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GEOMETRIZING RATES OF CONVERGENCE, III'

By Davip L. DonoHO aND RicHARD C. Liu

University of California, Berkeley

We establish upper and lower bounds on the asymptotic minimax risk
in estimating (1) a density at a point when the density is known to be
decreasing with a Lipschitz condition; (2) a density at a point when the
density satisfies a local second-order smoothness (Sacks—Ylvisaker) condi-
tion; and (3) the kth derivative of the density at a point, when the density
satisfies a local L, constraint on the mth derivative. In (1), (2) and (3) the
upper and lower bounds differ asymptotically by less than 18%, 24.3% and
25%, respectively.

Our bounds on the asymptotic minimax risk come from a simple
formula. Let w(e) denote the modulus of continuity, with respect to
Hellinger distance, of the functional to be estimated; in the previous cases
this has the form w(e) = Ae"(1 + 0(1)) for certain constants A and r.
Then, in all these cases, the minimax risk is not larger asymptotically than
r'(d = r)~"w?*(n~1/2) /4 and is at best a few percent smaller. The modulus
of continuity of the functional and hence the geometry of the problem,
determine the difficulty of estimation.

At a technical level, two interesting aspects of our work are (1) deriva-
tion of minimax affine estimates of a linear functional in the white noise
model with general convex asymmetric a priori class and (2) the use of
Le Cam’s theory of convergence of experiments to show that the density
model is asymptotically just as hard as the white noise model.

At a conceptual level, an interesting aspect of our work is the use of the
hardest one-dimensional subproblem heuristic. Our method works because
in these cases, the difficulty of the hardest one-dimensional subproblem is
essentially equal to the difficulty of the full infinite-dimensional problem.

1. Introduction. Let T be a functional and suppose we wish to estimate
T(f) from data X;,..., X, iid. with density f. Here f is unknown, but
known to lie a priori in a class F. Examples of this problem include the
problem of density estimation, that is, of estimating T'(f) = f(0) from a
sample, when the density is known to lie in a fixed class F of smooth densities.

In an earlier paper (Donoho and Liu (1988a); hereafter [GRII]), a new
method of calculating optimal rates of convergence was introduced. We define
the Hellinger distance between densities f and g to be H(f,g) =
IVf — VgL, We define the modulus of continuity of T over F by

w(e) =w(e;T,F) =sup{|T(f) - T(g)|: f,e €F,H(f,8) <¢}.
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In many interesting cases, the modulus can be computed or bounded [(GR IJ),
and it turns out that w(e) = Ae"(1 + 0(1)) for some A and r. For example, for
2-smooth densities, one gets r = . It was shown in [GR II] that, for affine T
and convex F and a well-behaved loss function I,

(1.1) i?fsupEfl(Tn - T(f)) < l(o(n"17?)).
" F

Thus for squared error loss I(¢) = t2, the optimal rate of convergence is
generally n™", where r is the exponent in the modulus of continuity.

The aim of this paper is to make (nearly) precise the constants in such a
relation. We focus on squared-error loss (although our methods adopt readily
to absolute error loss and other loss functions). We show that in a range of
interesting cases, there exists a sequence of estimators (7',) with

w2(n-12
(122) swpE(T, - T(f)f =r'(1=r)"" %(1 +o(1)),

while for every estimator sequence

2 4 1-r “’2(”_1/2)
(1.2b) s1;pE(Tn -T(f)) = —5—r’(1 -r) ——————‘i——(l + 0(1)).

Hence we have measured the precise difficulty of the estimation problem, to
within a few percent. The cases where such a relation is proved in this paper
include:

1. Estimating the density at a point T'( f) = f(0) when the density is known to
be decreasing Lipschitz near 0.

2. Estimating the density at a point when the density is known to satisfy a
Sacks-Ylvisaker condition (roughly, having 2 derivatives, bounded by a
constant).

3. Estimating the density or some derivative at a point when the density
satisfies a local L, constraint on the mth derivative.

Our approach implicitly constructs kernel estimators attaining the perfor-
mance (1.2a) and constructs lower bounds which establish (1.2b).

The result (1.2) should be compared with traditional theory for root-n
consistent problems. In a regular parametric problem with T(f,) = 6, we
generally have, as Donoho and Liu (1987) show,

2¢
(13) w(s) = ?(1 + 0(1)),

where I, = min{I(f,): 6 € 0} is the minimal Fisher information about 6 in
the parameter family. Therefore r = 1, and the expression r"(1 — r)!™" =1,
so that

1-r w2(n—1/2)
(1.4) rr(l1-r) 1 = . (1+0(1)).
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In a sense, (1.2) is the extension to nonroot-n problems of the classical
parametric result

9 1
(15) inf sup (T, = (/)" = -7=(1 +o(1))

and one could also say that w(e) provides an analog of the notion of Fisher
Information for nonroot-n problems.

2. The white noise model. To begin, we turn attention away from
density estimation towards a closely related problem. In the next section, we
describe the reason for this apparent digression.

Let W(¢) denote a Wiener process on the line, with W(—a) = 0 (say).
Suppose we observe

(2.1) Y(t) = ]_‘ f(u)du + oW(t), te[-a,al

We are interested in estimating the linear functional T'(f) and we know a
priori that f € F, a convex subset of Ly[—a,al.

Ibragimov and Has’'minskii (1984) discussed this problem in the case where
F is centrosymmetric, so that f € F implies —f € F. Here we are interested in
the more general case where F is convex but not necessarily symmetric. For
example, F might consist of smooth, positive densities.

An affine estimator of the functional T'(f) is any rule of the form

T(Y)=e+ [u()Y(dr).
We are initially interested in determining the minimax affine risk,

i) = i, D) -7

Our technique is based on idea of identifying the hardest one-dimensional
subfamily of F for affine estimates. Let f_,, f; be given elements of F. We
use [ f_;, f1] to denote the line segment connecting f_, and f;. As F is
convex, this is a one-dimensional subfamily of F.

First, a comment. Suppose we observe y = 8 + z, with z distributed N(0, o)
and 6 known to lie in an interval [6_,, 6,] of length 27. The minimax risk
among affine estimates is, using calculus,

1_20_2

2 + 02’

pa(t,0) =

Moreover, the minimax affine estimator is 6 = 6, + co(y — 8,), where 8, is the
midpoint of the interval in which 6 is known to lie and ¢, = cy(7, o) = 72/
(72 + 0?%). Also, if instead of estimating 6, our goal is to estimate the affine
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functional #(6) under squared error loss, the minimax risk is

(t(ol) —t(6_y)

e

We use this to calculate the minimax risk for affine estimates of 7' in the
subfamily [ f_,, f1]. Let uy() = (f; — f_)X®)/If, — f_,l, where || - || denotes
the Ly[—a,a] norm. Define 6 = [uy(¢)f(t)dt. We view 6 as the natural
parameter for this family. By an argument based on sufficiency, the problem of
estimating 6 from observations Y, for f known to lie in [f_,, f,], can be
reduced to estimating 6 from observations y = [u ,(¢)Y(d¢t). Now y is N(6, o2),
where 6 ranges over an interval of length ||f, — f_,Il. It follows that the
minimax affine risk for estimating 6 from observations Y is just p,(lf; —
f-ill/2, o). Restricted to the subfamily [ f_,, f,], T is just an affine function of
6 and so for the minimax affine risk in estimating T over the subfamily we get

T(fl)—T(f_l))z (ufl—f_lll a)
Ify = fqll A ) e

To evaluate the difficulty of the hardest subfamily for linear estimates,
introduce the L,[—a, a] modulus of continuity of T over F,

(2.3) wy(e) = sup{|T(f) — T(fo)l|: i €F, Il f1 — foll <&}
Then

(22)  Ri(o;[f-1, fi]) = (

sup Ri(o;[f_q, fi]) = sup sup
f-1, i€F e |fi—f_ill=¢

- 4) (5 0)

ag
’
. 2

(T(fl) - T(f,) )2“(%’0)

£

thus the difficulty of the hardest subproblem is a functional of the L,-modulus
of continuity.

