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ESTIMATING A DISTRIBUTION FUNCTION WITH
TRUNCATED AND CENSORED DATA!

By Tz LEUNG LAI AND ZHILIANG YING

Stanford University and University of Illinois

A minor modification of the product-limit estimator is proposed for
estimating a distribution function (not necessarily continuous) when the
data are subject to either truncation or censoring, or to both, by indepen-
dent but not necessarily identically distributed truncation-censoring vari-
ables. Making use of martingale integral representations and empirical
process theory, uniform strong consistency of the estimator is established
and weak convergence results are proved for the entire observable range of
the function. Numerical results are also given to illustrate the usefulness of
the modification, particularly in the context of truncated data.

1. Introduction. Let X,, X,,..., be ii.d. random variables with a com-
mon distribution function F (i.e., F(¢) = P{X, < t}). Let {¢;} be a sequence of
independent random variables independent of {X;}. Suppose that the X; are
not completely observable and that observations are (X,,$,), i=1,...,n,
where

(1.1) X, =X, nt, 8 = Iix;, <ty

Here and in the sequel, we use A and V to denote minimum and maximum,
respectively, and use the notation #A to denote the number of elements of a
set A. Based on these censored observations, a classical estimator of F is the

product-limit estimator F,, introduced by Kaplan and Meier (1958) and de-
fined by

. AN,(s)
(1.2) l—Fn(t)= n{l—-ﬁ_s)_},

s<t

where we use the convention 0/0 = 0, AN,(s) = N,(s) — N,(s— ) and

1=

(1.3) Nn(s) =#{i$n:XiSS, 81':1}: ZI(Xiﬁsl\ti)’
R =1

(1.4) Y,(s) = #{i

IA

n
n: Xi = S} = Z I(Xi/\ti2s)'
i=1
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418 T. L. LAIAND Z. YING

Making use of stochastic integral representations and martingales, Gill (1980,
1983) established the uniform consistency and functional central limit theo-
rem of F, under considerably weaker assumptions than previous authors.

Another model of incomplete observations studied in the literature is the
“truncated model,” which assumes the presence of truncation variables ¢#;
such that X; is only observable if X; > ¢,. We assume without loss of general-
ity the case of left truncation, since a right-truncated model (in which the X,
are observable only if X; < 7T}) can be transformed into a left-truncated model
by multiplying the X, and T, by —1. In the left-truncated model, the data
consist of n observations (X?,¢?) with X? > ¢?. We can regard the observed
sample as being generated by a larger sample of independent random variables
X, t;,i=1,...,m(n), where

(1.5) m(n) =inf{m: ﬁ I(X,zt,)=n}‘
i=1

In his study of truncated data from an application in astronomy, Lynden-Bell
(1971) used nonparametric maximum likelihood arguments to derive the
product-limit estimator F,*, which he defined from the truncated data by

* _ _ A4Lm(n)(s)
(1.6) 1-F7(¢t) = s]—[st{l —_Rm(n)(s) },

where

(A7) L(s) =YX Iy x<s [50 Lpw(s) =#{i<n: X <s})],
i-1

(1.8) Ru(s) =X Iycocxy [0 Rpuy(s) = #{i<n: X225 >0}
i=1

Assuming the ¢, to be ii.d. with a common distribution function G and
assuming that both F and G are continuous, Woodroofe (1985) showed that

(1.9) sup | F,*(t) — Fg(¢)| =p 0 if F(7g) <1,

t>1g
where 75 = inf{s: G(s) > 0} and
(110) Fy(t) = P(X, < X, > 15}
Assuming furthermore that

(1.11 gl
. — < oo,

) [ G
he also showed that n'/2(F* — Fg) converges weakly to a Gaussian process on
[7g, b] for every b > 75 with F(b) < 1. Wang, Jewell and Tsai (1986) later
gave an explicit formula for the covariance function of the limiting Gaussian
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process. The arguments of Woodroofe (1985) and Wang, Jewell and Tsai (1986)
are similar in spirit to the approach of Breslow and Crowley (1974) in the
censored case, working directly with empirical subdistribution functions and
their functionals. By embedding the estimation problem in a Markov process
model with a finite state space and by applying counting process theory and
martingale central limit theorems to analyze F,*, Keiding and Gill (1990) gave
an alternative derivation of these results.

The assumption of i.i.d. ¢, is crucial in the asymptotic results of Woodroofe
(1985) and Wang, Jewell and Tsai (1986). These results are, therefore, not
applicable to the important case where the ¢, need not be identically dis-
tributed, as in regression applications [cf. Wang, Jewell and Tsai (1986) and
Lai and Ying (1988)]. As will be explained in Section 2, it is necessary to modify
(1.6) to ensure consistency of the estimator when the ¢; are not i.i.d. Specifi-
cally, choosing ¢ > 0 and 0 < @ < 1, we shall define the (modified) product-limit
estimator F, by

(112) 1-— Fn(t) = I_[ 1— ALm(n)(s)

(R s)zcn®} |-
s<t Rm(n)(s) o

Strong consistency of ¥, will be established in Section 2, while weak conver-
gence of the normalized process will be studied in Section 4, without assuming
F to be continuous and without assuming the t; to be identically distributed or
continuous. Sections 3 and 4 extend the consistency and weak convergence
results to the mixed model in which the data are subject to both censoring and
truncation. In Section 5, we give some numerical results to illustrate the
usefulness of the weight function Ig () cnn in (1.12).

