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SOME ASYMPTOTIC RESULTS FOR JACKKNIFING
THE SAMPLE QUANTILE

]§Y XIQUAN SHI

Fudan University

This note studies the asymptotic behavior of the delete-d jackknife
in the irregular case of a sample p-quantile, calculated from a sample of n
iid r.v.’s.

Two results are obtained: (a) an almost sure rate of convergence of the
delete-d jackknife histogram to the normal distribution; (b) almost sure
convergence of the delete-d jackknife variance estimate to the asymptotic
variance of the sample p-quantile.

Let x = (X,,..., X,) be iid random observations from F(¢) which satisfies
the following assumptions (0 < p < 1):

(1) F(t) has a unique p-quantile ¢,, and its density function
f(¢) has bounded derivative, and f(¢£,) > 0.

Let F,(t) be the empirical distribution function based on the samples and
F;Y(p) be the sample p-quantile, we know that

(1-p)
(2) Vr (Fo3(p) - &,) > N|o, 2—22 .
(55 =) [ (1(&,)) ]

In order to get the confidence interval of ¢, we want to know the distribu-
tion of Vn (F,; '(p) — £,) or the variance p(1 — p)/(f(£,))%. As is well known,
the bootstrap works for the p-quantile, but the Quenouille-Tukey delete-1
jackknife fails. Recently Wu (1987) extended the delete-1 jackknife to the
delete-d (1 < d < n) jackknife and studied the weak convergence of the delete-d
jackknife histogram to the normal distribution for general nonlinear statistics
including the p-quantile. The delete-d jackknife method resamples from x by
taking each subset x, = (x,,...,%; ), r =n — d, of x with equal probability

'r‘) . Denote this jackknife sampling by *. Notation such as P, E, refers to
probability calculations under *. Let F.*(¢) and F,*_l( p) be the empirical
distribution and p-quantile based on the jackknife resamples.

In this paper we continue to study the asymptotic properties of the delete-d
jackknife p-quantile. We obtain an almost sure rate of convergence of the
delete-d jackknife histogram to the normal distribution and almost sure
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convergence of the delete-d jackknife variance estimate to p(1 — p)/(f(£,))%.
The main results are the following.

THEOREM 1. Suppose that F(t) satisfies assumption (1).

() Ifd/n =X >0 and r(n),d(n) - », log r(n)/loglog n — », then

sup
t

p(r-a) CEe R <

(3)

-0 a.s.

o (&) )
vp(1 -p)

Gi) Let r =[un], 0 < u < 1, where [x] denotes the integer part of x. For
any given 0 <6 <1,

1 1\
lim supn!/4(logn) %/*7? P*{(— - ;) (F,*_I(P) - Fn_l(P)) < t}
n—oo 4 r ’
(4)

____tf(§p) ) =0 a.s
Vp(1 -p) .

THEOREM 2. Suppose that F(t) satisfies assumption (1), and r =[un],
0<u<1,asn — x, we have

nr _ 2 p(1-p)
(5) 6= ——= Y (F* '(p) - F;Y(p)) = —m55— a5
am & N
where ¥ , denotes summation over all the subsets s = (iy,...,1,) ©(1,2,...,n).

It is sufficient to consider F(¢) = ¢, because we can make the transformation
U = F(X) and use Taylor’s expansion. Here we only prove part (ii) of Theorem
1, and we need some lemmas.

LEeMMA 1. Ifr=[un],0 <u <1, forany 0 <6 <1, asn —> x,

P*{(l B ;lz_)_l/z(Fr*(p) ~F(p)) < t}

n'/%(log n) "' 7° sup
t r

(6)

t

- vp(1 —p)

)}—»0 a.s.
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Proor. Define
1 n
of = —7 L {I(X;<p) - F(p)}*>p(1-p) as,
i=1 o

where I(A) is the indicator function of set A. By the strong law of large
number of iid r.v.’s and the inequality in Wu (1987), it is easy to see that

