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COVERAGE PROBABILITIES OF
BOOTSTRAP-CONFIDENCE INTERVALS FOR QUANTILES

By MicHAEL FArk AND EDGAR KAUFMANN

Katholische Universitit Eichstditt and Universitit GH Siegen

An asymptotic expansion of length 2 is established for the coverage
probabilities of confidence intervals for the underlying g-quantile which are
derived by bootstrapping the sample g-quantile. The corresponding level
error turns out to be of order O(n~'/2) which is unexpectedly low.

A confidence interval of even more practical use is derived by using
backward critical points. The resulting confidence interval is of the same
length as the one derived by ordinary bootstrap but it is distribution free
and has higher coverage probability. )

Introduction and main results. Let X;,..., X, be a sample of n
independent and identically distributed random variables (r.v.’s) with common
distribution function (d.f.) F and denote by F, the empirical d.f. pertaining to
X,,..., X,,. The bootstrap method, introduced by Efron (1979), often provides
a quite reasonable approach for the problem of determining a confidence
interval (c.i.) for an unknown parameter of interest of the underlying d.f., say
T(F).

To this end, consider a random sample X;*,..., X,* of size n generated
independently according to F,, and denote the resulting empirical d.f. by F,*.
Under suitable regularity conditions [see, for example, Bickel and Freedman
(1981) and Beran (1984a, b)]

1/2 ®) _
:lelg Pn{n (T(Fn ) T(F,,)) Sx}
(1)
~P(n/X(T(F,) = T(F)) <}| =, .. 0

with probability 1 or in probability, where G,*(x) = P{n/*(T(F*) — T(F,))
< x} denotes the bootstrap estimate of G,(x) = P{n'/*(T(F,) — T(F)) < x},
x € R. We add the index n to the first probability to indicate its dependence on
the outcome of X,,..., X,,.

Denote by H™! the generalized inverse of a d.f., that is, H '(a) = inf{t € R:
H() = a}, a €(0,1). If G, converges to a continuous and strictly increasing
d.f. G, it follows from (1) that

G:_l(a) -, o G '(a) in probability, @ € (0,1).
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486 M. FALK AND E. KAUFMANN

Consequently, for a € (0,1/2),
I, = (T(F,) - Gy (1 -~ a)n" V4, T(F,) = G} (a)n™ /2]

defines a c.i. of asymptotic level 1 — 2a for T(F). Notice that this is an
unconditional c.i., that is, we have

(2) P(T(F)el) -, ..1- 2a,

and the question suggests itself at which rate this c.i. attains its level.

Such rates can usually not be derived from results on the speed of conver-
gence of the bootstrap estimate in (1) as the present paper shows. Explicit
rates of convergence in (2) were established by Hall (1986) and Singh (1986).
While Singh (1986) [see also Liu and Singh (1987)] compares the coverage
probabilities of c.i. based on the normal approximation with those derived by
the (nonstudentized and studentized) bootstrap in case of the sample mean,
Hall (1986) obtains an explicit formula for the first error term in (2) for a class
of studentized statistics which are expressible as functions of vector means. In
particular, it turns out that this first error term is of order O(n~1).

On the other hand, by the poor rate of convergence of the bootstrap quantile
estimate itself which is Op(n~1/%) [Singh (1981) and Falk and Reiss (1989)],
one might conjecture that c.i.’s for the unknown g-quantile which are based on
bootstrapping the sample g-quantile, are only of minor practical importance.
However, the following result contradicts this conjecture.

We denote by @ the standard normal d.f., ¢ = ®' and o, == (g(1 — ¢))'/%
Put (x) =min{m € Z: m > x} and [x] = max{m € Z: m <x}, x € R.

THEOREM. Suppose that F is twice continuously differentiable near F~(q)
and that f = F' is positive. Then we have for x € (0,1),

P{n'*(F;(q) - F(q)) < G} (x)} -

=x+Cy(F,q,x)n 2+ 0o(n"?),

where
oo
C.(F,q,x) = H
X(Sig“(% "‘;(q’_l("))z — g(071(x)) + R,(®7(x)
with
u2q(1+(1—q);g((F-F_-2—((%%), >0,
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and
R,(u) =o' + (2 - ¢ + (1 - 2¢)u?)/3 + O(n /%))

—o,n'?u —(2-q+ (1-2q9)u?)/3+6, -1,

1, ng €N,
o, =
nq — [nq], nq & N.

