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MINIMUM HELLINGER DISTANCE ESTIMATION OF PARAMETER
IN THE RANDOM CENSORSHIP MODEL

By SonG YANG

Texas Tech University

This paper discusses the minimum Hellinger distance estimation
(MHDE) of the parameter that gives the ‘“best fit” of a parametric family
to a density when the data are randomly censored. In studying the MHDE,
the tail behavior of the product-limit (P-L) process is investigated, and the
weak convergence of the process on the real line is established. An upper
bound on the mean square increment of the normalized P-L process is also
obtained. With these results, the asymptotic behavior of the MHDE is
established and it is shown that, when the parametric model is correct, the
MHD estimators are asymptotically efficient among the class of regular
estimators. This estimation procedure is also minimax robust in small
Hellinger neighborhoods of the given parametric family. The work extends
the results of Beran for the complete i.i.d. data case to the censored data
case. Some of the proofs employ the martingale techniques by Gill.

1. Introduction. Let X,,..., X, beii.d. random variables with life-time
cdf. F on [0,©), and Y;,...,Y, be independent of X;’s and ii.d. with
censoring c.d.f. G on [0,] (i.e., G may assign positive mass to «). In the
random censorship model, the pairs {min(X,,Y),[X; <Y]}, 1 <i <n, are
observed, where [ A] denotes the indicator function of the event A. Suppose
that F has a density f with respect to the Lebesgue measure, and some
physical theory suggests that f belongs to a parametric family {f,: 8 € 0},
where O is a subset of p-dimensional Euclidean space. At the same time we
recognize that, due to a variety of data contamination, f may possibly differ
from any of the f,’s. The problem is to estimate the parameter that gives the
“best fit”’ of the parametric model to the data.

There are many results in the literature for the case where G is degenerate
at , that is, when we are able to observe the complete data X,,..., X,. Millar
(1983) illustrates that in many cases when the ‘“best fit” is given via a
minimum distance recipe, there usually exists a minimax structure, and the
minimum distance estimators usually have the local asymptotic minimaxity
property, which is defined to be robustness there. While there is quite a bit of
freedom in choosing the distance, one distance—Hellinger distance—has the
merit that the estimation procedure is-asymptotically efficient if there is no
contamination, as discussed in Beran (1977b, 1981). It is heuristically illus-
trated in Beran (1977b) that the minimum Hellinger distance estimator
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considered there is closely related to the maximum likelihood estimator and
therefore asymptotic efficiency seems plausible.

In this paper, the minimum Hellinger distance estimation (MHDE) in the
random censorship model is considered. It turns out that, as in the i.i.d.
complete data case discussed in Beran (1977b), when there is no contamina-
tion, this procedure is asymptotically efficient among the class of regular
estimators; it is also robust in a minimax sense in small Hellinger neighbor-
hoods of the parametric model.

The material is organized as follows. In Section 2, some preliminary results
are introduced. The tail behavior of the product-limit (P-L) process is investi-
gated and the weak convergence of the process on the entire support set is
established. The convergence of the kernel density estimators in the Hellinger
metric is obtained. In addition, an upper bound on the mean square increment
of the normalized P-L process is developed. In Section 3, the differentiability of
the minimum Hellinger distance functional is studied. In Section 4, the
asymptotic behavior of the MHDE is investigated and it is shown that this
procedure is asymptotically efficient if there is no contamination. In Section 5,
a minimax robustness property of the MHDE is briefly discussed and some
numerical simulation results are reported in a simple exponential example.

NorAaTiONAL REMARKS. Throughout this paper, X,,..., X,,Y;,...,Y, are
independent r.v.’s. Unless mentioned otherwise, for i = 1,...,n, X,, Y, have
distributions F, G, respectively. 8, = [ X; < Y;]and X; = min(X;, ;) with c.d.f.
H. For any function ¢, £ (x) = &(x — ), £,.(x) = &(x + ). For any (sub-) c.d.f.
D, D~Yt) = inf{u: D(u) > ¢}, 7, =D (1) <o,and D=1-D, AD=D —
D_. Note that H = FG and 7 = min(rp, 7;). Abbreviate 7, to 7. Let R
denote the real line and O,(1) denote any sequence of r.v.’s bounded in
probability. [f = [ ,, for s > 0and [5 = [,

2. Preliminaries. For inference with censored data, the P-L estimator
[Kaplan and Meier (1958)] has many optimal properties and lends itself readily
to an analysis using counting processes and stochastic integrals. We will use
the P-L estimator in constructing our estimators in this paper. We start by
investigating the asymptotic behavior of the P-L process. Since we need to
estimate the life-time distribution and the censoring distribution simultane-
ously, there will actually be two P-L processes.

Assuming the life-time distribution function to be continuous, Gill (1983)
considers the stopped Kaplan-Meier processes and obtains their convergence
in Skorohod topology on the whole real line. In Chapter 7 of their book,
Shorack and Wellner (1986) use the uniform topology and hence allow the
life-time distribution function to be possibly discontinuous. To allow a possibly
discontinuous censoring distribution, we will use the uniform topology. Let
D?0, 7] be the twofold product of the usual space of cadlag functions on [0, 7],
with the sup norm|z|| = |lx]| + llyll for z = (x, y) and the o-field & generated
by open balls. Define a random element of D?0,r] to be a Hineasurable
mapping from some probability space. We say random elements (W}, _;
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converge weakly to W, or W, > W in 270, 7], if Ef(W,) — Ef(W) for any
bounded, continuous and &/ %2 measurable function f, where %% denotes
the Borel o-field on R2. We will also use similar notation for one-dimensional
processes in D[0, 7]. .