2. Uniform strong consistency of ¥, and of related estimators in
the truncated model. Throughout the sequel we shall let

1 m
(21) Gu(s) = — L Plt;<s), 16= inf{s: liminf G,,(s) > o}.
i=1 m—o

In the case of censored survival data (1.1), the set {i < n: X, > s} in (1.4) is
often called the ““risk set” at (age) s, so Y,(s) in (1.4) represents the size of the
risk set. Note that n~'EY,(s) = (1 — F(s —)X1 — G,(s —)) is monotone in s
and converges to 0 only when F(s —) or G,(s —) converges to 1. In the case of
truncated data, an analogous “‘risk set” at s is given by {i < m: X; > s > ¢;} in
(1.8), where R, (s) denotes the risk set size. However, m 'ER,(s) = (1 —
F(s —))G,(s) is no longer monotone in s and converges to 0 if G,(s) - 0 or
F(s —) — 1. To ensure that m/R,(s) is not too large, particularly in those
factors of (1.6) corresponding to s near 7, we introduce the indicator variable
LR, (s)=cney ID (1.12). The following theorem establishes the uniform strong
consistency of the (modified) product-limit estimator (1.12) as an estimate of
(1.10). We shall let G,,,'(y) = inf{s: G,(s) > y}.
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THEOREM 1. Define F, by (1.12), 7 by (2.1) and F by (1.10). Suppose that
F(r3) < 1 and

(2.2) lim {F(rg) — F([rg A G, }(bm=0"®)] =)} =0 foreveryb > 0.
Then sup_. ., ..|E.(t) — Fgz(t) - 0 a.s.

REMARKS. (i) Assumption (2.2) implies that F is continuous at 74 (> —),
setting F(—») = 0. When ¢,,¢,,... are iid. with a common distribution
function G, G,, = G and G~ (bm ") > 7, and therefore assumption (2.2)
is satisfied in this case if F is continuous, as was assumed by Woodroofe
(1985) and Wang, Jewell and Tsai (1986).

(ii) Consider the following example. Suppost that X, X,,... are ii.d.
exponential random variables with density f(x) =e™* x > 0. Suppose that
the ¢, are independent random variables such that P{t; = 1/i} =27 =1 —
P{t, = 1}. Then 75 =1 and (2.2) holds. Moreover, since L[>, I, ., x, con-
verges a.s. to a limit Z(s) with EZ(s) =e™*%,., 27" for s < 1/2, and since

i-11y, < converges as. for s < 1/2 and is nondecreasing in s, it follows
that P{lim,, ., R,(s) = Z(s) for all 0 <s < 1/2} = 1. Using this, it can be
shown that I1, _, »{1 — AL,,,(8)/R,,,/(s)} converges a.s. to a random vari-
able (# 1), and therefore Lynden-Bell’s estimator (1.6) cannot converge to
F4(t) in probability, for every ¢ > 75 = 1.

The product-limit estimator (1.6) or its modification (1.12) tries to estimate
the conditional distribution function Fy of X, given X, > 7, without assum-
ing knowledge of the value of 7. It is, however, often more natural to consider
instead the problem of estimating the conditional distribution

(2.3) F(xlu) = P{X, <xIX; >u}, x>u,

for various given values of u about which the sample appears to provide
adequate information. Given the value of u, an obvious modification of (1.6) to
estimate (2.3) is

(2.4) Fr(x)=1- TI {1 - ALL"’(S')}.

u<s<x Rm(n)(s)

Analogous to Theorem 1, the following theorem shows that F(-|u) can be
consistently estimated by F,*, if ¢J(cn*]) < u < X(Bn]), where [2] denotes
the largest integer less than or equal to z, t2(1) < -+ < t%(n) denote the
order statistics of the ¢) and X2(1) < --- < X?%(n) denote the order statistics
ofthe X%, i=1,...,n.

THEOREM 2. Define F(-|u) by (2.3) and F,*, by (2.4). Suppose that

liminf [~ G, dF > 0.

m—>
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Then for everyc > 0,0 <a<land 0 <B <1,
sup |Fn*u(x) - F(xlu)| -0 a.s.

t9(en*D<u<X2(Bn)), x>u

We preface the proof of Theorems 1 and 2 by the following three lemmas.
Let

¢ dF(s)
—wl—F(s—-)

denote the cumulative hazard function of F. Here and in the sequel by (%, we
mean integration over the interval (— o, £].

(2.5) A(2) =

LEmMMA 1. Forany 0 <p <1, B> 0and ¢ >0,

Z;’Ll[msssxi} —

(2.6) sup

1/|-0 a.s.,
(1-F(s-)G,(s)=Bm™>

S Iy -y exy = m(1 = F(s =))Gin(s)

i=1

sup
(1-F(s-)G,(s)<Bm™P
(2.7)

Z I(tiSS) - me(s) = O(m(l—p)/2+e) a.s.