Consequently, the bootstrap c.i. I, has unexpectedly low level error
O(n~'2). Observe that R, (®~(x)) oscillates in the interval [—1,1]. Hence,
also in this case the bootstrap approach can cope with large sample competi-
tors [see Section 2.6 of the book by Serfling (1980) and the comparison in the
sequel].

The proof of our theorem shows that the preceding expansion holds uni-
formly for those d.f. in the class F(¢, D,, D,) :== {F d.f.. F~! is three times
differentiable in I(¢) = (q —&,q +¢) with sup, . ;,|(F")(p)| < D,, i=
1,2,3, (F~')(q) = D,}, where D,, D, are given positive constants.

In the following we show that the bootstrap c.i. can be improved by a simple
backward procedure. Consider n'/*(T(F) — T(F,)) in place of n'/*T(F,) —
T(F)). If n'/*(T(F,) — T(F)) has a limiting distribution which is symmetric
to the origin, then this is the limiting distribution of n'/*(T(F) — T(F,)) as
well. The resulting confidence interval for T'(F') is then

Ly = [T(F,,) +GF Y a)n V2, T(F,) + GF'(1 - a)n~1/?)
= {19: a < G¥(nV* (9 - T(F,))) <1- a},

that is, the endpoints of I, are backward critical points in the sense of Hall
(1988). Note that this c.i. coincides with the one derived by Efron’s (1982)
percentile method.

The theoretical arguments in the paper by Hall (1988) amount to a strong
case against the backward method if T'(F) is a smooth functional of the mean
of F. In the case of the g-quantile, however, it turns out that the backward
method outperforms the ordinary one.

Obviously, I, and I, have the same length but I, is distribution free and
has higher coverage probability in case of T(F) = F~%(q) as is shown below.

Since for any d.f. H the r.v. H"%(U) has d.f. H, where U is uniformly on
(0, 1) distributed, we have for T(F) = F~!(q) the representation

G (n/%(T(F) - T(F,))) = P{F,"(q) < F~X(q)} = H,(F(F\(q))),

where F, denotes the empirical d.f. pertaining to a sample of n independent
and uniformly on (0,1) distributed r.v.’s independent of X,,..., X, and
H,(x) = P(F, Y(q) < x}, x €[0,1]. Hence, G.*(n'/2(F~(q) — F, Y(g))) equals
the d.f. H, evaluated at the random point F,(F~(q)).
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Now, F,(F~%q)) equals F (F(F~'(q))) in distribution and therefore, if we
assume that F(F~1(q)) = q, we have
G (n/2(F~(q) - F7'(q))) =5 HA(F()),

where =, denotes distributional equahty

Consequently, G’ (n'/%(F~(g) — F, '(¢))) is actually a pivot and the c.i. I,
is therefore distribution free if only F(F Y(¢)) = q. In addition, I,, has higher
coverage probability as is immediate from the following result and our theo-
rem.

Lemma. Forx €(0,1),
P{H,(F,(q)) <x)
L1 H(27H(#)
(g(1-g))"*

X [(1 - 2q) (q)_léx)) + 4 _32q - 25, + R, (9 }(x))

=x+n

+ o(n~1/2),

where R, (®~X(x)) coincides with the remainder term in the theorem.

CoroLLARY. Under the assumptions of the theorem.,
P(F~(q) € 1,} = P{F~'(q) €1,,}
g HETD)@ @)

@i-qy? T

Observe further that
I,={9:a<H,(F,(%))<1-a}
= {0: F7 Y (H, () <0 <F;(H, (1 - @)} = [ X100 Xopn)s

where r; =r(n):=(nH, a)), ry=ryn):=(nH,(1 -a)) and X,k <
-+ < X, are the order statistics pertaining to X;,..., X,,.