Now formally define the product-limit estimators F,, én by

. [ AH)(s)
1-B0 =TI - 77 _((:)’ ,
[ AH?
1- G, () =s]'[<t 1————H_ :‘((:)) ,

where H, = H? + H! and H?, H! are the basic empirical processes in D?0, 7]
for the censored data:

Hi(t)y=n"'Y [X,<¢t,8,=j], Jj=0,L
i

Upon inspecting Shorack and Wellner’s (1986) discussion on F,, one
finds that G, only estimates G* satisfying G*(¢) = [¢{G*/H_ dH°, which is
identical with G on [0, 7] if and only [j(AF)dG = 0. For the simultaneous
estimation of F and G, define the process M, = (Mg, M?) in D?0, 7] by
Mi@®) = n'2[Hi®) — [¢H,_dA'], j=0,1, where A'(¢) = [{(1/F_)dF and
A(#) = [{(1/G_)dG. Then under the assumption [J(AF)dG = 0, for the
complete o-field o* generated by {[X; < s]5,,[X; <s]: 1<i<n,0<s <t}
one can check that {M,(¢),0,*: 0 < ¢ < 7} is a two-dimensional square inte-
grable martingale with mean 0, predictable variation processes {Mj)(¢) =
J¢H, (1 — AN)dAJ, j = 0,1, and predictabie covariation process
(M? M} =o.

Now define the P-L processes

P! —n'%(F, - F), P°=n"%(G, - G)

and let P! = FBY(C'), P° = GB°(C®), where B!, B® are two independent
standard Brownian motions and

(2.1) C(¢) =[0‘(F(_;_)‘1dA1, . CO(t) =f0t(c_¥F_)_ldA°.

Define a stopping time T = max X,. Let R7(t) = [t < TIR(t) + [t > T1R(T)
for any process R. The following theorem establishes the convergence of
{P/¥:_,, j = 0,1. Notice that the convergence of {P}};_, is on [0, 7] and free of
weight. One naturally hopes the same holds for {P2);_,, but that would
require some contradicting conditions. At 7 the values of the limiting pro-

cesses are interpreted to be their limits as ¢ 1 7 [cf. Remark 2.2 in Gill (1983)].
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LeEMMA 2.1. Suppose [§(AF)dG = 0.
i) If AG(7) = 0, then for any a € (0,1/2),

(2.2) (F1=<p%)" —» F1=*P° in 2[0,r].

(i) If AF(7) = 0 and A(7) < », where

(2.3) A(t) = /Ot(l/@_)dF,
then
(2.4) P! 5 P! in2[0,r].

When all three assumptions hold, the joint convergence is valid.

Proor. Let H/(t)=P[X, <t, 8, = J] for j =0,1. Define the process
Q,=(@Q.,Q% by @/ = nl/z(HJ - HJ) Jj =0,1. As in Shorack and Wellner
(1986), the convergence of the P-L processes can be derived from the conver-
gence of {Q,):_,. Let @ = (VY HY),V°(H?)), where V! and V° are Brownian
bridges, with convariance Cov(V}(H(s)), VO (H(#)) = — HY(s)H(t). Shorack
and Wellner (1986) state that the result @, — @ in 2?0, 7] can be proved by a
minor variation of their theory of ordinary empirical processes. Alternatively,
its proof can be based on Theorem 5.5 of Pollard (1984), with a proper
modification. The finite-dimensional convergence part is straightforward. For
the small oscillation condition [cf. Pollard (1984), 5.4], we can show, using an
argument similar to the proof of Theorem 13.1 in Billingsley (1968), that for
any a > b, and ¢ > 0, there exists a constant K, depending only on ¢, such
that for i = 0,1,

limsupP| sup |Qi(¢) — Qi(a)|>e| < K.(H.(b) — Hi(a))".

n—o t€la,b)

From this the small oscillation property, and hence the convergence of {@, ), _;
follow. Now the result (2.2) is immediate from (9) of Theorem 7.7.1 in Shorack
and Wellner (1986) by taking their g-function to be ¢(¢) = #* on (0, 1/2] and
using (1.2) of Gill (1983). Notice that the 6 in Theorem 7.4.2 of Shorack and
Wellner (1986) should be confined to be a continuity point of H. To prove
(2.4), replace the role of (1 — K,)/q(K ) in Shorack and Wellner (1986) by F
and use a similar argument and (2.3) to obtain (P} — P! in %[0, 7). Then
observe that sup|(P1)7 — P!| < n'/2(F(r) — F(T)), hence by the assumption
AF(r) = 0 it only remains to show n'/?(F(r —) — F(T)) », 0. Note that for
the function A as defined in (2.3), for all ¢ < 7,

F(r—)-F(t) = j(t )C_}_dA < G(¢) § )dA.
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Now substitute ¢ = T, multiply by n(F(r — ) — F(T)) throughout to get

n'/2(F(r =) — F(T)) < {nH‘(T)[ dA}l/z.

Since we can show that nH(T) is O ,(1) using HH™ Yx) <x + AH(H Y(x)),
by (2.3) we have (2.4). The joint convergence follows from (2.2), (2.4) and the
fact (M}, M%) =0. O

In their Theorem 7.1.1, Shorack and Wellner (1986) use the convergence of
{Q,)°_,, with an almost sure representation for a special construction of X;’s
and Y;s. They state that such a special construction can be obtained by a
minor variation of their theory for ordinary empirical processes, i.e., by
“rebuilding” the random variables from the process. While the special con-
struction of X,’s and Y;’s from @, may not seem obvious, a special construc-
tion of Z’s and 8,’s is suﬁic1ent These Z,, §; can be rebuilt from @, by the
measurablhty of the projections m;: (x4, x,) — x; from D?0, 7] to DIO, 7],
j = 1,2. Alternatively, the convergence of P, P1 can be proved using the
differentiability of those functions defining P,?, P,f on the basis of @, [cf. Gill
(1989)]. This avoids the special construction but needs some nontrivial mea-
surability and differentiability arguments.

As consequences of Lemma 2.1, we make the following observations for
later use:

(2.5) sup|P'l = 0,(1), supsup|P}|=0,(1)
[0, 7] n [0,7]
and for any a € (0,1/2),
sup |P°F1~*| = 0,(1), sup sup |PPF'~*|=0,(1), P)F'*(T)~,0.
[0,7] n [0,T]
Now let us use F, to construct the kernel density estimator

(2.6) fox) = a;" [ K((x = 3)/a,) dE(),

where K is some kernel function and a, is some positive constant. We will
need the following theorem on the convergence of f, to f in the Hellinger
metric. Note that if f is truncated at 7, then the result is also true without the
assumption 7 = 7. But in later use the following form is what we need.