Surprisingly, under rather broad conditions on 7' and F the difficulty of the
hardest subproblem is equal to the difficulty of the full problem. In Appendix A
we prove:

THEOREM 1. Let T be affine and let F be convex, norm-closed and norm-
bounded for the Ly[—a, a] norm. Suppose that wy(¢) > 0 as ¢ — 0. Then
(2.4) Ri(o;F) = ; mfexeFRX(v;[f_l, fil),
the maximum being attained. Let [ f_,, f,] be a hardest subfamily and let ,
denote the length. Define
€9 ) wy(&o)

(2.5) b0 = o G0 | R (= £
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and fo = (f_, + f1)/2. Then ¢ is a minimax kernel and

(2.6) To(Y) = T(fo) + [(8)(Y(de) ~ fo(t) dt)

is a minimax affine estimator for the subproblem and also for the full problem.

Even more generally, that is, without topological assumptions on F, we have
a formula for the minimax affine risk.

TueOREM 2. Let T be affine, and F be convex and suppose that wy(e) — 0
as ¢ = 0. Then

€

and, if a hardest subfamily exists, the recipe of Theorem 1 furnishes a
minimax affine estimator. In any event, a minimax affine estimator exists.

Again, see Appendix A.
For this theorem, F may be any convex subset of Ly[—a,a]. If T is linear
and F is centrosymmetric, Ibragimov and Has’minskii (1984) gives the formula

Tz( f)0'2
sup ——— 5
rer o2 + I fII?

for the minimax risk of linear (and affine) estimates. To see that Ibragimov
and Has’minskii’s formula is a special case of ours, combine (2.7) with (4.2).
In the applications we have in mind,

(2.8) wy(e) = Ae™(1 + 0(1)), re(0,1].
When this is the case, asymptotics of the kind used in the proof of Theorem 5
yield

COROLLARY 3. Let T be affine, F be convex and let (2.8) hold. Then

%, N 1 03(20)
(2.9) Ri(0) =r"(1-r)' "= —=(1+0(1)).

If, in addition, r < 1,

(2.10) g0 =2y T i —o(1+0(1)).

We also briefly mention some bounds on minimax risk among all estimates:

(2.11) R%(0c) = inf supE(T(Y) - T(f))"

T measurable feF

To bound this, return to the problem of estimating 8 from data y = 6 + z,
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where z is distributed N(0, o2). We allow arbitrary measurable estimates and
define

s = inf sup E(8 - 9)2.
pn(T,0) s 0E SUP (6(y) —9)

See Levit (1980), Bickel (1981), Casella and Strawderman (1981), Ibragimov
and Has’minskii (1984), Donoho, Liu and MacGibbon (1990) for information
about p,. Mimicking the previous arguments, it is easy to see that

T(f) - T(f.1))\* (||f1—f_1|| )
1y = fl i 2 7

R;(I(O';[f—ly f1]) = (

and so, we get the lower bound

wy(€) 2 €
(2.12) Ry(o;F) > sup( 2.9 ) pN(E,O');
which has the asymptotic form

. w§(20')

(2.13) Ey(o) 2 &n(r)——(1 + (1)),
where
(2.14) En(r) = supr? (v, 1).
Define

C pa(n0)
w* = sup ————.
T,0 pN (T, 0')
Ibragimov and Has’minskii (1984) studied this quantity, and proved that

u* < . Donoho, Liu and MacGibbon (1990) and Feldman and Brown (1989)
showed that, in fact, this Ibragimov-Has minskii constant was quite close to 1:

un* < 1.25.
It follows, upon comparing (2.7) and (2.12), that
*
22 EZ; <125
and upon comparing (2.9) with (2.13) that
(2.15) En(r) = 2rr(1 - ).

Indeed, Table 1 shows that the two quantities are often much closer than this.
Thus, in the white noise model, one cannot drastically improve on affine
estimators (in a worst-case performance measure) by resorting to nonlinear
procedures. '

3. Bounds for densities. Let us explain the connection of the white
noise model with density estimation. Let F,(¢) = (1/n)L}_ 1y, ., denote the
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TABLE 1
Bounds on minimax affine and minimax risk where £ ,(r) = r"(1 — r)A~" and
En(r) = sup, v¥ 2%, 1)

r £4(r) En(r) > £4(r) 7E0(r) <
0.9 0.723 0.620 1.164
0.8 0.607 0.488 1.243
0.7 0.543 0.448 1.210
0.666 0.530 0.449 1.178
0.6 0.511 0.453 1.127
0.5 0.500 0.466 1.073
0.4 0.511 0.491 1.039

empirical distribution function. An affine estimator of the functional T' is any
rule of the form

T(F,) =e+ [p(t)F,(dt).
We define the minimax affine risk

Ru(n,T,F) = inf swE(T(F,) - T(f))

T affine feF

and note the following relationship:

LemMMA 4. Let F be a set of densities all bounded by M: supgll fll. < M.
Then the density estimation problem at sample size n is no harder for affine
estimates than the white noise model at noise level o = M /n . Formally,

M
(3.1) Ry(n,T,F) sRX(\/;,T,F).

Proor. Compare estimation in the density model by an affine estimator
T(F,) =e+ [y(t)F,(dt)
with estimation in the white noise model by the same estimator:
T(Y) =e+ [o(t)Y(dr).
Now with f the same in both models,
ET(F,) = ET(Y) =e + [u(2) f(2) dt = T(f),
say, while

Var(T(Y)) = o2 [y*(2) dt



GEOMETRIZING RATES, III 675

and
Var(T(F,)) = n( Jur) (o) de - ( Ju@) () dt)2)

<n7t [y f(2) dt
As supgl flle = M < o,
Var(T'(F, il FETR
| ar(T(F,)) < — [v*(1) dr.
Combining these facts, if we have the same f in both models, then
E(P(Y) - T(f)) = (T(f) = T(f)) +o2[v?
and
A 2 A 2 M 2
E(T(F,) - T(f)) < (T(f) - T(H) + — [u*
(8.1) follows upon comparing these two displays. O

As an obvious corollary, if w, has exponent r, we have the upper bound

(3.2) Ru(n,T,F) <r (1 —r)l"“’z(z— »i‘l/n)(l +o(1)).

We hope now to show that this is sharp in some cases. We will do this by
constructing lower bounds on the difficulty of the hardest subproblem in the
density model and using the bounds to show that the density model is at least
as hard, asymptotically, as the white noise model.

Our idea for lower bounds is as follows. Define the minimax risk by

R(n,T,F) = inf supE(T(F,) - T(f))".
T feF

Consider the affine family {f,: || € [0, 1]}, defined by f, = (1 — ) f, + 6f;. The
Fisher information for 0 is

2
Ia+f(f1f fo)

Hence, if I, = I, for all 6 [0,1], we might expect that, at least approxi-
mately,

1 1
R(n,0 = i ——— P
(n: :{fo}) PN(z’ M)
Now it turns out that, for well-behaved situations, we often have
6 = 4H2(f1’ fO)
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uniformly for 6 € [0, 1]. Hence, for estimating 7' in the subfamily, we expect
that

, (1 1
R(n,T,(f}) = (T(f2) = T(£0)) pN(g, W)

where ¢ = H(f,, f,). Now if this were exactly true, then we would have

1
sup R(n,T,{fs}) = supw 2(¢) pN(z,ﬂ‘/;e—).

fo, f1€F

Using the invariance py(7,0) = 0%y(7/0, 1), we would arrive at

w?(e 1
Slelp zg_pN £, Jn
for the difficulty of the hardest subfamily, leading to the proposed bound

2( —1/2)
(3.3) R(n,T,F) > ¢&y(r) ———(1 + 0(1)),

where &,(r) is precisely the quantity defined earlier in (2.14). (Use the
invariance of py to check this).