i=1

+  sup
G,(s)<Bm™P

Proor. To prove (2.6), apply Corollary 1.3 of Alexander (1985) to the
empirical measure defined by the independent random vectors (¢;, X,),...,
(¢,,, X,,), noting that the L, metric entropy with bracketing of the class of
sets of the form {¢; < s,(or ¢; < s,), X; > s,(or X; > s,)} is of logarithmic order
and that E(X7, I .. x)) = m(1 — F(s —))G,(s). The desired conclusion
(2.6) then follows from the exponential bound in Alexander (1985), Corollary
1.3, and the Borel-Cantelli lemma. Similarly, (2.7) follows from Alexander
(1985), Theorem 2.1, and the Borel-Cantelli lemma. O

LemMmA 2. Suppose that liminf,, _, [* .G, dF = 8 > 0. Then
limsup m(n)/n=1/8 a.s.

n—o

In particular, if F(rg) < 1, then
5>  sup {(1 - F(a —))liminme(a)} > 0.

a>1g, Fla-)<1

Proor. By Kolmogorov’s strong law of large numbers,

1 m
(2.8) ;El[I‘X"Z"" -P(X;>¢t}] -0 as.
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Since m~'L, P(X;, > ¢} = [.G, dF, the desired conclusion follows
from (1.5) and (2.8). If F(r;) < 1, then we can choose a > 75 such that 1 —
F(a —) > 0. Since a > 14, liminf,, _, G,(a) > 0. Moreover, [* .G, dF >
G, (a)]4,dF. O

LEmMA 3. For every a with F(a — ) < 1 and for every 0 <p <1,
sup{

Proor. First note that
m™'ER,(s) = (1 - F(s —))G,(s) 2 (1 — F(a —-))G,(u)
if u < s < a. Therefore, by (2.6), with probability 1, if a > G,,'(m~P), then

AL, (s) .
Almls) o
) B(5) [ dA}:GLi(m y<u<z<al -0

U<S<x

a.s.(sup@ = 0).

AL, (s) AL,(s)
Sup L R, (s) - L ER,(s)
Gr(m P)<u<x<a|u<s<x m u<s<x m
2.9
(29 AL,(s)
-0 L ER,(s) |’
G, (m P)<s<a m(s)

Take any 0 <& < 1. Let s, = G,,'(m™P) and let s; =inf{s >s;_;: F(s) —
F(s;_,) = ¢€}. There are only finitely many such points s, < -+ <sy_, that
are less than or equal to a; in fact, N — 1 < 1/¢, assuming that a > G, (m ).
Redefine sy = a. Note that

dA <(1-F(a-)) "(F(s;—) - F(s;_y))
(2.10) (sj-15))

<e(l1-F(a-))"' forl1<j<N.
Fix any 0 <j < £ < N. In view of (1.7),

AL,(s) m Lyo<x, ;< X, <) 1™
@1 L BR,G) T I m(i - R )Gu(X) | m
where
7 I{t,'SXi,stXiSsk)
" (1 - F(X; —))Gm(Xi) .
Since Z,i,..-,Z,,, are independent random variables with |Z, | < (1 -
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F(a =))"'mP, and since

m dF(s)
EZ, =m —
i§1 . '/lsj,skll_F(s—)
m dF 1+p
ZVaeris i 2[ (S) < i 2
i=1 (1—F(a_)) [sjrsk]Gm(s) (l—F(a—))

we obtain by Lemma 3(i) of Lai and Wei (1982) that for 0 < 8 < (1 — p)/2,

m
i=1

[s;, 5]

>(1-F(a —))_lm‘“")/z“’}

P
(2.12) {
< 2exp{-tm*(1 - %m9+(p_1)/2)}.
From (2.11), (2.12) and the Borel-Cantelli lemma, it then follows that
AL,(s)
L IR (s)
s€ls;, s;] m\ S8 [s;, 541

A similar argument shows that (2.13) still holds with [s;,s,] replaced by
[s;, ;) or (s}, 5,]. Combining this with (2.10) gives that

dA|—> 0 a.s.

2.13
( ) Os}nsakst

limsup{ sup Yy L”‘(s_)__ dA’}
(2.14) m—o® |\ SeSUSXSSN|u<s<x ERm(s) [u,x]
2¢
= 1-Fla-) as.,
noting that for u, x € [s,, s)] with u < x, there exist j, 2 € {1,..., N} with

j<ksuchthat s; ; <u<s; and s,_; <x <s,. From (2.9) and (2.14), the
desired conclusion follows by letting ¢ | 0. O

ProorF oF THEOREM 1. By Lemma 2, we can choose b > 0 such that
(2.15) P{2b(m(n))® < cn for all large n}=1.
By Lemma 1, P(Q,) = 1, where

Q. - R,.(s) 1 < 1
= sup - —
* a6, zbm-a-o| m(1 = F(s =))Gy(s) 2
(2.16)
and sup R, (s) < 2bm* for all large m} .
(1= F(s )G(s) <bm~1~®

" On Q,, for all large m,
(217)  R,(s) 2 2bm® = (1 = F(s =))G,(s) 2 bm=¢"®.
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Since G, (s) <bm~ 1~ if s < G, (bm~ "), it follows from (2.17) that on
Q,, for all large m,

X YR, (s)=2bm®) .

j_w——Rm(s) dL ,(s)

(2.18) =0, if x < G, Y(bm =),
AL

< 3 m(8)

—_’
G (bm "M <s<x I?M(s)

Take a > d > 75 such that F(a —) < 1. Since G,(s) = G,(d) for s >d
and since m(n) > n, we have on Q,,

(2.19) inf I,

d<s<a

if x > G, {(bm~1~9),

=1 foralllargen.