THEOREM 2.1. Suppose

@) [§1/G_)dF < wand 7 = 15,
(ii) F has a continuous density f,
(iii) K is nonnegative, continuous and of bounded variation on R,
[rK(s)ds =1, K(s) > 0ass > —,

(iv) a, —» 0 and n'/?%a, - ». Then

I £272 = F72]5 =, 0,

where || - || denotes the L2-norm with respect to the Lesbesgue measure.
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Proor. Integration by parts [cf. Hewitt and Stromberg (1965), page 419]
gives us

ful%) = f(2) = (n%,)"" [ PX(x - a,t) dK(?)
(2.7) R

+f [ f(x —a,t) — f(x)]K(t) dt.
R

The random term is uniformly bounded by (n'/?a,)!supy ,,|P.| |/ dKI,
which goes to 0 in probability by (2.5). Since [g[rf(x —a,)K(¢)dxdt =
JrJr f(®)dxdt = 1 and f is continuous, the nonrandom term converges to 0 in
Lebesgue measure. Also [|£,/2|; = F(T) = o,(1) + F(T) -, 1 = [ f/?3.
From these facts and the subsequence characterization of convergences in
probability and in measure the desired result follows. O

Later in Section 4, we will use a proper Taylor expansion in studying our
estimators. To deal with higher-order terms there, we need to control the
increments of the process P!. When there is no censoring, direct calculation
gives the mean square increment of the empirical process. In our case we have
the following lemma, which gives an inequality for the mean square increment
of the process Z, = n'/%(F, — F)/F in terms of the function A defined in
(2.3). Let J,(t) =[t < T1]

LemmA 2.2. Suppose F is continuous. Then for 0 <s <t < 7,

E[Z](¢) - ZT(s)|” < 4F2(t)[ A(¢) — A(s)] + 4A(s)[F2(t) — F%(s)].

Proor. By Lemma 2.5 in Gill (1983), for continuous F and any p < 7, ZT

n

is a square integrable martingale on [0, p] with predictable variation process
(ZTY(x) = [dQ — F,_)/F2J, /H, dA. Let L(x) = E{ZT)(x). Then, since
nH,_ > 1, we have

L(x) =E[ [1-n"2] |°J,/H,_ dA'
0

< 2j0xE(Jn/ﬁ,,_)dA1 + 2[0’°E[z,3‘_]2Jn dAL

Note that H,_(x) is binomial, so

B(J,/H, )(x) = ¥ ¢ (§)EEH 4 (x)
n+1

k+1

<2 (Z)Hfo'k(x) <2(H_(x)) "

HM§
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Also by Fatou’s lemma, for a sequence of real x, 1 x,
E[27_(x)]*J,(x) < E[2]_()]”
< liminf E[2](x,)]" = liminf ECZT)(x,) < L(x)-
Therefore, we obtain
(2.8) L(x) <a(x) + j:LdB,
where a(x) = 4/3(1/H_)dA, B = 2A = 2In(1/F).

Now we use the argument as in Gronwall’s lemma: Iterating m times in
(2.8) and letting m — « yields

L(z) <a(x) + /Oxe’“”""”a(y) dB(y)

= 4F%(2) A(x),
where the last equation follows from Fubini’s theorem. Now
E[2(1) - Z(s)]
= E[<Z])(2) = (Z7)(s)]

(2.9)

<2['E(J/H,)d\ + 2['E[Z] ]’ dN

<4af'(1/H_)dA +2[Ldn
< 4F2(1)[A2) ~ A(s)] + 4A(s)[F2 - F%(s)],
where in the last inequality we have used (2.9) and Fubini’s theorem. O

From Lemma 2.2 and using F(¢) — F(s) < F(s) to simplify, we have for
0<s<t<rp

E[PX(t) - PX(s)][t < T]
(2.10) < 2F%(t)E[2](t) - 21(s)]” + 2[F(2) - F(s)]"E[ 21 (5)]’
< 8[A(t) — A(s)] + 24A(7)[F(¢) — F(s)|F(s).
In Section 4, we will use this more convenient form.

3. The minimum Hellinger distance functional. Our estimator of 6
will be defined as the value of some functional at the kernel density estimator
and the P-L estimator. Having established some convergence results for those
estimators in the previous section, we define and study the differentiability of
the functional here. The approach will be similar to that in Beran (1977b).
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While one naive attempt might be to use exactly the same MHD functional
as in Beran’s paper and evaluate the functional at f,, defined in (2.6), to get
the estimator, Beran’s heuristic argument about the relationship between the
MHDE and the maximum likelihood estimator leads us to consider the likeli-
hood function in the censored data case. Suppose F has a density f with
respect to the Lebesgue measure A. We then have

P[s,=0,%, <¢t] = f’FdG,
0

P[6,=1, X, <t] = ['G_dF - ['fGdA.
0 0

Thus (X, 8,) has a density F!~*(x) f?(x) with respect to the measure u; on
R x {0, 1}, where u is defined by the relation

[mdpg = [m(x,()) dG(x) + [m(x,1)Gdx,

for any nonnegative measurable function m on R X {0, 1}. In view of this and
the fact that F,, G, may be defective, we define, for any subdensity d on R
w.r.t. A, a subdensity L(d) on R X {0,1} w.r.t. us; by

L(d)(x,y) = D'™(x)d”(x),

where D is the (sub-) c.d.f. of d. Recall the parametric family {f,: 6 € @} as
mentioned in the Introduction. For (sub-) c.d.f. G and subdensity function d,
the minimum Hellinger distance functional ¥(d; G) is defined as a point in 0,
if it exists, that minimizes the Hellinger distance between L(f,) and L(d):

“ [L(fowo)]

where || - |l denotes the L%-norm in L%(u4). Due to the fact the G(¢) can only
be estimated for ¢ up to 7, we need to consider a more complicated variation of
the above definition: For 0 < y < «, define ¥(-; G;vy) similarly restricting all
integration to x € (—, y]. Later we will use |[{-}(—, y]llg to denote the norm
under the restricted integration. Note that ¥(-; - ; ©) = ¥(-; - ). For subdensi-
ties f, f, on R w.r.t. A and (sub-) c.d.f. G,, G and y" such that