By a similar formal argument, we get for affine estimates the proposed
bound

- —p @*(n712)
(3.4) R, (n,T,F)>r"(1-r) ——(1+o(1))

In fact these bounds hold under considerable generality.

THEOREM 5. Let T be affine and let F be convex. Suppose that w(e) =
Ae™(1 + 0o(1)) for r € (0,1). Moreover, suppose that for all sufficiently small
g > 0, there exists a pair (f, ., f1,,) of densities in F which nearly attain the
modulus

(3.52) T(f1,e) =T(fo,.) = @(e) (1 +0(1)),
(3.5b) H(fo,e, f1,e) = (1 +0(1)).
Define

f1,.(%)
(3.6) A(e) = esssup Fo (%) 1‘.
If the pair (f, ., f, ) can be chosen so that
(3.7) A(e) >0 ase— 0,

then (8.3) and (3.4) hold.

Our proof of this result proceeds by Le Cam’s theory of convergence of
experiments. The proof occupies Appendix B.
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Now the lower bounds (8.3) and (3.4) are of the same type as the upper
bound (8.2), except that the lower bounds use the Hellinger modulus and the
upper bound uses the L, modulus. Under certain circumstances, the Hellinger
and L, modulus agree, in the sense that w(e) = w,(2VM¢)(1 + o(1)). In that
case, the lower bound (8.4) and the upper bound (3.2) coincide. We summarize
the implications.

CoOROLLARY 6. Let T be affine and let F be a convex set of densities bounded
by M. Suppose that

wz(Zx/Ms) 1
w(e)

as € > 0. Suppose in addition that the hypotheses of Theorem 5 [i.e.,
(3.5)-(3.7)] hold. Then we have the asymptotic equality

(3.8)

o, 2( —1/2)
(3-9) Ry(n) =r"(1=r)""" ———=(1+0(1)).

Moreover, if T, ,(Y) denotes the minimax affine estimate in the white noise
model at noise level o =+M/n, then T, (F,) is asymptotically minimax
among affine estimates in the density model. Finally, the maximum risk of the
estimator T, ,(F,) is asymptotically within a factor

&a(r) 5
< —
én(r) — 4

of the minimax risk.

Lemma 4, Theorem 5 and Corollary 6 provide a technique to establish
(1.2a)-(1.2b) in a given problem. One simply verifies (3.7) and (3.8). This we do
next in several examples.

4. Calculations in the white noise model. In this section, we see how
easily one can perform calculations in the white noise model. These are applied
to density estimation in the next section.

4.1. Parallelipiped. Suppose we are in the white noise model (2.1), with
interval of observation [—a, al, a priori class

(4.1) PP(8) = {f: f(t) =f(0) +¢'(0) +r(2),Ir(¢)l <t?/2,1¢| <6},

with fixed 8§ € (0, a), and that we wish to estimate T'(f) = f(0). Sacks and
Ylvisaker (1981) introduced the study of such classes in density estimation
problems. Geometrically, F is the union of translates of a hyperrectangle.

We compute the modulus of T over F. Here F is centrosymmetric and T is
linear. We use the following fact, whose proof we omit.
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LeEmMA 7. Let T be linear and F be convex and centrosymmetric about 0.
Then

(42) as(e) = 2sup|T(F)]: Ifll < 5, FEF).

Moreover, if a pair attaining the modulus exists, it can be taken to be of the

form (~fy, ).

It follows that w,(e) is the inverse function of

(4.3) e(w) = 2inf{||g||: T(g) = %,g e F}

With our T and F, this optimization problem is invariant under reflection
about the origin: if f(#) solves the problem, so does f(—t). As the norm is a
convex function, (f(¢) + f(—#))/2 is then also a solution. Therefore we can
restrict attention to even functions in our search for a solution to (4.3).

A solution to this problem is obviously the f; which is equal to w/2 at zero
and which descends to 0 as rapidly as possible away from 0, subject to
membership in F. Thus provided 6 > Vw,

w 2
fi(t) = (E - _2‘) .

Now
[re=[" (Z _ f)z
Yl gle 2

2 2\ 2 5/2
=w_/‘/g 1-— b _¥ fl(l—u2)2=iw5/2.
2 Jo Vw 2 Jo 15

Thus wy(e) = (32)2/5%¢*/5 for ¢ small enough.

From Theorem 2 and its corollary, we see that the optimal rate of conver-
gence of the mean squared error to zero is (¢2)*/°. In fact, for o small enough,
the minimax linear risk is precisely

4 15 \*° 3
gA(E)( 16\/5) (02),4/5 =157/ 5 (@)

and the minimax nonlinear risk is not smaller asymptotically than
15—1/5%(02)4/5.

For small o, the hardest one-dimensional subfamily for affine estimates is
[ f1, —11], where f; solves the optimization problem (4.2) with

r
1-r

o=4o0.

g0 =2

It follows that f, = 0 and the minimax affine estimator is linear, of the form
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To(Y) = [yp(2)Y(dt), where

#) = 222 10),

0

with
2 2
co = e/ ;=1 and wy(e,) = (15) 0?5,
o + (&0/2)
Thus
4 (15)*°
(8) = 55— " (0)
2/5 2
= (15) 10.—6/52 1 — L
5 2 2 w N
4/5 2
= (15) 10—2/5 1 — L
5 4 w N
_ ha(t/h)
h I
where
(4.4a) ko(t) = 3(1 - 1),
is (a version of) Epanechnikov’s kernel and
(4.4b) h=vYw = (15)" 0?5

is the optimal bandwidth.

4.2. Hyperwedge. Again consider the white noise observation model (2.1),
with interval of observation [—a,a]. Let the a priori class F consist of
functions known to be positive, monotone decreasing, with Lipschitz bound C
in the neighbourhood [—§, 81:

HW(M,C,5?)
— (£ M= f(-5) = f(x) = f(5) = Ofor x € [5,5],
and 0 < f(x) — f(y) <Cy —x for -6 <x <y < §};

F is not centrosymmetric. Geometrically it is a form of hyperwedge. For a
finite-dimensional analog, think of the set in R” with 1 > x;, >x5,> -+ >
x, = 0.

Again let T'(f) = f(0). We compute the modulus of T over F. Suppose that
w < min(M /2, 5C/2). Then, by inspection, the optimization problem

e(w) = inf{y//(fi = f-0)* T(f) = T(f,) > w, f, € F)
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is solved by any pair f}, f_, satisfying f,(0) = f_,(0) + b and

o £,0), xe [_T:’O]’
£0) - Cx, x e(O, E]’

and

. f_1(0)+w—C(x+%), xe[%:,O],
f-.0), xe(O,E],

where f_(0) <M — w and f}, f_, are equal outside the indicated intervals.
We have

2 2 w/C 2 2 w?
e = [(fi=f)' = 2" (w=Ch)’dh = 5,

so that w,(e) = ($C)/3:2/3 for small ¢. Hence R}(c) = 1271/3C2/3(o2)2/3
for sufficiently small o.

The hardest one-dimensional subfamily is, for small o, the span of f_,, £,
with &g =2yr/(1 —r)o = 2/20. One sees that f, =0, so the minimax
affine estimator for this family is linear; it is T((Y) = [y(£)Y(dt), where

w5(£o)

Y(t) = 007"( fi—F-0(),

with
(“30/2)2 2
and w = (12C)'/30'/3. One easily verifies that ¥(t) = k,(t/h)/h, where
(4.5a) ky(t) = (1=t
is the triangular kernel and
(4.5b) h= % - (3)1/3(%)2/302/3

is the optimal bandwidth. Thus the triahgular kernel is minimax affine in this
case. For sufficiently small o, it is within 18% of minimax, by Table 1.