P*{(% _ %)_1/2(F,*(p) - F(p)) < t} - q’(‘;,/*(ii““—-}?)“)

o " LIUX <p) - F(p)f
i=1

(55_)1/2 {Z——T é (X, <p) - F,,(p)‘lz}

sup
t

IA

3/2

(7 ¢ ¢
rawjof) 0| oy ‘
c, t t
<o pol) ol
+ sup (1-@ —t—) +  sup 1—<I>(—At—)
t]>C, logn vp(1 - p) [t]>C, log n oy

select C, such that Cy/ /p(1 — p) = & + 1, when n is large enough, we have

t t
(8) max(ltlzscl:ll)ogn l_q)( Vp(l_p) ) l_q)(&_l) )
<1-®(Blogn) =0(n"1?) as.

Using LIL of U-statistics and Taylor’s expansion of ¢/4;, it is not difficult to
prove

, sup
|t|>Cq logn

t t
o) —| - o ———
(0'1) (Vp(l—p) )‘
< n'/?(log n) "' 7°C log n{n"'/2/loglog n
+0(n"'loglogn)} - 0 as.

n'%(logn) " '7° sup
; [t|<Cylogn

(9)

Thus we complete the proof of Lemma 1. O

LeEmMA 2. For any fixed positive constant C, as r — ©, we have
(10) P*{IF,*(p) -p|> 4Cr—1/2(1ogr)1/2} -0 a.s.
(11) P*{ F* Y(p) —pl > 4Cr~1/2(log r)l/z} -0 a.s.
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Proor. It is sufficient to prove (10). Define
(12)  z/(a,B) = I{min(e, B) < Y; < max(a, B)} —|F,(B) — F(a)]
for any given a, B, 0 < a, B < 1. Clearly, we have
1 r

Z zj(():p)

rizh

(13)

F*(p) - p| < +|F,(p) - p|.

From the fact sup,|F,(t) — t| = O(n~'"%(loglog n)'/?) a.s. [Serfling (1980)] and
the result of Lemma 1 in Singh (1980) [take b = 1, D = C(r log r)'/?],

(14) P*{ > 4Cr~—12(log r)1/2}

1 r
r .
Jj=1

< 2exp(—C2%logr) =2r % -0 as.
Lemma 2 holds. O

Lemma 3. Suppose that r = r(n) - », log r(n)/loglogn — «, let a, =
r~Y2(log r)'/2, then there exist positive constants C;, C, such that

p*{

F* ' p)-p - (p - F*(p))|
(15)

1\2
> C,r3/4(log r)** + Czn‘l/z(a, log——) } -0 a.s.

r

Proor. By the proof of Lemma 2, we can select constant 4 such that

(16) P*{
For fixed h,

P

F* Y(p) —pl > hr~?(log r)l/z} <2r1'->0 as.

F*Y(p)-p - (p - F*(p))|

1\1/2
> C,r=%%(log r)** + Czn‘l/z(a, log——) }
a

r

17
sP*{ sup IF,*(S) -s—F*(p) +P|

|s—pl| <2hr=1/%(log r)/2

r

1\2
> C,r~%¥4(log r)** + Czn‘l/z(a,loga—) } + Cr L.
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Using the result of Theorem 2 in Stute (1982),

sup |F.(s) — Fu(p) — s +p|
|s—pl <2hr=1/2%(log r21/2
(18)
=0

1\2
n‘l/z(a,loga—) a.s.

and from the following inequality
sup |(F*(s) —s) = (F*(P) - p)|

|s—pl| <2hr=1/2(log r)t/?

max

1
1<l <[2h(rlogr)*/2]+1 T

r ~ l
> zj(p,p + —)

1
(19) <—+
Jj=1 r

r

+ sup |F,(s) = F,(p) —s +p|

|s—pl <2hr=1/%(log r)t/2

therefore we only consider the second term of the right side of (19). When r, n
are large enough and 1 < |I| < [2h(r log r)'/2] + 1, clearly

l
(20) Fn(p + ;) —F(p)| <C,r2(ogr)"? as.