1/2

(@], = it LT = [L@]2],

(3.1) sup |G, - G|[—=0 and y"1y,

(—o,v]

we will use the notation 8, = ¥(f;G;v), 6, = ¥(f;G,;v), 0,, = V(f;G,;v™)
and u = pg, M, = kg, Also, we will use [7_du to denote the integral on
(x,y) € (—o,y] X {0,1} and F, the c.d.f. of f,. To simplify the notation, we
only look at the case when the parameter is one dimensional. For the multidi-
mensional case we have parallel results.
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LemMMA 3.1. Suppose O is a compact subset of R, 6 # 0' implies f, # f, on
a set of positive Lebesgue measure and for almost every x, fo(x) is continuous
in 6. Then

() for any (sub-) c.d. f. G, subdensity function fand 0 < y < », ¥(f;G;y)
exists,
(i) ¥(fy; G;y) = 0 uniquely if both 7 and y > 75,

If, in addition, the family {F(x): 0 € 60} is equicontinuous, then

(iii) for G,, G and y" satisfying (3.1) and AG(y) =0, [ f/? — f'/?lz > 0
implies W(f,;G,;y") = Y(f;G;y) if Y(f;G;y) is unique.

ProoF. By the assumption F,(x) is continuous in @ for fixed x, thus (i) can

be proved as in Theorem 1 of Beran (1977b). (ii) is obvious. To prove (iii), first
note that

lECE12 = 1Ll > 0 as| 2 =72, = 0.
This is because
1/2
Fle _ F1e)® < F —F|< _ _2{ 1/2 _ 1/22} )
sup [ F I"<sup|F, ~F|< [ |fu~fl= [Lfar2 = £2]
Now define N by

N(o, £) =|{[ZC12 = [L(H] ) (=71,
and define N, (6, f) similarly using y", G,,. By the triangle inequality, we have

INL(8, f,) = Nu(6, )
<[ILCrT2 = (L(HT g +

" flrz f1/2]2((—;n _ (—;) d/\‘

n |
T [FY2 - F2)*d(G, - G)|.

The second term is dominated by a constant multiple of sup _., y]@ el
and so is the third term from the integration by parts formula. Thus for
G,, G and y" satisfying (3.1), N0, f,) — N, (6, f) > 0 uniformly in 0 as
I f 1/2 — 12|y > 0. Similarly the trlangle inequality and the additional as-
sumption give us, for G,, G and y" satisfying (3.1) and AG(y) = 0, N6, f) —

N2, f) — 0 uniformly in 0 as || f}/2 — f*/?|l = 0. From these two uniform
convergences it follows that, for G,, G and y" satisfying (3.1) and AG(y) = 0
N0, f,) — N6, f) - 0 uniformly in 8 as [|f,”? = f*/?l = 0. As in Beran
(1977b), from this, compactness of @, continuity of N(6, ) in 6 and unique-
ness of ¥(f;G;y), one has 8,, — 0,, that is, ¥(f,;G,;y") = Y(f;G;y). O

To study the asymptotic behavior of the minimum Hellinger distance
functional, we need to establish the following expansion for s, = [ L(f,)I'/2
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When the first-order partial derivative of f, w.r.t. § exists, we will denote it by
f,; when the second-order partial derivative of fo w.r.t. 6 exists, it will be
denoted by f,.

LEMMA 3.2. Let p be an interior point of ®. Suppose that there exists a
neighborhood V of p such that

() on 'V, f, is continuous in 0 for every x and f,(x) is continuous in 0 for
x & N, where N is a A-null set,
(i) ULO) = [[f,14/fF dA, Uy = ([ f,2/f, dA are continuous on V,
(iii) for some &,8 > 0,

fo 2+¢ fo 4+8
V() = f | fllﬂ dr,  Vy(8) —f|f3|+3 di,
0= [~V ot iy« oL g

0

are bounded in a nezghborhood of p. Then, for G,, G and y™ in (3.1), p, in a
neighborhood of p and (x,y) & N, X {1}, where N, is a A-null set,

(3.2) s,, =8, + (5, +r,)(p, —p)

(3.3) 8, =8,+(5,+R,)(p,—p),
where both ||r, (=, y"lllg, and IR, (=, y"]lg, tend to 0 as p, — p.

ProoF. Here we just prove (3.2). The argument for (3.3) is similar and
more involved. Note that the assumptions imply that U(8) = /[ foB/f, dA is
continuous on V, [If,1?**/fi**dr and - [If,|/f, dF;}/? are bounded in a
neighborhood of p. These three conditions are sufﬁc1ent for (3.2). Write

Jlfu(s)lds = [{l fo()[fi/2()}fi/%(s) ds.

Then by the Cauchy-Schwarz inequality and the generalized dominated con-
vergence theorem [cf. Fabian and Hannan (1985), page 32, for the GDCT)],
JIfs(s)| ds is finite and continuous. Integrating out f,(s) shows that, for every
x, Fy(x) exists, is equal to [“f,(s) ds and is continuous in 6. Now from

- 2

FO ) © [o
L
(3.5) [R[ [’;f] dsdG(x )-[G[f"] dA

and the proof of Lemma A.2 in Hajek (1972), we obtain that there is a
neighborhood of p, on which s, is absolutely continuous in 6 for (x, y) & N, X
{1}, where N, is a A-null set. For those (x, y) and p,, in a neighborhood of p
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we have
pn. .
8, =8, f §,dt =s,+ (S, +r,)(p, —p),
P

where

2

-5,) dt}(—OO, 7]
G

1
2
r,(—o,y =
I e H{pn—

1

Pr
=ri)

=[5, = 8,)(== 7]

< (5, - 8.}~ )|t

for some ¢, between p, and p. Thus to prove (3.2) it suffices to prove that
Z(G,) = lfs, — s (=»,y"1llg, — 0 as p, — p. By (3.4), (3.5) and the GDCT,
[{s — $,}(— o, yllg is continuous in 6. Thus Z(G) converges to 0. Now con-
sider

2

" fp ;7 ~ ~
Z(G)—Z(G)——f [fl;z—?’:-/z- (G, - G)da
2
+f F1/2_F1/2 d(G, - G).