4.3. Sobolev classes. The last two examples involve calculations by hand.
Now we use known results in another part of mathematics to do our work for
us. Suppose we observe

Y(t) = /Otf(x) dx + o W(t)
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for all t € R (so that a = »), where we adopt the conventions (a) that W is a
standard two-sided Wiener process with W(0) = 0; and (b) that [;¥If= — /2 .
We wish to estimate T'(f) = f*)(0); we know a priori that f€ W(m, p,C) =
fif,..., £V absolutely continuous, || f™|l, < C, || flls < «}. Here 0 < k£ <
m. From this point onwards, a subscript p on a norm symbol indicates an
L ,-norm and a subscript 2, or no subscript at all, indicates an L,-ncrm.

Now F is symmetric; by (4.2), the modulus of continuity is

wy(g) = 2sup{| FRO)[: I F™ll, < C, I fllz < £/2)
= 2sup{ll F Plle: I F™ll, < C, I fll2 < /2],

(4.6)

where the second equality follows from translation invariance of the norms
involved. To calculate this, we refer to the theory of inequalities between
intermediate derivatives of a function: in particular, inequalities of the form

(4.7) IF®ll < A(k, m, p)Il Fl3IL FOI,

where r =r(k, m, p). Such inequalities (with variations on the choice of
norm) have a long history. If the three norms in question are all L_-norms
[rather than the mixture of («, 2, p) norms in (4.7)], their study goes back to
Hadamard in the particular case 2 = 1, m = 2, and to Kolmogorov in the
general case. If the three norms in question are all L,-norms, their study goes
back to Sobolev, and, even earlier, to Hardy. The exponent for the mixed-norm
inequality (4.7) has been shown by Gabushin (1967) to be

m—-—k—1/p

(4.8) r(k,m,p) = ———

The best possible constants A(k, m, p) in inequalities of the form (4.7) have
been characterized by Magaril-II’yaev (1983), who proved that extremal func-
tions exist attaining the equality in (4.7) when these constants are used.

Now (4.6) and (4.7) imply

(4.9) wy(e) <2A(k,m,p) (5/2)’0(1—r) = A(k,m, p) (zc)l—rgr'

On the other hand, existence of extremal functions for the best constants
implies that equality holds. Thus (4.9) holds, with equality, rather than
inequality. ‘

Because (4.9) is exactly, rather than approximately, of power law form, we
have

Rji(0) = 2% %,(r)wi(o) = r"(1 —r) Ak, m,p)C* ¥ ¥

exactly. Thus, the optimal rate 2r for the minimax risk derives from the
exponent on || f|lz in the mixed-norm inequality (4.7). Again, because (4.9) is
exactly a power law, the hardest one-dimensional subproblem is of length
go = 2y/r/(1 — r) o exactly. Moreover, f, = 0. Hence, applying Theorems 1
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and 2, the minimax affine estimator is linear: T(Y) = [¢(¢)Y(d¢), with

wy(€o)

£5

y(t) = 2r f(2),

where f; is an extremal function for (4.7) with || fillz = eo/2, Il f{™Il, = C. Let
us be a bit more explicit about the extremal functions. Let ¢, , , be the
solution of the problem

sup f®(0) subjectto |Ifllz <1,1If™I, < 1.

By weak compactness and weak closure of strongly closed convex sets, such a
solution exists [compare Gabushin (1967)]. Then A(k,m, p) = ¢§"), ,(0) and
we may put

fl(t) = ad’k,m,p(t/h)’

where
1/p—-m+1
1—-r
h=|C om-1l/p-1
r
and
€o
a= oh

In short, the optimal kernels for estimating f* over Sobolev classes are
proportional to the extremal functions for the mixed norm Kolmogorov—
Landau-Sobolev inequalities. This connection between minimax statistical
estimation and an important topic in analysis and applied mathematics seems
to be new.

5. Application to density estimation. In this section, we apply the
results for the white noise model to get results for the density estimation
model. Our key tool is Corollary 6 and the criteria (3.7)-(3.8). For verifying
(3.8), it is very useful to keep in mind that for f and g densities,

[(F-8) = [(/F ~VEV'(VT + V&) < sulyF + V&) [(VF - V&)
so that if F is a set of densities all bounded by M,
If-gl<2VMH(f, g),

hence
(5.1) w(€) < wy(2VMe),

universally, without any restriction on T or F. Hence to establish (3.8), it is
enough to prove that

(5.2) w(e) = wy(2VMe)(1 + o(1)).
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5.1. 2-smooth density. Now consider the problem of estimating T'(f) =
f() from X,,..., X, iid. f, f unknown, but known to lie in the Sacks-
Ylvisaker class of densities

(5.3) SY(M, 5) = {f:OsfsM,ff= 1} N PP(5),

where 2Mé§ < 1. Such a density has, loosely speaking, two derivatives at 0, and
the second derivative (if it exists) is bounded by 1.

Let us verify (8.7)-(3.8). From our discussion of the white noise model we
have [see (4.3)] a pair (h,, h_,) attaining the L, modulus at 2VM¢. Here
h_,=—h, Let a = [h, and set M = (M — w,(2/M¢))/(1 + a). Note that

(5.4) el < 0y(2VF &) = 0,

(5.5) a < Vollhl < 0®? = o(¢),
so that M = M(1 + o(1)). Define

fl,e = {M(l —a) + h1}1(1t|51/2M)’
fo e = {M(l +a)+h_ }1{|t|<1/2M}‘

Now, by construction, [f;, = [f, .= 1. For small enough ¢, M>f, >0,
M > f,, = 0. Also, for small enough ¢, (2M)~! > 5. Hence f1,. and fo ., are
in SY for small enough ¢. Note that

T(f1..) = T(fo.) = 0p(2/Me) - 2Ma.
Let S denote the support of 2, and A_,. By the inequality,

(5.6) (B - Va)’ < le(b —a)?
valid for & > a, we have
L,(\/l?;_ \/—) mf(f1e fo.e)’

4 Me? _ %1 1
= 4(M—w2(2\[1‘76)) =e(1+0(1))

and also

[VFie =VFae) = /lsz(¢M(1_a)_¢M(1+a))

a2

< —_—

4(1-a)

Thus, we have, for every small enough &, a density pair (f, ,, f, ), with
T(f1,e) = T(fo,e) = @3(2VMe)(1 + o(1))

(5.7)

=o(&?).
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and
H(f1,e fo,.) =¢e(1+0(1)).
(5.2) follows, (3.8) holds and hence (3.5) holds. Moreover,
l fl,s(x) - fO,s(x)| < 2Ma + 2||h1||oo
fo,e(x) T M|k

By (5.4), we get A(e) — 0. All the hypotheses of Corollary 6 are in place. This
proves:

THEOREM 9. Let T(f) = f(0). Let F = SY(M, §) with 2M$ < 1. Then

w(e) = (%)2/554/5(1 +o(1)).

Also, (3.9) and (3.3) hold and so

Ru(n,T,F) = 21575M*/5n=%/5(1 + 0(1))
and

Ry(n,T,F) > $15-V3M*/5n~4/5(1 + o(1)).

Moreover, Epanechnikov’s kernel (4.4a) with bandwidth h, = 15*/°M*/®pn~1/5
yields an estimator T® = 1/n3" ky(X,/h,)/h,, which is asymptotically
minimax among affine estimators and within a factor 1.25 of asymptotically
minimax among all estimators.

The asymptotic minimaxity of Epanechnikov’s kernel among linear esti-
mates and the evaluation 215-/°M*/5,~4/5 for the asymptotic minimax risk
among linear estimates were first obtained by Sacks and Ylvisaker (1981).

What is new here? (1) The derivation of these results via the white noise
model and the hardest subfamilies heuristic; (2) the connection of the num-
erical formula for the minimax risk with our new, general formula
r"(1 — r'""(0*(n"1/2)/4); (8) the demonstration that the difficulty of the
hardest 1 — d subproblem is essentially equal to the difficulty of the full
problem in this case; and (4) the demonstration that no nonlinear method can
obtain more than a few percent improvement on the minimax affine one.