m(n)(s) >cn%

Let d,, = 7¢ A G, }(bm~ @), From (2.18) and Lemma 3, it follows that on
Qo,

. d
limsup [* [ L, = 20ms/Bm(8)] dLu(s)

m — o —
(2.20)

< lim sup dA as.
m—w ‘ldy,d]

Moreover, since liminf,, ., G,(d) >0 and 1 — F(a —) > 0, we can apply
Lemma 3 to conclude that

(2.21) sup

d<x<a
From (2.21), it follows that with probability 1, uniformly in d < x < a,
IT {(1-AL,(s)/R..(s)}

d<s<x

- exp{—[A°(x) — A"(d)]}dl‘l {1 - AA(s)} asm — o,

<s<x

/ dLm(s)/Rm(s)—j dA'—>0 a.s.
[d, x] [d,x]

(2.22)

where A° denotes the continuous part of A [cf. the proof of Lemma 2 of Gill
(1981)]. Combining (2.19) and (2.22) gives that with probability 1, uniformly in
d<x<a,

(1-F(2))/(1 - F(d))
> expl~[8(x) = (@)} TT (1-4A(s)) asn >

<s=<x

Note that the right-hand side of (2.23) [cf. Gill (1980), page 36] is equal to

(1-F(x))/(1-F(d))
- (1-F(x))/(1 —F(7g)) =1-Fz(x) asdlrg.

(2.23)

(2.24)
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By (2.2), [4,, 4jdA > 0 as m — » and d | 75. Therefore, by (2.15) and
(2.20), with probability 1,

lim sup { SuPI(R,,,(,,)(s) s en) DLy (2)(8) /R i ( s)}

n—o s<d

< limsup Y Iz (o>96me AL, (s)/R,(s) >0 asd|rg.

m — o S<

(2.25)

Hence, with probability 1, for all large m,
log(1 - F,(d)) = ¥ log{1 - LR uor2 eny ALn(n)(8) /R pny(3)}

s<d

(2.26)

- Zd [I(Rm(,,)(s)zcn"‘) ALm(n)(S)/{'Rm(n)(s)](]' + 0(1))

asd| 1.
From (2.15), (2.25) and (2.26), it follows that with probability 1,
(2.27) limsup#,(d) > 0 asd|7g.

n—o

Combining (2.27) with (2.23) and (2.24), we obtain that with probability 1,
(2.28) 1-F(x) >1-Fy(x) uniformlyinx <a.

Since a can be arbitrarily chosen with F(a — ) < 1, (2.28) implies that
sup,|F(x) — Fy(x) - 0 a s.if F~%(1) = e, or if F is continuous at F~(1). In
the case F jumps at 7 = F~1(1), we can s1mply take a = 7 since F(r —) < 1.

O

ProOF OF THEOREM. In view of (2.7) and the fact that sup /m 'L "I x . ,, —
(1-F(s =) - 0 as., we can choose b > 0 by Lemmas 1 and 2 so that
P(Q,) = 1, where

Q, = {8bm(n) < n and 26(m(n))® < cn® for all large n}

N sup Y Ly .q <2b(1—B)m for all large m}
(2.29) {I—F(s—)sb(l—ﬁ)i=1 izl

m
ﬁ{ sup Y I, < < [2bm*] for all large m}.
G, (s)<bm—0-® -1

On Q,, for all large m,

(2.30) Z I(tiss) > [2bm“] = Gm(s) >bm 10 = g > G,;l(bm_(l_a)),

(2.31) f‘, Iix.5226(1-B)m=1-F(s-)>=b(1-p).
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On Q,, for all large n, since cn® > 2b(m(n))* and n > 3bm(n), we have
m(n) . m(n)

Z I(t,- <td([cn?]) = Z I(t,- <td([en®D, t; < X;)
i=1 i=1

[cn®] = [Zb(m(n))a],

m(n) ) m(n)

[\

_;1 Iix, > x3qpn 1) ;1 Lix,> x306nD, X, >t
=n—-[Br]l+12=2bm(n)(1-B),

and therefore by (2.30) and (2.31),

t3([en®]) = G, (B(m(n)) "),

1-F(X([Bn]) =) 2 (1 - B),

for all large n, on (,.
Take any a such that F(a —) < 1. By Lemma 3,

(2.32)

(u,

x]dLm(s)/Rm(s) - /(u x}dA‘}

(2.33) M { Sub

G bm - M <u<x<a
=0 a.s.
From (2.33), it follows as in (2.22) that
IT {1-AL,(s)/R,.(s)}

u<s<x

sup
—1(pyy —(1—a)
(234) G, '(bm )<u<x<a

~(1 = F(x)/(1 - F()| >0 as.
[cf. the proof of Lemma 2 of Gill (1981)]. From (2.32) and (2.34), it follows that
sup{an"fu(x) - F(xlu)l:
G M (bm™ ) <u < X2([Br]),u <x<a} >0 as.

