
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with |e(x)| = O(1/n?%) uniformly in x. We shall denote the previous term in
brackets by D,(x); a short computation gives || D, (x)l = O(1/ Vn). Similarly,
we obtain

V2 C(k/n)
(2mn)? e M2wik)* + 1

where |e(x)| = O(1/n?2). The second term may be bounded in absolute value by
1/(243V2n) uniformly in x. The expansions for A(x) and A,(x) follow
similarly.

This establishes Proposition 4.5; Theorem 3.2 will follow by substituting the
expressions for the A;(x) into Proposition 4.1, expanding the expressions for
the £%)(x) and collecting terms.

We turn to the proof of Theorem 3.3. A .

Notice that cov(§,5,) = (8, — 1/(2n))o®. We may write cov( f(s), f(¢)) =
E[h(s)h(t)], where

h(s) = (Af=EAf)Ay(s) + (Af® ~ EAf®)Ay(s)
n-1/( 4 4

Ie_m|| LR

+,§0(\/Z fi ) A(2mik)* + 1

and where ¢, is uniformly O(n~*) by an analysis similar to that following
(4.15). The theorem follows from the approximations

A o? 1
var(Af)= 7)& 1/4CI(I+O(-’;)),

Ay(x) = By(x) — e 2mhr 4 g(x),

e—Zanks,

F(1) o? -3/4 1
var(Af )=7/\ C, 1+O; ,

A oA o? 1
ov(af,af®) = T 1+ 0( 7).

I 0,2 =[n]
cov(Af, y—k) = —n—)t3/4\/§ a (1 + O(%)),

Vn A+l
O 2 n)
N Ye o b% 1
@ 2k ) _ T 174 _ 172 _
cov(Af ,‘/;) n(/\ A )A+r£”1(1+0(n))’

where

x5 x2 -
Rl e

x* 1 2
e

X
Cs = 2]————dx,
(x* + 1)°

and collecting terms.
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5. Concluding remarks. We briefly mention that the results of this
paper may be used to develop a correction for the boundary bias of a spline
estimate. Further possible applications may be to investigate the behavior of A,
where A is an estimate of the optimal A and to give a confidence band for a
smoothing spline.
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