Using Lemma 1 in Singh (1980) again [take b = C,r~'/%(logr)'/?, D =
(Cy/Dri/*(log r)®/*], then

1. l
P*{ max o~} zj(p,p + ;) > Cyr~%*(log r)“}
1<l <[2h(r log r)'/ =
(21) <lll<[2hr(rlogr)*/?]+1 I j_1
1/2 C3
< 2([2h(rlog r) ] + l)exp —Elogr -0 a.s. m]
4

ReMARK. From the proof of Lemma 3, if we select suitable 2 and C, when
r=[unl], 0 < u <1, it is not difficult to get

P.{|F*"(p) —p - (p - FX(p))|

(22) 5 1\
> Cyr=3*(log r)** + Cyn=?|a, loga—

r

=0(n"Y) as.
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PROOF OF PART (ii) oF THEOREM 2. Note that
F*"(p) - F;(p) = F(p) — F*(p)
+{(F27'p) —p) — (P - E*(p))]
~[(F71(p) = p) = (p ~ Fu(p))]
=F(p) -F*(p) +RS - R,.
From the fact R, = O(n~**(loglog n)3/*) a.s. [Kiefer (1967)], take

nr
by = 7 (Cor™*(log r)** + Cyn™V/*(a, log(1/a,))""?)

(23)

and we have

p l—— o F* Xp) - F7Y(p) <t}—(I> ———i———)
Sl:-p *{(r n) ( r p n p)— p(l—p)
- P {(1 1)—1/2(F*( ) - P ))<t} (D( ¢ )
= su * - T r —Ln = - vy
(24) tp r n P d vyp(1 - p)
t t
S| ————— 16 - O =
R\ T (\/P(l—l’) '
Ar
+P*{\/_—dj|R:‘|28,(n)}.
Since r =[un], 0 < u < 1, it is easy to get
t t
n'/4(log n) ~%/*7° ————— ) - | =
(25) (log n) Ay * ’(")) Vp(1-p) I

< Cn'*(logn) ~**7%8,,, — 0.
Combining (é), (22) and (25), we complete the proof. O
To prove Theorem 2, in view of Theorem 1, it is sufficient to prove
2+5

*
r

-1 +6)/:t1+5P*{\/?

(-2 e -mo)

(26)

FA7Np) - Fiip)| > ) de < 4
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for some 6 > 0. Following the lines of the arguments in Ghosh, Parr, Singh
and Babu (1984) and using the result in Stute (1982), there exists a positive
number &, when ¢ € [1,C(8)/¢,(log n)'/?] [where the requirement on the
constant C(8) is specified later] we have

1 d d
(27) p+— —F|FY(p)+ty) — | < —gt)) — as.
2r nr nr

in this interval we can get

(28) P, {‘/—%T(F,*—l(p) - F;'(p)) > t} < Ct™4.

Therefore

C(8)/e,(log n)'/% 1 15 i ﬂ

For t > C(8)/¢,(log n)'/2, using the same method as in the proof of Lemma
1 in Singh (1980), we can prove

60 P\ (B0~ ) > o} < exp( - 15 S (C0) g

Since r =[un], 0 < u < 1, there exists A > 0 such that d/n = A. Now we
take C2%(8) = (16/AX2 + 8)3 + 8'), where &' is any positive constant. Thus
the right-hand side of (80) is O(n~#*%X1/2+8Y) 5.5 So

1/2+8' nr
" tL+ep ‘/— F* Y(p) - F! >ty dt
(31) ‘/;7(8)/81(10g/n)1/2 *{ d ( r (p) n (p)) }
=0(1) as.

Since d/r = C (when n is large enough), note that

where ¢,, is the [[un]/2]th-order statistic, and ¢,, is the {rn — [[un]/2]ith
order statistic, we have

Pa; {‘/—%T(Fr*—l(p) - F;Y(p)) > nl/2+5'}
= P*{(Fr*_l(p) ~F;Y(p)) > nﬁ'\/g} —0 as.

Combining (29) and (31) with (83), we can get (26). Thus we complete the
proof of Theorem 2. O

F* Y(p) - F,._l(p)l > t} dt < C < o,

(33)
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