By (3.4) and repeated use of the L, convergence theorem [cf. Rudin (1974),
page 76] the first term converges to 0. From the integration by parts formula
and (3.4) we can bound the second term by the product of

sup |G, - GH{[U(p,)]"2 + [U(p)]?)

(—o,y]
ds + 1}

o

Hence from sup,_., ,,|G, — G| — 0 it suffices to prove that

L,=["

— 00

F, F

El/z F1/2

d
ds

F_;7n F

d 14
/2 pl/2
F:)n F‘p

ds

n

ds

remains bounded. Letting p = 2 + ¢, g be the conjugateof pand a =1 — 1/p,



590 S. YANG

Hélder’s inequality gives us

. 2+¢ 1/p
B om0 ds] .
x

1+¢
pn+ (S)
Notice that 1/q — 1/2 > 0. Thus the conditions mentioned at the beginning

of our proof imply that I, remains bounded. So we have I{s, —s,}
(=, y"lllg, = 0 as p, — p and (3.2) follows. O

Now we are ready for the main result of this section: the differentiability of
the minimum Hellinger distance functional.

THEOREM 3.1. Suppose

(i) the assumptions in Lemma 3.1 hold,

(i) 8, = W(f; G;y) exists, is unique and lies in the interior of 0,
Gi) [g(s5 + $o (89, — [LCAHID)dp + 0,
(iv) the assumptions of Lemma 3.2 hold for p = 6,.

Then, for f, in an Hellinger neighborhood of f, G,., G and y™ satisfying (3.1)
and AG(y) = 0,

W(fo3:Gusv") — ¥(f;G;)
-1
y 3 3
(3.6) = {/_m(sozo + Soo(soo b [L( f)]1/2)) dﬂ, + vn}
", 1/2
< [T sof[LCEDTY2 = [L(faop)]"*) dits
where v, converges to 0 as || £}/ — f1/2||, - 0.
Proor. First note that if assumptions (i), (ii) and (iii) hold for 0,, then they
hold in a neighborhood of 6. Let n be sufficiently large so that 6,, is in that

neighborhood. Since 6, minimizes [Y.(s? — 2s,[L(f,)]/?) du,, we have by
Lemma 3.2, for sufficiently large n,

(3.7) 50, (50, = [L(H)) dp, = 0.

Using (3.2) and (8.3) to expand Sq,,» Se,, around 6,, we can rewrite (3.7) as

0= [ sufs0, = [L(£)]"*]du,
+/_y"s',,0(é,,o + 1) pn(6,, — 6,)
+[_7°:(§‘90 + Rn)(soo - [L( fn)]l/z) d,u,(onn - 8,)

+[_7°°(§00 + Rn)(onn - 00)(800 + rn) d:““n(ann - 00)'
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An argument similar to the one used to prove Lemma 3.2 shows that for G,,, G
and y" satisfying (3.1), as || /% — f'/?llz = 0,

[ (83, + 8000 = [LCEDT2)) ditn = [7 (83, + 8o, = [LCHI?)) i
Thus from the above equation we have

0= f_y:éoo(soo - [L( fn)]l/z) du,

58 8o, = LT ) 0 =00

where v, converges to 0 as || f/% — f'/?llz = 0. Therefore the result follows.
O

4. Asymptotic distributions. The MHD estimator of ¥(f;G; ) is de-
fined by

b, = ¥(fr3Gn;T),
where T = max X, G, is the product-limit estimator and f, is the kernel

density estimator as defined in (2.6), with some kernel function K and
constant a, > 0. We now prove the consistency of 6,.

THEOREM 4.1. Suppose that

(i) the assumptions of Lemma 3.1 hold,
(ii) K is nonnegative, continuous and of bounded variationon R, ([KdA =1,
K(s) > 0ass > —»,
(i) @, —» 0 and n'/?a, — »,

Gv) [¢(/G_)dF < ©and AG(r) = 0.
Then
b, =, ¥(f;G;7) if W(f;G;r) is unique.
Proor. By Wang (1987) and AG(r) = 0, sup[O,T]IGn - G| -, 0. Also (iv)

implies that r = 7. Theorem 2.1 and Lemma 3.1 give the result immediately.
O

For the asymptotic distribution of én, we establish the following lemma to
break the long proof and to illustrate the essential steps. Let Il - Il denote the
L”(R)-norm.

Lemma 4.1.  Suppose that

() f' = (d/dx) f exists and is absolutely continuous on (0,71, I flle <
and || f"lle < o, _
(i) 1 < wand [§(1/G_)dF < x,
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(iii) K is nonnegative, symmetric and absolutely continuous, [KdA =1,

support of K c [—-M, M] for some M < «,
(iv) n'/2%a2 - 0.

Then for the (sub-) c.d.f. F, of f,, and any bounded function U on [0, 7],
41 Wi/ F, - FlUdG -, [ P'UdG,

(4.1) [ AF, - FlUdG ~, [

and for any right-continuous function V that is of bounded variation on [0, 7],
42 WV f, — fIVdA -, — [Pl dV.

(4.2) [ = f] b

If, in addition,

) inf{f[f> O} > 0 and for some ¢ > 0, n'/2al** — o, then

(4.3) f(:nl/z( fo =) dr =, 0.

ProoF. Let

fu(x) =z [K((x —y)/a,) dF(y) = [f(x - a,t)K(t) d,

Fyx) = [ foda.

— o0

Then we have

n'?[F(x) = F(x)] = [PX(x — a,t)K(t) dt,
(4.4)

n'/?[F(x) — F(x)] = [n?[F(x - a,t) - F(x)] K(t) dt.
By Fubini’s theorem we can write
(4.5) [|F, - FlUdG = [A(t)K(¢) dt,
A ,

where A(t) = [([F(x — a,t) — F(x)IU(x) dG(x). Thus Taylor’s expansion for
A at t =0 and the symmetry of K give us [Jn'/qF(x) — F(x)][UdG — 0.
Now (4.1) follows since by (2.5)

[n2[Fy(x) = F(2)]UdG -, [ P'UdG.
0 0
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As for (4.2), we have
[ fo = F]vdr = [ V(z)a;! [ K((x = 5)/an) dPa(y) dx
_ ffV(y +a,t)K(t) dtdP(y)
R°R
= — [Pl(y ~ a,0) dV(y)K(t) dt

- jpl_ av.