5.2. Decreasing density. We are still estimating T(f) = f(0) from a ran-
dom sample from f. Let D(C, M, §) denote the class of all densities which
belong to the hyperwedge discussed in Section 4.2 and suppose 2M§ < 1.

We briefly describe the construction that verifies (3.7)—(3.8). Let w =
wy(2VM ) and put M = M — w?/(25C). For sufficiently small ¢, w < M; we
consider only this case. Let (h;, h_;) be a specific pair attaining the L,
modulus w,(2VM ¢) for the hyperwedge HW(C, M, &) of Section 4.2. This pair
is of the general form described in Section 4.2, with the additional specifica-
tions (which we are free to make) (1) that #,(0) =M and ~_,(0) = M — w, (2)
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hy(t) = h(=08) for t < -8 and h(t) =h(8) for ¢t>5. Put d=(1-
w?/2C)/(2M — w). Note that [? h, = 1. Now define

fl,e = hll[—d,d]’
fO,E = (h—l + w2/2dC)1[_d,d].

By arguments analogous to the last section, we can show that if 2M§ < 1,
then for all small enough ¢, the pair (£, ,, f, .) are both densities in D(M, C, 5),
and that they establish (5.2), hence (3.8). Also, the argument for (3.7) is
similar to that used in the last section. Applying Corollary 6 and the calcula-
tions of Section 4.2, especially (4.5), we have:

THEOREM 10. Let T(f) = f(0). Let F = D(C, M, §) with 2Mé < 1. Then
w(e) = (6MC)"%:2/3(1 + o(1)).
Now (3.9) and (3.3) hold, and so
Ru(n,T,F) = 127V3(CM)*?n=2/3(1 + o(1)).
Also

1
Ry(n,T,F) > 127173 ﬁ7—8(CM)2/3n‘2/3(1 +o(1)).

Moreover, the triangular Kernel (4.5a) with bandwidth
h, = (12M/C?)"*p-1/3

yields an estimator TV = (1/n)L?_1k(X;/h,)/h,, which is asymptotically
minimax among affine estimators and within a factor 1.178 of minimax
among all estimators.

5.3. Estimating a density in a local Sobolev class. Now let Wy(m, p,C)
denote the class of f with £,..., f(™~D absolutely continuous, and f defined
on the whole real line, but also f e L,[-§, 6] and

(m)
Il f ”LP[—s,s] <C.

We remark that W(m, p,C) c Ws(m, p, C). Actually:

LemMA 11. Let T(f) = f*X0),0 < & < m.
(56.8) wy(e;W(m,p,C)) = wy(e; Wy(m,p,C))(1+0(1)) ase— 0.

The proof consists in showing that the same constants apply in certain
mixed norm inequalities between derivatives of a function, whether the do-

main is all of R or just a bounded interval. We omit the analysis. -
Define

SD,(m,p,C,M) = Wy(m, p,C) N {f:OsfsM,ff= 1},
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where 2Mé < 1. We suppose we have n observations from a density f belong-
ing to this class and that we are interested in estimating T'(f) = f*X0).

We now verify (3.7)-(3.8). Let (h_,, h;) denote a pair attaining the L,
modulus for Wy(m, p, C) at 2VM ¢ and vanishing off [ -5, 5] [such exists by the

L,[-3,8] norm-boundedness of Wy(m, p,C)—apply Lemma 2 of Donoho
(1989)]. (Note that A _ —h by centrosymmetry and Lemma 7). Put a = f(h,
and let M = (M — IIhIIIQ/(l + a). By an argument used in the proof of (5. 8)
one can show that

(5.9) a=o(e).
Putting To(f) = £(0),
121l < wy(2VM e, Ty, Wy)
= wy(2VMe, Ty, W)(1 + 0(1)) =0(1) ase -0,

where we used (5.8) and (4.9).
Now define

(5.10)

fi.= {M(l —a)+ hl}]'(ltlsl/ZM)’
fO,e = {M(l + a) + h—1}1(|t|sl/2M}'

Then, one sees that [f;, = [f,. = 1, that for small enough ¢, 0 <f,, <M,
and similarly for £, ,. Now

T(f.) = T(fo.) = 2aM1y_q + T(hy) = T(h_,),
whence, by definition of A, and A _, and by (5.9),
T(f1,) = T(fo,.) = wy(2VMe, T, Ws(n,p,C)) — o(¢)
> wy(2VMe,T,SDy(n,p,C, M)) — o(¢).
On the other hand, letting S = [ 4, 8] and arguing as at (5.7)
[ Vi =)
-1 @
< (#infmin (£, fo.(0)) [(Fr=fod)™+ 57—y

=¢e2(1 + o(1))

by (5.9)-(5.10). We conclude that (5.2) holds for this example. Hence (3.8)
holds and also (3.5).

A(e) = sup
xel-1/2M,1/2M]1| fo, e(x)

fdx) | Mkl
T M-|h_.
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so that, by (5.9)-(5.10), A(g) — 0. Hence, (3.7) holds. Combining all this and
applying Corollary 6 gives:

THEOREM 12. Let T(f) = f*X0). Let F = SDy(m, p,C, M) with 2Ms < 1.
Then

w(e) = 2A(k, m, p)(C) ""M"/%7(1 + o(1)),

where the constant A(k, m, p) is the best possible constant in the
Kolmogorov-Landau-Sobolev mixed norm inequality of Section 4.3 and
r(k, m, p) is defined in (4.8). Also, (3.9) holds and hence (1.2a)-(1.2b) hold
for this example.

We might also note that the minimax kernel for the white noise model with
F = W(m, p, C) is asymptotically minimax in the white noise model for norm-
bounded subsets Wy(m, p,C) N {f: [®.f? < B}. Therefore, the minimax ker-
nel of Section 4.3, tuned for noise level o = VM /n , is asymptotically minimax
among affine estimates in the density model. We omit the argument.

6. Discussion.

6.1. Relation to other work. Previous work on these problems has focused
mainly [Farrell (1972), Has’minskii (1979), Stone (1980)] on determining
optimal rates of convergence.

Previous work on lower bounds has developed two approaches that can,
potentially, yield reasonable constants. Both approaches are based on the idea
of inventing a one-dimensional parameter family which is difficult and using a
well-known inequality to lower bound the minimax risk in that family. The
approaches are

1. LAN approach, Has’minskii (1979). Show that the sequence of one-dimen-
sional families {f; ,: 6 € [0, 1]} is locally asymptotically normal; then its
asymptotic minimax risk is at least the Bayes risk for a uniform prior on
[0, 1].

2. Cramér-Rao Approach, Farrell (1980), Brown and Farrell (1987). Use the
Cramér-Rao inequality on the families { £, ,: 6 € [0, 1]}.

Our work is an improvement on these efforts. By using the bounded normal
mean inequality, we get constants in the one-dimensional subproblem at least
as good as either method. This is because of the comment after the statement
of Theorem 8.1 in Section 8, namely that our approach gives a precise
evaluation of the risk in the subfamily, rather than a lower bound. More
importantly, our method automatically chooses the best possible families { f; ,}
via the use of the modulus of continuity. [Nevertheless, Brown and Farrell
(1987) have shown in a particular problem, that by skillful use of the
Cramér-Rao inequality, one can get constants essentially as good as ours.]

Previous work on upper bounds has concentrated on finding minimax
kernels; see Sacks and Ylvisaker (1981). The method of finding kernels there is
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by a different technique. It appears that the family of kernels Ok, m, p that we
have introduced here is a new family of optimal kernels.