In view of (2.32), since (2.35) holds for every a with F(a — ) < 1, the desired
conclusion follows (cf. the last part of the proof of Theorem 1). O

(2.35)

3. Extension to mixed models with both censoring and truncation.
In this section we extend the modified product-limit estimators to the case of
left-truncated and right-censored data, which often arise in biostatistical appli-
cations. Specifically, in addition to the truncation variables ¢; described above,
there are also censoring variables T; such that {(X;,¢,,T}):i=1,2,...}is a

12

sequence of independent random vectors and such that X; is independent of
(¢;, T,) for every i. The X, are assumed to have the same distribution F, which

is to be estimated, while ¢, and T; are assumed to be extended real-valued

12

random variables (i.e., T; and #; may assume the values © and —c with

13

positive probability). Thus, the truncated model studied above is a special case
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that corresponds to T; = «, while the classical censored model is also a special

case that corresponds to ¢, = —c.
Letting X; = X; AT, and §;, = Iy _r,, this mixed model assumes that

~

(X, 8,) is observable only when, X, > ¢,. Thus, the data consist of n observa-

i Y/

tions (X2, 87, ¢7) with X? > 0. As before, we shall regard the observed sample
as being generated by a larger sample of independent random variables
X,t,T,i=1,...,m(n), where

Y%y Lo

(3.1) m(n) =inf{m: Y I(Xi,\Tizti)=n}.
i=1
Analogous to (1.3) and (1.7), and to (1.4) and (1.8), define
Lm(S) = Z I(tisxis.s/\Ti)
(3.2) i=1
[so Lyon(s) =#{i<n: X2 <s,80 = 1}],

m
(88) R,(s) = X Iy cocxnry  [50 Rugay(s) = #{i <n: X0 2 5 > 17}].
i=1

With these new definitions of L,, and R, [in place of (1.7) and (1.8)], define
the product-limit estimator F,*, by (2.4) and ¥, by (1.12), where ¢ > 0 and
0 < a <1 are prespecified constants. Instead of (2.1), we now defined G,, and

¢ by
1 m
(34) G,(s) = oy Y P{t;<s<T)}, Te = inf{s: liminf G,,(s) > 0}.
i=1 m— o

With this definition of G,,, define F; by (1.10). Although G, (s) is no longer
monotone in s, we still use the notation

G.'(y) = inf{x: G, (x) = y}
(3.5)
[and therefore G, (x) >y = x > G M ()]
Assume that F(75) < 1, s0 —® < 74 < F~1(1), and define
(3.6) r* - F~Y(1) A inf{s > 7q: liminf G,,(s) = 0} (inf@ = ).

This notation will be used throughout the sequel. The following two theorems
are extensions of Theorems 1 and 2, while Lemma 4 below is an extension of
Lemma 1 to the present setting and can be proved by applying Corollary 1.3
and Theorem 2.1 of Alexander (1985) to the empirical measure defined by
independent random vectors (¢;, T}, X,).

TueEOREM 3. With G,, defined by (3.4) instead of (2.1), suppose that
F(rg) < F(r* — ) and that (2.2) holds, in which G, is defined in (3.5).
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Assume that liminf,, |, (inf,_,_, G,(s) >0 if 7o <d <a <7* Then
(3.7 sup | F,(¢) — Fg()| > 0 a.s.
t<t*
TueoreM 4. With G,, defined in (3.4), define G(s) =m™'L*, P{t; <
T, < s} and assume that liminf,, . [ (G, + G)dF > 0. Order X?,..., X}

as X’ < --- < X%n). Then for everyc > 0,0 <a <land 0 < <1,
sup{| F,* () — F(xlu)|: u < X([Bn]), x> u,
} -0 a.s.

(3.8)
and min R, ,(s) = cn®
u<s<x .

LemMA 4. With G,, defined by (3.4), we have forany 0 <p <1, B > 0 and

e>0,
Z;n=11(t~<s<X»/\T»)
(3.9) sup ————— _ —1/-0 a.s,
(1= Fs-)Gy(s)=Bm> | M(1 = F(s =))Gn(s)
m
sup ZI(t_ in/\Ti}_m(l_F(s_))Gm(s)
(1-F(s-)G,(s)<Bm™P|i=1
(3.10) m
+ sup Y Iy oory — mG(s)| = O(m~P/2%) q.s.
G, (s)<Bm™P|i=1

Proor oF THEOREM 4. In analogy with Lemma 2 and its proof, we now
have with probability 1,
m~! fll(XiATiZti) +0(l)=m™*! £1P{Xi AT, >t} = [:O(Gm + Gr)dF.
It then follows from (3.1) that
(38.11) limsupm(n)/n = {li’;n_)igffjm(Gm +Gr) dF}_1 (<») as.

Since G,,;(s) is no longer monotone in s, we need to modify Lemma 3 as
follows: For every a with F(e —) < 1 and for every 0 < p < 1,

AL
sup{ Y ALn(s) dAl:u<x<a,
u<s<x Rm(s) (u, x]

(3.12)
inf G, (s)=m™>
u<s<x

} -0 a.s.

The proof of (3.12) is similar to that of Lemma 3. First we make use of (3.9) [in
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place of (2.6)] to reduce the problem to that of

AL
sup{ n(s) dA

Z _—m
u<s<x ER,(s) . Jw,x
To prove (3.13), it suffices to show that
AL,(s)
Z m (G (s)=m™P)

u<s<x

ru<x<a,

(3.13)

u<s<x

inf G,(s) > m_"} -0 as.

sup
u<x<a

(3.14)

-0 as.,,

_/ I(Gm(s)z m=P} dA(s)
(u, x]

which can be proved by arguments similar to those used to prove (2.14) in
Lemma 3.