Hence it remains only to prove [Jn'/% f(x) — f(x)[VdA — 0. But again by
Fubini’s theorem we have

(4.6) [7[ fu(x) = f(x)]VdA = [B()K(2) dt,

where B(t) = [J[ f(x — a,t) — f(x)IVdA. Thus similarly as for F, —F, we
obtain [Jn'/? f, (x) - f(x)]Vd)t - 0. i

Now to prove (4.3), it suffices to show [fn'/2(f, —f,)?dAr —, 0. Let
D(x,t) = PXx + a,t) — Pl(x — a,t). By symmetry of K and the
Cauchy—Schwarz 1nequa11ty, Inl/ 2(f f.)?dX is bounded by a constant
multiple of

1 T rM 2 , 1 M (T _, ,
Wfofo Dn(x,t)lK(t)ldtdx—nT/zzgnj; fODn(x,t)dle(t)|dt.

Holder’s inequality and (2.10) give us

E[" " (D,(x,0))"* da
a,t

< ff—a"t{EDn(x, t)[at <x<T-— ant]}l_s dx
a,t
(4.7)

<W[ " [A(x +a,t) - A(x - a )] de
+Wf “l[F(x +a, t)—F(x-—a D] F Y(x - a,t)) "

for some constant W independent of ¢. The first term in (4.7) does not exceed
Wr¥{2Ma, A(7)}' ~¢ since

[ A+ au0) A - a0 de < [ [ dedA(w) < 2Ma, A).

a,t
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The second term in (4.7) does not exceed
W{2Ma, | fl.)'* inf( [ £ > 0]} [ F*~dF.
0

Thus the sum in (4.7) can be written as B, a’ ¢ for some bounded quantity B,
independent of ¢. It follows that

T-a, t — 2 ,
1/22f [ D,(x,t)* * dx|K'(t)|dt -, 0.
So we have
1 M (T-a,t 2 ,
Wfo fant D,(x,t)*dx|K'(t)|dt >, 0,
because || D, |l is bounded in probability by (2.5). Since we also have

fa"th(x,t) dx+/T Dz(x t) dx < 4a, Msup sup | P}|,
0 T-a n [0,7)

the result follows. O

The following theorem establishes the asymptotic distribution of the estima-
tor 0 Recall that from the beginning of Section 3, when X has a density f
w.r.t. the Lebesgue measure and Y has distribution G, (X, 8) has a density
L(f) w.r.t. ug. Since G remains unchanged throughout, we will simply refer
to the weak convergence under L(f). We will use the differentiability of ¥ as
in (3.6), specifying u, =pg, v =71 Thus 8, ="V(f;G;7). Denote p, =
27, fo/2 po = 27 F, Fy /% o1 = p1 f7V%, @ = poF'/? and extend them
to R by defining them to be 0 outside the support of f; or the support of f.

THEOREM 4.2. Suppose the assumptions of Theorem 3.1 and Lemma 4.1
hold, and in addition,

@) [ £ llo < 0, llfo o < and inflf, [ f,, > 0} > 0,
(i) ¢, s of bounded varzatwn on [0, 1-],
(iii) Thyy =T and AG(7) =

Then, under L(f), n*/%(8, — W(f;G; 1)) converges weakly to a normal distri-
butzon with mean 0 and finite variance.

In particular, under L(f,), n'/%@8, — 8) converges weakly to N(0,1/I),
where I is the Fisher information:

I=E (lnL(fe)(XS))

Proor. Under our assumptions the expansion (3.6), with G,,y",y re-
placed by G , T, =, respectively, is valid, where v, converges to 0 in probablhty
Since the coeﬁ”lcient of the integral on the right-hand side of (3.6) converges to
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a nonrandom limit, we only have to deal with the integral in (3.6). We will
need to use the algebraic identity (for a, b > 0)

1 b2 — gl/2
24172 172 + a1/2(b -a).

1
(48) b1/2—01/2=m(b—a) -
Note that under the assumptions ¢, and F, /F are also bounded. For the

sake of convenience we will use W to denote a bound for all bounded quantities
in our argument. Notice that as in (3.7), we have

[l (L) = TL(HI?) du = 0.
Thus

w2 [Taa([LCAT = [L(f)] ) d,
= —fOTpl[ 12 — (2] nl%(G, ~ G) dA
+ Moo P2 - B2 a[n/3(6, - @)
— nls2 f;pl[ FV2 — f2]GdA — nV/2 f;po[Fl/z ~ FY?] dG
- [ol 122 = (6, - 6) d
+ [[oont | i - ] d(G, - 6)

+f "pont/2[ F/2 — FV/2] dG + A Tpint/2[ £1/2 — £12]GdA

—S,+8Sy+R,+Ry+ Ry + R, + S, +8,.

We can write S; = [¢ BP) dA, where B = —p[f'/? - f;/?] is bounded.
Since

T T — -1
[[Fe-tdx < [Fe-tdF(inff(2)[ f(x) > 0]) <o
0 0 R
for « €(0,1/2) by Lemma 2.1 and the fact that T — 7 w.p.1, we have

S, —, [¢BP°dA.
Next, integration by parts gives

(4.9) 8, = —fOTP"_Adx\ + {po| F/2 - Fi/?| PON(T),
where

(4.10) A= %{po[il/z - 7).
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When 7p, =17, A is bounded; when 75, <7, on [0,7p, ], A < WF}/? and
F > 0. The latter, with Lemma 2.1, 1mp11es that P9 > P° in [0, Tr, -
Therefore, in both cases we have [JP) AdA —, ngOA d\. The remainder
term in (4.9)

{Po[Fl/z - F—volo/z]P,?>(T) < W(T)(PXF)(T)=-,0

by (2.5). Hence S, —», — [(P°AdA.
By (4.8), S; = S, + S,,, where

Sy = 27" ["gon'/?[ F, - F] dG,
0

Sy =271 [Toon'/?[ F, ~ F|(F¥/2 ~ FV/2)(F/2 + F/%) " dG.
0

So S5, — “1f0<p0P1 dG by Lemma 4.1 and the fact T —» 7 w.p.1. The
integrand of S, is dominated by that of S, in absolute value, and for
x€[0,7), (F/?2 — FY2(FY? + F'/?)"1 - 0. Also AG(r) = 0. Hence the
GDCT gives S, —, 0. Thus S5 -, — 2 Yo, P'dG.