Consequently, I,, turns out to be a c.i. for F~(q) based on the classical
asymptotic (distribution free) approach which uses order statistics [see Section
2.6.3 in the book by Serfling (1980)]; observe that

n/2( 2 = q) >, @ @) (g1 - )

nl/z(% - q) = ® (1 - a)(q(1 - q)) 2

The length of I,, is X, ,n — X, .., which is therefore also the length of I,
derived by ordinary bootstrap Hence it follows from Section 2.6.4 in Serﬂlng
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(1980) that
nYY (X~ Xpin) e 20711 — ) (F71)(q)(q(1 ~ ¢))"*

with probability 1.

The computation of H,! or r,, respectively, nevertheless requires numeri-
cal methods if n is large and therefore, this look towards I,,, as a classical c.i.
alternatively to the bootstrap approach demands for its practical calculation
the assistance of a computer as well.

Extensive numerical simulations, which have been carried out by Dohmann
(1989), support the theoretical advantage of using backward critical points in
the case of T(F) = F~Yq). Figures 1 and 2 exemplify the gain of relative
performance typically obtained by using the backward method. The vertical

~
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Fic. 1. Confidence intervals derived by ordinary bootstrap.
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Fi1c. 2. Confidence intervals derived by using backward critical points.

lines display the c.i. of (approximate) level 0.9 for F~(q) with q ranging from
0.1 to 0.9. Both figures are based on the same sample of 30 uniformly on
(0, 1)-distributed (pseudo-)random numbers, i.e., F~X(q) = q. The c.i.’s with
backward critical points (Figure 2) are typically more concentrated around the
quantile function F~'(-) than those derived by ordinary bootstrap (Figure 1),
even for smaller sample sizes [Dohmann (1989)].

We remark that in the case of T'(F) = F~1(q) a Monte Carlo simulation for
the computation of bootstrap quantiles G,;"_l(a), a €(0,1), can be avoided.
This. has already been observed by Efron (1982). The representation I,, =
[X, s X,,.,) implies

G:_l(a) = n1/2(Xr1:n - T(Fn)) = nl/2(Xr1:n - X(nq):n)'



BOOTSTRAP-CONFIDENCE INTERVALS 491

This exact representation of G,* “Na) as a spacing of two particular order
statistics from the original sample X,,..., X, allows the fast and accurate
computation of I, and I,,; the simulation study by Dohmann (1989) benefit-
ted very much from this fact. .

We finally remark that under a suitable von Mises type condition on the
upper tail of F as defined in Falk (1988) the preceding results carry over to the
case of large quantiles, where ¢ = ¢,, converges to 1 but n(1 — g,) tends to »
as the sample size n increases. Details will be published elsewhere.

PROOF OF THE THEOREM. We prove the assertion only for x € (0, 1/2), the
case x > 1/2 can be dealt with in a completely analogous way. Define r :=
r.(q) = (nq). Denote as before by F, the empirical d.f. of n independent and
uniformly on (0, 1) distributed r.v.’s Uy, . .., U, independent of X, ..., X, and
H @) = P{Fn_ Y(q@) < t}. Then, as in the proof of Theorem 1.3 in Falk and Reiss
(1989),

PG (n*(F;Y(q) - F~(q))) <x)

1/2
=fP n (F, - F(2F~Y(u,) - F~(q)) — q)

g,

< AN (2)\F;H(q) = un}An(du),

where o, = (q(1 — ¢)'/%, A,(¢) = H (t(o,/n"?) +q), t €R, and u, =
q+ugn” /2

An Edgeworth expansion of length 3 for the distribution of the sample
g-quantile as given in Theorem 4.2.1 in Reiss (1989) yields

b, — 2a, — a,t®

Anl(t) = ®(8) + §(8) —"——— + O(n").

By a Cornish-Fisher expansion this expansion can be inverted pointwise
yielding

b, + 2a; + a,(®(x))”
A (x) = &7 H(x) + ——— nvlz( (=) +0(n7Y).