By (3.11), we can choose b > 0 such that (2.15) still holds. Defining , as in
(2.16) but with the new definitions of G,, and R,,, we obtain by Lemma 4 (in
place of Lemma 1) that P(Q,) = 1. On Q,, for all large m, (2.17) holds and
therefore
(3.15) inf R, (s)>2bm*= inf G,(s)=bm @,

u<s<x u<s<x
Moreover, an argument similar to that used to prove (2.32) can be used to
show that with probability 1,

(3.16) 1-F(X2([Bn]) =) =b(1—B) foralllarge n,

choosing b > 0 such that P{3bm(n) < n for all large n} = 1. The rest of the
proof is similar to that of Theorem 2. O

Remarks. (i) R,,,(s) is a step function with possible jumps at ¢? and X?.
Theorem 4 says that F,* (x) provides a reliable estimate of F(x|u) for x > u if
the risk set size R,,,,(s) is not too small [say, R, ,/(s) = cn®] for all s in the
interval (u, x], and if u is not located at the upper tail of F [as revealed from
the sample with u < X°(Bn])]. The preceding proof shows how the require-
ment of adequate risk set size R, (s) for all s € (u, x] enables us to get
around the difficulties caused by the nonmonotonicity of G,,(s).

(ii) In the case t;, = —, Theorem 3 gives the uniform strong consistency of
the modified product-limit estimator F’n in the censored model with indepen-
dent (but possibly nonidentically distributed) censoring variables T;. Here G,,
is nonincreasing in s, 7, = —», F; = F and (2.2) is obviously satisfied. As
pointed out by Wang (1987), for the Kaplan—-Meier estimator F, defined in
(1.2), the uniform strong consistency property (3.7) has been established in the
literature for i.i.d. censoring variables T, with a common distribution function

13

1 — G only under the assumption F(7* —) =1 or G(v* =) > 0.
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Proor oF THEOREM 3. Since liminf,, , (inf;_,_, G,(s)) > Oforall d,a €
(7, 7*) and since F(7* — ) > F(zg), it follows that liminf,, _, Jerg %y G AF >
0. Hence, by (3.11), we can choose b > 0 such that (2.15) still holds. Let
d, =16 A G, (bm~1~%), whete G,' is defined in (3.5), and let 7, < d <
a < 7*. By Lemma 4, P(Q,) = 1, where Q, is defined in (2.16). On Q,, in view
of (2.17) and (3.5),

(3.17) sup Lg, (s)=26ms = 0 for all large m,

§<G (bm~1-2)

(3.18) inf Iip yseny =1 foralllarge n,

d<s<a
since m(n) = n and liminf,, __ {inf,_,_, G,(s)} > 0. Moreover, by (3.12),
(3.19) sup
d<x<a

On (1, it follows from (2.17) and the definition of (), that for all large m,

[ dLm(s)/Rm(s)—f dA’—>0 a.s.
x] (d, x]

’

I sopme AL, (s)/R,.(s
Jo offimucor=2me ALn(8) /R n(5)

(3.20)
< 2 I(G,,,(s)zbm‘“‘“)) dLm(s)/ERm(s)
[d,,,d]

Making use of (3.17)-(3.20) together with (3.14), it can be shown by a
straightforward modification of the proof of Theorem 1 that

(3.21) sup|F,(x) — Fg(x)| > 0 a.s. for every a € (74, 7%).
x<a
If F(+* =) =1, then from (3.21) and the fact that ﬁ',, < 1, the desired
conclusion (3.7) follows. Now suppose that F(7* —) < 1. Then as in (3.20), we
have on Q,, for all large m,
Z ALm(s)I(Rm(s)zzbm“)/Rm(s)

a<s<t*

<2 Z ALm(s)I(Gm(s)zbm_(l_“))/ERm(s)‘

a<s<t*

Since ER,(s) = (1 — F(s —))G,(s) and since F(r* —) < 1, it can be shown by
arguments similar to those used to prove (2.14) that

(3.22)

Z ALm(s)I(Gm(s)zbm_(l""))/Elzm(s)

x<s<t*

sup
a<x<t*

(3.23)
| _[ Ig (sy>bm-a-ay dA(s)| > 0 as.
[x,7%)

Since F(r* —) <1, it follows from (3.22) and (8.23) that with probabil-
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ity 1,
(3.24) limsup Y AL,(8)Ig (s)s20me/Bn(s) >0 asatr*

mo®© g<gl7*
By an argument similar to (2.25) and (2.26), (3.24) implies that with probabil-
ity 1,

limsup{ sup *log[(l - F’n(x))/(l - Fn(a))]} -0 asa?frt¥

n—oo a<x<rt

which in turn implies that with probability 1,
(3.25) limsup{ sup |F,(x) —ﬁ'n(a)l} -0 asa?tr*

n—o asx<t*
From (3.21) and (3.25), the desired conclusion (3.7) follows since F(a) —
Fg(r* =), as a1 7*. O

4. Weak convergence of normalized F, and F;,. In this section we
establish the weak convergence of n'/%(F, — F) to (1 — F,) times a zero-mean
Gaussian process with independent increments when the data are subject to
both left truncation and right censoring, as considered in Section 3. Defining
G,., 7 and 7* as in (3.4) and (3.6), it will be assumed throughout the sequel
that F(r5) < F(7* — ) (so —» < 75 < 7* < ») and that