By (4.8) again, S4 Sy + Sy, where

Sy = 2—1f e[ f, - f1GdA,
0

S = ~27 [loG(f2 + V%) 2L f, = 1T
From (2.7), f, — f is bounded. So
[n2(f, - F)e.GdA < Wnl/?(r = T) -, 0.
T

Hence S,; =, — 27 YP! d(¢,G) by (4.2). Since |S,,| < W/n'/2(f, — f)*GdA,
by (4.3) Sy, =, 0. Thus we have S, —», — 27YP'd(¢,G).

Now we consider the remainder terms R,, R,, R; and R,. The results
R, -, 0, R, —, 0 follow since

n/2(r — T) < (inf{ f[ f> 0]}) 'nV3(F(r =) = F(T)) -, 0.

To deal with R, write it as

LA £72) + £72@)] ) (fo = £) () PI(x) d.

Note that the quantity in { } is bounded. Hence by (2.5), (2.7) and (4.6) we
have R; —, 0. Now we write R, = [;B, d(G, — G) for some B,. From
al/? — bl/2 =(a +b)/(a'?+ b1/2) (4.4) and
oo B2 + F2) ()| <[pol F/21 ()| < W,
the integrand B, is uniformly bounded in probability. It also has the property
that, for x, - x € (0,7), B,(x,) =, 4 'F,(F, F)"'/*(x)P!(x). By the uni-
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form strong consistency of Gn on [0, ¢] for rational ¢ < 7 [cf. Shorack and
Wellner (1986)], for w in a set of probability 1, G;' — G~! at continuity
points of G™! in (0,G(7)). Note that for t <1 we have G (¢) < 7, hence
B, °G;%(t) » BoG Y¢) for a.e. t. Now let p, = G(T), n, = G(T) and p =
G(7). By Wang (1987), p, —, p, and continuity of G at 7 gives us 7, — p.
Hence

_ T _ _ Pn o (A-1 . Mn o (-1 R
—fand(Gn G) fOBn G Y(t) dt fOBn G~\(¢)dt >, 0.
Therefore, we have proved that for A defined in (4.10),
1/2
n/ [T {[LCEIT = [(£o,)] %)

(4.11) -, - fo oo FV2 ~ f1/2] POdA ~ ]:P?AdA

1" prga_ 1 ( pt a
:f P dG — 3 [ P1d(pG),

where the limit has a normal distribution with mean 0 and finite variance.
Thus n'/2%(f, — ¥(f;G;7)) also converges weakly to a normal distribution
with mean 0 and finite variance. The variance can be computed using (2.1). In
particular, when f = f, for some 6, then the limit becomes

—%fo%PldG - %j;Pld(¢1§) - fohld(Pl/F),

where

(M

hy(x) fx%Fz dG + %Lizd(%c‘;)

- i| [ + [0GaR| - 40 FE)

= %(F - 2¢,F, )C_¥

From this, and the quadratic variation process of the martingale P'/F from
Section 2, one can check that the variance of the limit of n'/%(8, — ¥(f;G; 1))
isl/l. O

When the X,’s are distributed according to the model f,» the asymptotic
variance of n!/ 2[0 — 8] is the reciprocal of the Fisher information. This fact
reflects a certain optimality property of the estimator ,. For a € L%(R), let
K(d, a, G) denote the collection of all sequences of dens1t1es {d,} such that

(4.12) [n1/%(dY? - d¥?) — |, - 0.
Note that (4.12) implies « L d*/2? and
(4.13) |n2([L(d)]"* - [L(d)]*?) - 8|, — o,
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where B(x,0) = [[fa?dA]"?, B(x,1) = a(x) and B L [L(d)]'?. Let K(d,G)
denote the union of K(d, a,G) for all @ € L%R), and {§,} be a sequence of
estimators of the functional ¥(d; G; y) based on (X,,8),i=1,...,n. We say
that {8,} is regular at d if for {d,} € K(d,G) and X,,..., X, iid. with
density d,,, n'/2[8, — ¥(d ,; G; y)] converges weakly to a distribution I'(d; y; G)
that does not depend on the particular sequence {d,}. The following theorem
extends Theorem 5 of Beran (1977a) to the censored data case.

THEOREM 4.3. Suppose ¥(-;G;vy) is differentiable at d with derivative i,
in the sense that for d,, in a Hellinger neighborhood of d,

¥(d,;G;y) — ¥(d;G;y) = f_:'/'{[L(dn)]l/z - [L(d)]l/z} dug

+lZ(@ )] - [L@)] 2] gun,

where u, — 0 as |ldY/2 — d'/?|l; - 0. Let (§,} be a sequence of estimators of
W(-; G;y) which is regular at d. Then I'(d;vy;G) can be represented as the
convolution of a N(0,47YY ¥?dug) distribution with a distribution

Proor. The proof is almost the same as in Beran (1977a). One only needs
the following variation of (4.3) in his paper: For d,,, d in (4.12) and any ¢ > 0,
Puio|[Ln = 2072 £ B(£,5)[L(D] (X0

i=1

(4.14)

+2fy B2dug|>¢e| -0,

where L, = 2[17_[L(d )4 X, L)/[L(d)]l/z(Xl, 8,). This can be easily de-
duced from Le Cam’s second lemma and is similar to Lemma 1 of Wellner

(1982). O

When the conclusion of Theorem 4.2 holds, the sequence of estimators {én}
is regular at f,. In fact, under L(f}), the difference

n1/2[f), - 0] — {%/fbﬁ)_lnl/z[ﬁn ~ F,]dG

+5[fofi'GnV/2 d[F, - F,,]} -, 0,

as in the proof of Theorem 4.2. This is also true under L(d,), since (4.14)
gives the contlg'ulty of {L(d,)} to {L(f,)}. Thus convergence in D[0, 7] of
P! =nl/%(F - D,)to P! under L(d,) and the differentiability of ¥(-;G;7)
W111 give the regularlty of {6,}. By Theorem 5.3 in Pollard (1984) the necessary
and sufficient conditions for the convergence of P! to P! are the finite-
dimensional convergence and small oscillation conditions. The former can be
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derived from the martingale representation of P /I__) on [0, ], for any
p < 75, and Theorem 8.13 of Pollard (1984). The small oscillation property 1s
preserved under contiguity. Therefore 0 is a regular estimator of ¥(f;G

at f,, distinguished for having the smallest asymptotic variance when the
parametric model is true.