Note that A,(—log n) = O(n™1).
Lemma 1.4 in Falk and Reiss (1989) implies

P«(F(F(2F Y (u,) - F7(q)))|F, *(q) = u,)

I

B r n
P*(—+
n

r—1_
" F,_l(tn(u))), —logn <u <0,

r_
Fn_,(tn(u))), 0<uc<logn,
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where
F(2F Yu,) - F!
( (';) ¥ (q)), —logn <u <0,
t(u):= "
o F(2F(u,) -F(q)) - u,
, O0<uc<logn.
l1-u,
Hence, with
nt/%(r—1_ .
P —_— t —q|. <A
{Uq( —Fi(t() ~ ). ,,<x)},
—logn <u <0,
A, (u) =

ni’2 n—r_ r
P{ (—n-Fn_,(tn(u)) —q+ ;) < A;I(x)},

O<ucx<logn,

we can write

log n

P{n'/2(F,"(q) = F7(q)) <G '(x)} = [*°" A(u)A,(du) +o(n'72).

—logn

Fix now x € (0,1/2). It follows from A, (x) > ® Xx) <0and r/n — q =
O(n~1) for n - « that A,(«) =0 if u > 0 and n large. Hence, it suffices to
show

[O An(u)An(du) =x+Cn(F,q’x)n_1/2+o(n—l/2)‘
gn

An iterated application of Taylor’s formula yields uniformly for u
[—log n, 0]
u(l-q)"*  g,(u)

(ng)'* ng

t(u)=1+

where g,(u) = g(u) + O(c,u®) with ¢, » 0, n > ». Furthermore, g, is dif-
ferentiable in |u| < log n with g/(u) = O(u) uniformly in n and |u| < log n.
Define s = s, = {o,n'/?A; "(x) + ng). Then

s AW0-0 R
F T T ) ng

where R,(x) = O(1). Put «, = (s(r — SN2 /r3/2 = d,(1- QY2 /(n3/4q1/?),
where d,, = (=@~ Xx)/0,)"/* + O(n~1/*).
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Moreover, write a, '(¢,(u) — s/r) = v,(u) + ©,(u), where

gn(u) — R (x)

nl/2

() = -

nl/4
A Y(x)) and O,(u) = 5 (

Theorem 4.2.1 of Reiss (1989) together with Taylor’s formula then yields
uniformly for |u| < log n,

Ay(u) = Pla, (Us,oy = s/7) > ! (t,(u) — s/r))

= 1= 0, () = ¥ 09, ()
2 2-i
-X ZOI(L,“ DV (v, (u )) +0(n‘1/2)
i=1j

1= @(uvy(u)) + ya(u) +o(n"1/2),

where L, ,_,, i = 1,2, are polynomials with coefficients of order n~/* and
degree <3i, I(L;,, )®) = [.,L,,, ,dNg, and

r—2s 9
W¢(t)(l - t%)/3.
Note that 0,(x) = O((1 + u?)n~'*) and yn(u) =03, if ue
[—log n,2A; "(x)]. Using the representation x = [z’ dA,, we have

I(Ll,s,r—l)(t) =

[, Adw)A(du) —
=/ (L PlA() + [ ) _ @ (v,(u))A,(du)

[0 ya(w)A(du) +o(n"1/2)
2A; Wx)

= I, +1I, + III, + o(n"%?).
By Theorem 4.2.1 in Reiss (1989), the substitution u — v; {(u) = A7 (x) +
ud,n~1'/* and Taylor’s formula, we obtain that

I _ dn f_nl/‘lA;l(x)/dnq)(_u)

V2

71
x Z ((1+Q,)0) (A (= ))( 1/4) j_!du +o(n71%),

where @, ,(x) = n'l/z(alx +b,x), x € R. Since the integral II, is of the
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same structure as I,, analogous computations yield

d, ,_pi-
I - n f mATE gy )

n n/4J,

L J _1 —udn J 1 12
ngo((l + an)d’)( )(An (x))(Tl/T) j_!du + o(n~1%).