Sacks and Strawderman (1982) posed the question whether for estimating a
linear functional it was possible to do much better by nonlinear techniques.
Ibragimov and Has’minskii (1984) showed that in the white noise model, if the
a priori class F is convex and centrosymmetric, one can expect that at most a
factor u* improvement on linear procedures. (They did not speculate on the
value of p*). The arguments we have given here show that in the white noise
model, even if F is arbitrary convex, nonlinear procedures offer at most
w* < 1.25 improvement on affine procedures. We have shown that similar
conclusions hold in the density model when our Corollary 6 applies.

Incidentally, we believe that our introduction of the modulus of continuity,
the notion of the exponent of the modulus and the multiplier »"(1 — r)!~", are
new notions in the nonparametric estimation of functionals, both in the white
noise and in the density model.

6.2. Other loss functions. Donoho (1989) gives a comprehensive treatment
of the white noise model when absolute error and confidence statement length
are considered. It points out how Corollary 6 generalizes to other loss func-
tions.

6.3. Other applications of white noise. The white noise model may also be
used to compute asymptotics of minimax risk in nonparametric regression. We
quote a simple result in this direction [Donoho and Low (1990)]. Suppose we
observe

yi=f(t) +z, i=1,...,n,

with #; equispaced on [—-8§,38], z; iid. N(o?), and we know a priori that
f € Ws(m, p,C). We are interested in estimating T(f) = f*(0), 0 <k < m.
An affine estimate in this problem is any rule of the form

T((yz)) =e+ Z C.y;-
1
Let w, denote the modulus in the white noise model (4.9). For this paragraph

only, set

Ro(n,T.F) = inf sup E(((5)) - T(f))"

THEOREM. Let T(f) = f*X0) and let F = Wy(m, p, C).
o

=
= 92r2pr(1 — r)l"wg(%)u + (1))

R,(n,T,F) = R;{( T,F)(l +0(1))

=r"(1-r) ""A(k,m, p)C?> ¥a¥n (1 + o(1)),
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where A(k, m, p) and r are defined by (4.71)-(4.8), Section 4.3. The minimax
risk is at least & of this quantity.

Thus the asymptotics of minimax affine risk in the white noise model
determine those of minimax affine risk in the nonparametric regression model.
And quantitatively, the minimax affine risk is a simple function of the optimal
constants and exponents on the Kolmogorov-Hadamard-Sobolev mixed-norm
inequality (4.7).

Of course, there is a long history of applications of the white noise model to
studying the estimation of the entire object f, with L, loss ||, — f||?, rather
than just estimating a functional of the object [see papers of Pinsker (1980),
Bentkus and Kazbaras (1981), Efroimovich and Pinsker (1982), Nussbaum
(1985)].

Low (1989) has shown that the white noise model, the density estimation
model and the nonparametric regression model are locally asymptotically
equivalent.

6.4. When 2M45 > 1. In an earlier version of this paper, Donoho and Liu
(1988b), the results of Sections 5.1 and 5.2 were obtained without the assump-
tion that 2Mé < 1. By a more complicated construction, Theorems 9 and 10
were shown to hold even without this assumption.

However, the assumption is not purely technical. In the Sobolev class
example of Section 5.3, if Mé < 1, one no longer gets in general that the
Hellinger and L, moduli agree. For example, preliminary computations on the
case T(f) = f*(0) with class F = SDy(m, p,C, M) with 6 = « indicate that
for small ¢, w(e) < cwy(2VM ¢) with ¢ < 1.

APPENDIX A
Results on white noise.

Proor oF THEOREM 1. The result is a special case of Theorems 1 and 2 in
Donoho (1989). We present here a different argument, however, which may be
easier to understand. The argument we present here is a modification of one
introduced by Donoho and Liu (1987). For a still different proof, see Brown
and Liu (1989). Define the functional -

w) (u )
If - gl AT )

which measures the difficulty of the subproblem [ f, g1.

Let T denote the relative topology on F we get by restricting the ordinary
L,[—a,a] weak topology to F. Note that F, as a strongly closed, convex and
bounded set, is compact in the weak topology. Hence, in the topology T, F is
compact. We claim that J(f, g) is upper-semicontinuous in the topology T.

J(f,g)=(
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That is, if (f,) and (g, ) are sequences of elements in F converging weakly to f
and g,
(A.0) limsup J( f,,8,) <J(f,&).

n—o
We prove this later. It follows from this and compactness of F for this
topology, that a pair ( f;, f_,) exists maximizing J:

J(f1, f-1) =max{J(f,g): f,g € F}.

The subfamily [ f_,, f;] is a hardest 1 — d subfamily in F. For later use, we
may assume (without loss of generality) that T'(f,) > T(f_,).

Formula (2.6) defines the minimax affine estimator for the subproblem
[ f_1, f1]; this follows from the discussion in Section 2 about minimax affine
estimation of an affine function of the parameter 6. We are aiming to prove
that the difficulty of the full problem is no greater than that of the hardest
subproblem. To do this, it suffices to show that T';, which is affine minimax for
the hardest subproblem, never performs worse than in the subproblem. In
other words,

(A.1) sup E(Ty(Y) — T( ]"))2 = max E(Ty(Y) - T(]"))2
feF felf-1, fil

Now define Bias(T,, f) = ET(Y) — T(f) = T,(f) — T(f); then

E(To(Y) = T(f))" = Bias’(Ty, f) + o2 [4*(t) dt.

Moreover Bias is an affine functional and (one can check) |Bias(T,, f_,)| =
|Bias(T'y, f1). Therefore (A.1) is equivalent to

(A.2a) Bias?(T,, f1) = sup Bias*(T,, f),
feF

(A.2b) Bias?(T,, f_;) = sup Bias*(T,, f).
feF

We note that our convention T'(f;) > T'(f_,) implies that

(A.3a) Bias(T,, f1) <0,

(A.3b) Bias(T,, f_;) = 0.

Hence the theorem follows from (A.2). We will see in a moment that J is
Gateaux differentiable and by the necessary condition for maximization of o/,

(DflJ,h>sO, h=Ff-"1, feF,
(Df_lJ,h>sO, h=f-f_, feF.
We will also show that
(A.4a) (Dyd, f - fry = (—a)(Bias(Ty, f) — Bias(T,, f1)),
(Adb) (D, J, f—f_)) = a(Bias(Ty, f) — Bias(Ty, f_,)),
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with a > 0. It follows that if f € F,
Bias(T,, f_,) = Bias(T,, f),
BiaS(To, f]_) < Bias(T01 f);

by the sign condition (A.3), (A.2) follows.
Let us now check our claims about the differential of J. Note that

T(f) - T(g))’c?
(A.5) J(f.8) = ( 4(0/;)+ ||f(—g;f)||2 .

Thus, J(f, g) =j(A(f — g), B(f — g)), where j(a,b) = (a%0%) /(40?2 + b) is
C* on [—, o] X [0,x], A is linear and B is Fréchet differentiable. Hence ¢/ is
Géateaux differentiable at (f;, f_;) in each argument separately.

The differential of J, operating formally, is

(T(f) - T(f1)e®
402+ | fy — f_ql?
(T(f) = T(f-1)’0*
(402 + 1Ify = f_ %)’
Now, I f; — f_1||2 is Fréchet differentiable, with differential

(Dl fy —fal? by = 2(fy — f_1, ).
With w = w,(¢o) = (T'(f) — T(f_,) and a = 2wo?/(402 + £§), we have

(D, b = z( )(Tm +h) = T(f)

(DIl fy = F-1l%, B).

w
(Dpd, k) =a(T(fL+h) —T(f1)) - a402—+5§<f1 —f_,h.
Recognizing that
w w
2.2, 2 €3
40° + g5 Eh

and recalling the definition (2.5) of ¢, we may rewrite this as
(A.6) (Dpd,h) =a(T(fi+h) —T(f1)) —aly,h).
As
Bias(Ty, f) — Bias(Ty, f1) = ¥, f = f0) = (T(f) — T(f1)),

we see that (A.4a) holds. The argument for (A.4b) is entirely parallel.