G, (s) converges to a limit G(s) as m — o« for every
(4.1) s € (74, 7%, the convergence being uniform on I and
inf, . ; G(s) > 0 for all compact I C (74, %),

(4.2) lim foo [Gm(s) +m 'Y P{t; <T, < s}] dF(s) = p exists.
m=e s —o i=1

Let 74 <d <a <7* By (4.1), inf,_,_, G,(s) - inf,_,__, G(s), and
therefore (3.18) holds on an event Q, with P(Q,) = 1. Note that for x > u,
(1 - Fn(x))/(l - Fn(u)) = n (1 - ALm(n)(S)I(Rm(,,)(s)zcn")/Rm(n)(S))

(4.3) usssr
=1-F,(x) on{ min R, (s) > cn“}.

U<s<x

From (3.18) and (4.3), it follows that on Q,, for all large n,
(1= F(x))/(1 = F(u)) =1 - F (%)

= —— <
l—Fnﬂjd(u) ora <u<x<a.

Therefore, the weak convergence of n'/*(F*, — F(-|d)) to a Gaussian process
in D(d, a], which will be established in Theorem 5(i) below, implies corres-
ponding weak convergence of the sequence of two-parameter processes
{n"%(F} (x) — F(x|u)): d < u < x < a}. A related weak convergence result for
such two-parameter processes was recently obtained by Davidsen and Jacobsen
(1989) by using the weak convergence theory of two-sided stochastic integrals.
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Theorem 5(iii) gives conditions under which the weak convergence of
n'/%(F, — Fg) can be extended to D(—w, r*). In the case of only left truncation
(i.e., T; = ), these conditions are weaker than those of Woodroofe (1985) who
assumes the truncation variables ¢; to be i.i.d. Thus, Theorem 5(iii) not only
generalizes Woodroofe’s (1985) weak convergence theorem to the mixed cen-
sorship—truncation model, but it also extends the theorem to the setting of
nonidentically distributed truncation and censoring variables t, and T,.

TreoreM 5. With G,, and 7, defined in (3.4) and t* defined in (3.6),
suppose that F(rg) < F(v* — ) and that (4.1) and (4.2) hold.

() Let 75 <d <a <7* Then as n - =, n"/%F}*, - F(-|d)) converges
weakly in D(d, a] to p'/*(1 — F(-|d))W,, where p is given in (4.2) and {(W,(®),
d <t < a} is a zero-mean Gaussian process with independent increments and
variance function

Var(W,(t)) = f(d t]{G(s)(l —F(s-))(1-F(s))} 'dF(s), d<t<a.

(ii) Suppose furthermore that (0 <)a < 1/2 is chosen in the definition
(1.12) of F, and that

™+ 14
lim ml/z{F(TG v sup{s <5 G,(s) < Bm“l‘“)})
4.5
(46) ~F([76 A G (bm~(-9)] —)} =0
forallB>b >0,
lim su dF(s)/G,(s) = 0
(4.6) m—»oop [Tgl\G;,l(bm_(l_a)), t] ( )/ ( )

ast | 7g foreveryb > 0,

where G,,' is defined in (3.5). Then for every a & (14,7%), n*/% (¥, — F)
converges weakly in D(—w, a] to p'/*(1 — F,)W, where {(W(t), —» < t < a} is
a zero-mean Gaussian process with independent increments and variance
function

Var(W(¢)) =0, ift <rg,

(4.7) =f( ]{G(s)(l—F(s—))(l—F(s))}_ldF(s)’ ift > 1g.

Ta,t

(iii) Suppose that in addition to the assumptions of part (ii) we also assume
that there exist a € (75,7%), 0 <B <1 —-2a and my> 1 such that F is
continuous on [a, 7*) and

(4.8) G,(s) 2 {F(t* =) = F(s)}’ ifm>myand r*>s>a.
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Then as n — «, n*/%(F, — F;) converges weakly in D(—,1*) to p*/*(1 —
F)W, where {W(t), — <t <7*} is a zero-mean Gaussian process with
independent increments and variance function (4.7).

ReMARKS. (A) The assumption (4.5) is stronger than (2.2), which implies
that F is continuous at 7.

(B) When the data are only subject to left truncation (.e., T; = ®), 7* =
F~Y(1) and G, (s) is nondecreasing in s. Hence, if lim,, ., G, (s) = G(s) exists
for every s € (74, 7*), then (4.1) and (4.2) both hold; moreover, given every
B > 0 we can choose m, and a such that (4.8) is satisfied. Suppose that the
truncation variables ¢, ¢,, ... are ii.d. with a common continuous distribution
function G and that F is continuous, as Woodroofe (1985), Wang, Jewell and
Tsai (1987) and Keiding and Gill (1987) have assumed. Then G,, = G, and the
condition (1.11) assumed by these authors implies both (4.6) and (4.5) since
1-a>1/2and

(49) F(G"{(Bm @) = F(rg) < [¢ """ (Bm~0-9/G(s)} dF(s).

el

To prove Theorem 5, we make use of martingale theory and stochastic
integral representations, similar to those used by Gill (1980, 1983) in the
censored case. An important idea that enables us to extend the well-known
martingale integral representation for the Kaplan-Meier estimator of F based
on censored data to the modified product-limit estimator based on left-
truncated and right-censored data is to regard the observed sample of
(X2,82,t9),i=1,...,n, as being generated by a larger sample of independent
random vectors (X;,¢,,T), i = 1,..., m(n), where m(n) is defined in (3.1).
For the case of only left truncation (i.e., T; = ») by i.i.d. continuous truncation
variables ¢;,, Keiding and Gill (1987) used a different method to develop
martingale integral representations. A key idea in their approach is to embed
the observation (¢, X), given the constraint ¢ < X, in a Markov process U(s),
s > 0, with five states and to work conditional on eventual absorption in one of
these states. Identifying the observed sample as a randomly stopped sequence
of independent random vectors, we get around the problem of dealing with the
conditional probability measures given ¢; < X;.