By summing up I, and II,, the terms with j = 0 cancel each other and from
the expansion [ ®(—uw)udu = 1/4 + O(t~3), t > 0, we obtain

d;
In + IIn = W((l + Ql,n)¢)’(A;1(x))/2 + O(n_l/z)

_ e i(x)l ¢(@” 1(x))

1/2
2 n’“o,

+o(n ‘1/2)

Next we turn to III,. The preceding arguments yield

(1 +Q,,)6) (A, l(x))d’“
IIIn = IZO = l,n(l+1)/4

Xf—n1/4A;1(x)/dn — ut| dW(n) gn(vn_l(u)) - R, (x)
R4 Y(x) /d,, n'/*o,d,

+I(Ly,, ,—1)(u) | du +o(n™1/?).

For [ =1 the terms in the above sum are of order o(n~'/2). With z, =
—n'*A, Nx)/d ,, we have
2

du = o(n=1/2)

Z, Z, 1-
S )(w) du = O(n™H) [ o) —5

and
-1 R’ -1 — R’
[ ot B R g BB o
Consequently],
IIIn = _(b(n;(qx)_)_( ((I) l( )) - R;l(x)) + O(n_1/2)5
where

R (x) = R,(27'(x)) + O(n™'/%).

The assertion of Theorem 4 now follows by summing up the preceding

representations of I, + II,, and III,. This completes the proof of our theorem.
O
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PrOOF OF THE LEMMA. Write for x € (0, 1),

where s = (nH, (x)) = (o,n'/?A,(x) + nq). Theorem 4.2.1 in the book by
Reiss (1989) together with elementary computations yields

L@@ (2 (@)

P{U,,>q}=x+n 1) 5 + S,(x)

q
+ o(n~1%),
where

S,.(x) =Rn(CI)‘1(x)) + (5 —4q+(1- 2q)(q)—l(x))2)/3 — 95, + O(n_1/2).

This implies the assertion. O

Acknowledgments. The authors are grateful to Birgit Dohmann and
Karin Lessenich for doing the numerical simulations.

REFERENCES

BeraN, R. J. (1984a). Bootstrap methods in statistics. Jahresber. Deutsch. Math .-Verein. 86
14-30.

BERAN, R. J. (1984b). Jackknife approximations to bootstrap estimates. Ann. Statist. 12 101-118.

BickeL, P. J. and FreepmaN, D. A. (1981). Some asymptotic theory for the bootstrap. Ann.
Statist. 9 1196-1217.

DoHMANN, B. (1989). Confidence intervals for quantiles based on small samples: Bootstrap vs
standard methods. Diploma thesis, Univ. Siegen. (In German.)

EFRON, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist. 7 1-26.

EFRON, B. (1982). The Jacknife, the Bootstrap and other Resampling Plans. SIAM, Philadelphia.

FALK, M. (1988). Weak convergence of the bootstrap process for large quantiles. Statist. Decisions
6 385-396.

Fark, M. and Ress, R.-D. (1989). Weak convergence of smoothed and nonsmoothed bootstrap
quantile estimates. Ann. Probab. 17 362-371.

HaLL, P. (1986). On the bootstrap and confidence intervals. Ann. Statist. 14 1431-1452.

HaLr, P. (1988). Theoretical comparison of bootstrap confidence intervals. Ann. Statist. 16
927-853.

Lw, R. Y. and SineH, K. (1987). On a partial correction by the bootstrap. Ann. Statist. 15
1713-1718.

Reiss, R.-D. (1989). Approximate Distributions of Order Statistics (with Applications to Nonpara-
metric Statistics). Springer, New York.

SERFLING, R. J° (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.

SinGH, K. (1981). On the asymptotic accuracy of Efron’s bootstrap. Ann. Statist. 9 1187-1195.

SinGH, K. (1986). Discussion of “Jackknife, bootstrap and other resampling methods in regression
analysis” by C. F. J. Wu. Ann. Statist. 14 1328-1330.

MATHEMATISCH-GEOGRAPHISCHE FAKULTAT FACHBEREICH MATHEMATIK
KATHOLISCHE UNIVERSITAT EICHSTATT UNIVERSITAT GH SIEGEN
OSTENSTRASE 26-28 HOLDERLINSTRASE 3

8078 EICHSTATT 5900 SIEGEN 21

GERMANY GERMANY