It remains only to prove the upper-semicontinuity (A.0). Inspect the expres-
sion (A.5). Now the norm is lower-semicontinuous in the ordinary weak
topology, hence also in the relative topology T. Thus

lim inf || f,, — gl =1lf-gl.
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Thus, provided T(f) is continuous for the topology T, we have (A.0). The
proof is therefore completed by:

LEmMA A.1. Let T be an affine functional and F a norm-bounded, norm-
closed, convex set. Suppose that wy(e,T,F) > 0 as ¢ - 0. Let (f,) be a
sequence of elements in F converging weakly. Then the weak limit fis in F
and

T(f) = lim T(f,)

The lemma is proved in Donoho [(1989), Lemma 5]. O

Incidentally, Theorem 6 in Donoho, Liu and MacGibbon (1990) may be
viewed as an analog of this one. That theorem shows that the difficulty of
estimating an infinite-dimensional object is equal to the difficulty of the
hardest hyperrectangle inscribed in F; this theorem shows that the difficulty of
estimating a functional is equal to the difficulty of the hardest one-dimensional
rectangle inscribed in F.

Proor oF THEOREM 2. Note that the only place topological assumptions
were used in the proof of Theorem 1 is to guarantee the existence of a hardest
1 — d subfamily. If we know a priori that a hardest subfamily exists, the proof
goes through as before. This proves part of the theorem.

The remainder of the theorem is a consequence of Theorem 2 in Donoho
(1989). We mention the steps of the argument. Approximate F by an increas-
ing sequence of norm-closed, norm-bounded sets F,. Show that the affine
minimax estimators T, , for the approximating sets F, tend to a weak limit
T,. Show that T, is affine minimax for F and that its maximum risk is the
limit of the minimax affine risks of the approximating sets F,. The existence of
a minimax affine procedure and the formula (2.7) follow. O

APPENDIX B
Risk bounds for one-dimensional subfamilies.

B.1. Geodesic experiments. We begin by introducing a technical tool:
Hellinger geodesics [compare Donoho and Liu (1988¢)]. Given f, and f}, the
Hellinger geodesic is the family {g,: 8 € [0, 1]} interpolating f, and f, defined
by

(B.1) V&s = cos(8a)y/f, + sin(ba)h,
where, defining (‘/ﬁ, \/E) = [‘/ﬁm,
(B.2) a = arc cos((‘/ﬁ, \/E))
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and

_ WA - R AFNWE) (VL = coste)Ta)
IVF: = (Vi vFo )V Foll sin( )

Hellinger geodesics have constant Fisher information for the parameter 6
and that Fisher information is minimal among all constant Fisher information
families interpolating f; and f,. In fact,

(B.4) I> (4arcsin(H( fo, f1)/2))°

for any constant Fisher information family interpolating the same pair, with
equality only for the Hellinger geodesic. Geometric interpretation: view {\/gTB }
as a curve on the unit sphere in L,; in fact, it is the segment of the great circle
that connects /£, to \//T .

We are interested in these families for their nice properties in converging to
Gaussian experiments.

(B.3)

THEOREM B.1. Let {g, ,} be a sequence of Hellinger geodesics, all with
parameter family [0, 1]. Introduce the following conditions:

Exp 1. There exists v € (0, %) with
im n'/2H (g, ., 81,,) = -

n—oo
Exp 2. Define A, via

A = sup

x€R

n

gl n(x)
i — | .
g(),n(x) ’

Then A, —» 0 as n — o,
Let P{™ denote the n-fold product measure with marginal 8o, n- If the two
previous conditions are satisfied,

a. The experiments {P{™: 6 € [0, 1]} converge to the Gaussian shift experi-
ment

(o 2o < 10,1

b. The minimax risk converges to that of the Gaussian shift experiment:

1 1
Jim B3(n,0,(80,0)) = on 5 5|

Observe that conclusion b furnishes a precise evaluation, not a bound.
Hence for one-dimensional families satisfying the previous two conditions, no
better bound on the difficulty of estimation of 8 is possible.
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Proor or THEOREM B.1. Let

n Xi
Yi’n0= | 8o, (X;) _1,
’ g(),n(Xi)
M, = esssuplY, , ,,
My = EZ I7i,n,0’

0112 = Var Z l’i,n,O'

We claim that Exp 2, A, — 0, implies that M, — 0. To see this, use the fact
that g, is geodesic, applying (8.1)-(8.3) to get

2, sin(6a) ( 3
— —1=(cos(fa) — 1) + — — —cos(a
V & (cos(be) — 1) sin(a) |V & ()
which implies
[8 _ 4 /81
8o 8o

from which we get
H? , +
(80, 81,1) 2/1-A.

and the claim M, — 0 follows.
By Araujo and Giné [(1980), Theorem 1.3, page 37],

(B.5) do(L(L Yi,n,0), N(wn, o)) < 2KM, 02,

-

ess sup < 2|cos(a) — 1| + esssup

-

M, <

DO =

where L(X) denotes the probability law of the random variable X, d; is the
distance defined by Araujo and Giné [(1980), page 36],

3
dy(P,Q) - sup{ [frd(P - Q)‘: feC*R), L IfOl <1
i=0

and K is a positive finite constant.
Now by a computation [see Le Cam (1985), Proposition 1, page 47],
Ei’i,n,o = - %Hz(go,n’ g(),n)a

Var I7i,n,6 = %H2(go,n: gO,n)(2 - %Hz(ge,n’go,n))'
Thus by Exp 1,
ol =nVarY, , , — (6v)%
(6v)*

I“"n=nEI7i,n“,0__) - 2 .
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Now as M, — 0, we have from (B.5),
da(L( )y Yi,n,@)’ N(wn, ‘-"nz)) - 0.

As convergence in d; metric implies convergence in distribution (again, see
Araujo and Giné), we have

0v)?
Y Yins = N(—( 2) ,(0v)2).

Applying Proposition 2 of Le Cam [(1985), chapter 16, Section 3, page 470], it
follows that the binary experiment {P{", P{™} converges weakly to
{N(0, 1), N(26v, 1)}.

As this holds for every 6 € [0, 1] and as M,, — 0 implies that the triangular
array {Y; , ,: 1 <i < n} is infinitesimal, we may apply Lemma 1 of Le Cam
[(1985), page 471] to conclude that {P{™: 6 € [0, 1]} converges weakly to a
Gaussian shift experiment.

To identify the Gaussian limit, we apply Proposition 3 of Le Cam [(1985),

page 472]. Define

iT.(0,7) = nEY, , ,Y.

1,n,7°

By a calculation,

EYl,n,BYI,n,T =p(g0,n’g7,n) _p(gr,n’go,n) - P(go,n’go,n) + 17

where p(P, @) denotes the Hellinger affinity [VdP /d@ . As {g, ,: 6 €[0,1]} is
a segment of a geodesic, spherical geometry gives

P(go,n’gf,n) = COS((H - T)an)’
where

a, = 2arcsin(H(g, ,,80,.)/2)
Now «a, — 0 by Exp 1, and so by
cos(B) =1 - B%/2 + o(B?),
we have
cos((8 — 7)a,) — cos(fa,) — cos(7a,) + 1

= 3[((6 = a@,)* ~ (02,)" = (7a,)*] + o(a2)

=0ra2 + o(a,zl). ‘
Now by Exp 1 and properties of arc sin,

na? - v?
no(az) = o(1),
and we conclude that
r,(8,7) » I'(0,7) = 4671v2

Thus the weak limit of {P{™: 6 € [0, 1]} is {N((6, 1/4v?): 6 € [0, 1]}
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We now verify strong convergence. The families {gy, »} are geodesics, so for a
given n, the increments vn (/&.» — V&, ») lie in a two-dimensional subset
S, of L, and the radii of S, are uniformly bounded in n. Thus, the tail
equiprecompactness assumption in Le Cam [(1985), Chapter 17, page 567] is
satisfied. Also the weak limit experiment {N(9,1/4v?%), 6 €[0,1]} is shift
compact. By Lindae’s theorem, [Le Cam (1985), chapter 6, Section 4, page 92],
it follows that the weak convergence is actually strong. This proves a.