5. Robustness properties and numerical simulation. The robust-
ness discussion in Beran (1977b) can be carried over almost verbatim to our
censored data case. The robustness of the MHDE in one way is reflected in the
continuity of ¥(-; G); furthermore, ¥( f,; G) proves to be optimally insensitive
to perturbations of its argument in a minimax sense. Consider the class of
functionals {U} such that for p € L%(u),

U(f,) =6,
U(f) = 0= [p([L(HI* = [L(f)]*)dp +u,

where u — 0 as [L(f)'/? > [L(f)I*/? in L%*(u). We can assume p L s, in
L?(u), since otherwise we can replace p by p =p — {/ps, du}s,, with the
difference caused by the replacement being absorbed into the remainder term
in (5.1). Also we have

(5.1)

1= &l-[U( fora) = U(F)] = [fpéodu] as a - 0.

So [ps, du = 1. When Theorem 3.1 applies, {¥(-; G)} belongs to this class. As
in Beran (1977b) to see which functional in the class is asymptotically least
affected by infinitesimal perturbations of f,, let us examine the behavior of
[U(f) — 6]. By projection, [L(f)]'2 can be represented as [L(f)]/2 =
cos ys, + sin y8, where y € [—,27'7], |I8llg =1, [8s,du = 0. Then
U(f) — 6 = y[pddu + o(y) as y —» ». Thus for small vy, or equivalently, small
ILL()1Y/2 — s,llg, the behavior of |U(f) — 6| is primarily determined by
|fpd du| = L(p, 8). Thus the problem becomes: Which p minimizes the devia-
tion L, against all possible directions §? It turns out that ¥(-; G) corresponds
to the optimal choice of p, as the following result shows. The proof is almost
the same as in Beran (1977b) and is omitted.

THEOREM 5.1.  Suppose s, satisfies the conditions in Lemma 3.2. p € Ly(p),

Jpsedu =0, [psodu =1, |16llg = 1, [6sgdu = 0.
Then

min m;:\xL(p, 8) = max minL(p, 8) = L(p° 8°),
p p
where

-1
p°’ = [fS:f du] $e, 8% =llplla’p®.
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TABLE 1
b;=G+1)/10,0 = 2,a = 0.1 (8, = 2.267, 10% contamination, % censoring)

Cov(d)
0.1565 1.658 0.1428 0.1384 0.1217 0.1076 0.09553
0.1658 0.2319 0.1988 0.1914 0.169 0.1503 0.1342
0.1428 0.1988 0.3286 0.3059 0.2694 0.239 0.2127
0.1384 0.1914 0.3059 0.3197 0.2843 0.2538 0.2268
0.1217 0.169 0.2694 0.2843 0.2551 0.2292 0.2059
0.1076 0.1503 0.239 0.2538 0.2292 0.2073 2.1871
0.09553 0.1342 0.2127 0.2268 0.2059 0.1871 0.1696
Mean
2.264 2.431 2.647 2.566 2.388 2.237 2.105

Mean square error from 6 = 2

0.228 0.418 0.747 0.640 0.406 0.263 0.181

In a more abstract setting, when the robustness of estimator of the func-
tional ¥ is measured by the maximum risk in Hellinger neighborhoods of F,
and G, Yang (1990) shows that the MHD estimators achieve the lower bound
for the local asymptotic minimax risk in the H4jek—Le Cam sense. Notice that
in that paper a local formulation is given in terms of projections to subspaces.

To demonstrate the finite-sample behaviors of the MHD estimators, a
numerical simulation was performed for the exponential family F,(x) =

e %[x > 0], the contaminated distribution F(x) = (1 — a)F, (x) +
a[x > 0.001] and exponential censoring: G(x) = e *[x > 0]. Here the contami-
nation was introduced by a point mass at a very small number 0.001; with a
larger number the effect of contamination was more likely to be cancelled by
censoring. Window size a, = b and the Epanecknikov kernel K = 31 - x?)
[lx|] < 1] were chosen to evaluate the MHDE 6(b) = y( f.; G,; ). For compari-
son, the estimators §' = (n — 1)/L X, (to_see how well one could do if the
complete data X;,..., X, were avallable) 62 = £5,/% X,, a sufficient statistic
for 6, and 6° =1 /F‘l(l — e~1), the percentile estimator based on F,, were
also considered. The simulation was based on samples of size 50 and 600
repetitions. The mean, mean square error and covariance of the estimator
vector § = (9,62, 88,6(b,), 6(b,), 6(by), 6(b,)) are given in Tables 1 and 2.

From Tables 1 and 2 we can see the influence of the window size @, on the
behavior of the MHD estimator. In practice, how should we choose an? For
scale-invariant families one can first use numerical simulation with a known
parameter value to determine a proper window size, then by invariance that
window size works well for all parameters. In general, one may take the value
of an initial estimator as the true parameter to choose a window size.
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TABLE 2
b, =G+ 1)/10X2/9),0 =9, a = 0(6, = 6 = 9, no contamination, 10% censoring)

Cov(d)
1.695 1.687 1.479 1.531 1.401 1.291 1.181
1.687 1.849 1.641 1.667 1.523 1.405 1.286
1.479 1.641 2.425 1.898 1.653 1.47 1.305
1.531 1.667 1.898 1.98 1.78 1.616 1.462
1.401 1.523 1.653 1.78 1.633 1.493 1.36
1.291 1.405 1.47 1.616 1.493 1.383 1.266
1.181 1.286 1.305 1.462 1.36 1.266 1.165
Mean
8.956 9.114 9.749 9.708 9.129 8.674 8.285

Mean square error from 6 = 9

1.697 1.862 2.986 2.481 1.649 1.489 1.676
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