Now b follows by definition of convergence of experiments [see Le Cam
(1985), Chapter 7, Section 4, pages 109-110]. O

B.2. Connecting affine and geodesic families. For geodesic families, then,
we typically have

1 1
9 =ponl=, — (1 +0(2)).
RN(n’ ’{ga,n}) pN(2’ 21/)( O( ))
On the other hand, for affine families, we have

Ry(n, T, {fo}) = (T(frn) = T(fo.n)) Ru(n,0,{f,..}).

We need both properties simultaneously to get good bounds on 7T from
subfamily arguments. One way to do this is to show that affine and geodesic
families interpolating the same endpoints are essentially equivalent as experi-
ments. Everything depends on the following condition:

fl,n(x)

(B.6) A, = esssup For(%)

n
X

- 1] - 0.

THEOREM B.2.  Suppose (f, ,, f1.,) is a sequence of pairs; let fo.n be the
affine family and let g, , be the geodesic family interpolating ( fo.ns f1,n)-
Then, if condition (B.6) holds,

(B.7) Ry(n,0,{fy,n}) = RX(n,6,{8,.}) + o(1).

Proor. The theorem follows directly from Lemmas B.3 and B.4. O

Lemma B.3.  Let (f, , f1,,) be a sequence of pairs, with H(f, ,,, f1 ,) = &,,.
If (B.6) holds, then for the distance between the affine families and the
geodesic families interpolating these pairs, we have

E;l sup H(fo,nago,n)zo(l)'
6<(0,1]

ProoF. See the technical report upon which this paper is based. O
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LemMa B.4.  Suppose that { f, ,} and {g, ,} are two families both indexed by
0 € [0, 1] and that

lim sup nHz(fg,naga,n) = 0.
=% gelo0,1]

Then
(B.8) Ry(n,0,{fs,}) — Rn(n,0,{85,.}) = 0(1).

. Proor. As 6 €[0,1] and for all admissible rules in either problem
|6 — 6] < 1a.s., neither risk is changed if we replace the loss function [ (6,0) =
(6 — 0)% by 1,(6,6) = min((§ — 6)%1). Now 0 </, < 1, and so we may apply
the basic theorem relating minimax risk for loss functions bounded by 1 to
distance between experiments [Le Cam (1985), Theorem 2, page 20]. Let @3
denote the n-fold product measure for f; , and let P§™, as before, denote the
product measure with geodesic marginal.

(B.9)  |Ry(n,0,{f,,.}) — Rn(n,0,{g,.})] < A({Q5™}, {P{™)),

where A is the pseudo distance defined by Le Cam [(1985), page 19]. Now
letting (™ denote the density of the measure QS*), and so on,

A({Q), (P)) < sup flg8™ - p§™ ome-
6<[0,1]
Now

ny1/2
slaf — p§™ | < H(q§, p§») = (2 = 2(1 = H?*(fy,,,80.2)/2) ) .
Our hypothesis on H(f, ,, g, ,) implies that for some sequence c, — 0,

sup H2( fG,n’ gﬂ,n) < cn/n
6

and since 2 — 2(1 — (¢, /2n))"* — 0, we have

A({Q5™), (Psm)) = o(1),
which, with (B.9), gives (B.8). O

B.3. Proof of (3.3). Define

vy(r) = argmax v¥ Zoy (v, 1).

v

Let (f, ,, f1,,) be a pair satisfying (3.5)-(3.7) for ¢, = vy(r)/ Vn . Let {fs, .} be
the affine family and {g, ,} the geodesic family, connecting f,, to f; ,. By
convexity of F, {f, ,} C F, and so

RN(n,T,F) > RN(n,T’ { fo,n})'
By linearity of T,

Rn(n, T, {fond) = (T(fr.n) = T(fo.n)) ' Ru(n,0,{fo}).
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As A, = A(H(f, ,,, fo,,)) = 0, Theorem B.2 implies that

R;\(l(n’ 0’ { fo,n}) = R;(n’e’ {ga,n}) + 0(1)
and Theorem B.1 implies that

1 1
RN(nso’{go,n}) _)pN(E’ m)—)

As the modulus has exponent r,

T(f1,n) = T(fo,n) = @(n ") (vn(r)) (1 + o(1)).
Combining the last 4 displays,

2 2r 1
Baln T, (o)) = (o) o)) o (1+0(1)).

2’ 2vp(r)

However, by the easily verified invariance py(7, o) = 0% (7 /0, 1), this can be
rewritten as

(0(n=12) /2)* (v ()" pn(vn(r), 1)(1 + o(1))

and recalling the definition of v,(r), this is just

en(r)(w(n™12) /2)°(1 + o(1)),

so the proof is complete. O

B.4. Connection of Fisher information to Hellinger distance. We need the
following three lemmas to prove the bound (3.4).

Lemma B.5. Let {f,: 6 €[0,1]} be an affine family and let I* be the
maximal Fisher information

. (fr=1o)"
(B.10) I*= s1;p f%ﬂo

Then if T is linear,
Ri(n,T,{fy)) > (T(f) — T( fo))zl’A(%,(nI*)_l/z),

PrOOF. Because {f,} is affine and T is linear,

(B11)  Ra(n,T,{£;}) = (T(f) = T(fo))"Ra(n,6,{£;})-
By the Cramér-Rao bound we have, putting B(9) = E,§ — 6,

1
Ru(n,0, > mi B%(6) + ———(1 + B’(9))%,
a(n,6,{f;}) = min ,max BE(6) nI(G)( (6))
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where 1(0) = [(f; — fo)?/f,- Now as I(8) < I*, the inner expression is not
smaller than

Now B must be linear: B(8) = a + b0, B'(8) = b, and we can write this as

1
min max (a + b0)* + ——(1 + b)
a,b 6<[0,1]

This quantity may be evaluated by calculus; it is just
1 1
o 315 )
Combining this display and (B.11) gives the lemma. O

Lemma B.6. If {f; ,} is affineand A, - 0,

In,O = n,O(l + 0(1))’
where the o(1) is uniform in 6 € [0, 1].

ProoF. See the technical report. O

LemmMa B.7. IfA, > 0asn — x,
Lo =4H?(f1 4, fo,n)(1 + 0(1)).

ProoF. See the technical report. O

B.5. Proof of (3.4). Let

vu(r) = argmax v "% ,(v,1) = T

Let (fo ., f1,,) be the pair guaranteeing (3.5)—(3.7) at &, = v (r)/ Vn . Let
{fo,n) denote the affine family connecting foon to fin- By convexity of F,
{fo, .} C F; thus

RA(n,T,F) > RA(n,T, { fa,n})'
By Lemma B.5, ’

, (1 1
(B12)  Ru(n,T,F) = (T(fy,.) = T(fo.n)) pA(E, —nf—l—)

As A, = A(H(f, ,, fo,,) — 0, Lemmas B.6-B.7 imply that

LF = 4H*(f1,n, fo,n)(1 + 0(1)).
By choice of f; , and f, ,,

Vi H(fy s fo,n) = va(r),



700 D. L. DONOHO AND R. C. LIU

S0
VI * — 2u,(r)
and so by continuity of p, in o we have
o 11 11
(B.13) hfl‘i?f"f‘(? _m_—f) (2 204(7) )

Combining (B.12) with (B.13), we have

2 (1
RA(n’T’F)Zw(VA(r)/\/;) PA(2 2ua(r ))(1+0(1))

As w(vy(r)/ Vn) = (n(r))w(n~/2X1 + o(1)), and appealing to the invariance
of p, and the definition of £,(r), we have that the right-hand side is asymp-
totic to

£a(r)(@(n12) /2)"(1 + o(1)),
completing the proof. O
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