In the case of censored data, it is well known that N,(¢) — [%, Y,(s) dA(s)
is a martingale, where N, and Y, are defined in (1.3) and (1.4) and A is the
cumulative hazard function defined in (2.5). An extension to the case of
left-truncated and right-censored data is given in Lemma 5.

LeEmMA 5. Defining L,, and R, by (3.2) and (3.3), let
(4.10) M (1) = L(2) = [ Rn(s)dA(s).

Let X, =X, AT, 8, = I, x, <1, and let F(s) be the complete o-field generated



434 T.L. LAIAND Z. YING

by
(4.11) ¢, I(tisX,-p 5iI(tiinss)’ I(tisuin)’ I(t,sX,su)’ u<s,1=12,....

Define m(n) by (8.1). Then {M,,,(s), F(s), —» <s < x} is a martingale
with predictable variation process

(4.12) (Mp)() = [ Rpu(s)[1 =~ AA(9)] dA(s).

Proor. Let #(s) be the complete o-field generated by T;, [ix, ., % <s,
i=1,2,..., together with all the random variables in (4.11). Then ¢;, T; and
I, . %, are measurable with respect to &_,, = N3 __. £(u). Therefore, m(n)
is measurable with respect to ., and R, (s) =L, . r)]ix,.5 I8
measurable with respect to /(s —). Moreover, for every i, {I, _x,csr7) —
Jitos ATidix, 5 ) AA(), Z(s), —o <s <o} is a martingale, recalling that
Xy, X5, ..., (81, Ty, (25, Ty), ... are independent. Since

S
Iix,2y AA8) = [ Iy ngzuzey dA(R),

j;ti, sATy]

it then follows that {M,,,(s), #(s), —o <s <} is a martingale. Since
F(s) c H(s) and M, (t) is measurable with respect to F(¢), the desired
conclusion follows. O

Making use of Lemma 5, we now give the martingale integral representation
that is basic to our proof of Theorem 5. Define

t
A(t) = f_wI(Rm(n)(s)ma, dA(s),

Fn(t) =1- exp(_Acn(t))Z (1 - AAn(S))

s<t

From (1.12) and (4.13) together with Proposition A.4.1 of Gill (1980), pages
153-155, it follows that if F,(¢) < 1, then

B(t) -F() _ 1-FE(0)

(4.13)

1-F(t) = 1-F\¢)
‘ _ /’t 1- Fn(s _)
—® (1 - Fn(s _))(1 - AAn(s))
(4.14)
| Lt zeny o (5) — dA(s)
Rm(n)(s) e "
¢ 1=F(s=) Lr, ()5 cn

“IUTTEG) Rpa(s) Mmool

Note that (4.14) is analogous to Gill’'s (1980) formula (3.2.13) for the
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Kaplan-Meier estimator in the censored model. Therefore,

(415) n1/2(ﬁn(t) - Fn(t))/(l - Fn(t)) = Un(t) if Fn(t) <1,

L]

where
(4.16) U,(t) = n'/? f_tm[(l —F(s-))/(1-Fys))]

X [ I(R,,,(,,)(s)z cn“}/R m(n)( S)] de(n)( 8) .

FOI‘ 7'* >t > d > TG, Since 1 - F,:’:d(t) = Hd<sst(1 - ALm(n)(s)/Rm(n)(s))’ we
similarly have

(4.17) n'/?(Fr4(t) - F(tld))/(1 - F(2ld)) = U, 4(%),

where
U, a(t) = n'/? f( L= Fras =)/(1 = F(sld))]

X [I(Rm(n)(s)> 0}/R m(n)( S)] de(n)( S) .

(4.18)

Proor oF THEOREM 5(). By Lemma 5, {U, 4(¢), #(¢), —~ <t < o} is a
martingale with predictable variation process

1-F*,(s—)\ 1- AA(s)
(419) (U, () =n { X } ' Ity 4ACS).

(d,t1\ 1—F(sld) R, n(s)
By Lemma 4 and (4.1), noting that inf, _, _{(1 — F(s =))G(s)} > 0,
(4.20) sup |m/Rm(s) -{(1-F(s —))Gm(s)}_1| -0 as.

d<s<a

By Theorem 4 and (4.20),
(4.21) sup |(1-Ffy(s-))/(1-F(s—1d)) - 1]-0 as.

d<s=<a
In view of (4.2), we obtain by the argument used in the proof of (3.11) that
(4.22) ;' limn/m(n) =p as.
n—o

Since 1 — F(sld) = (1 — F(s — |d)X1 — AA(s)) and dA(s) = dF(s)/(1 —
F(s =), it follows from (4.19)-(4.22) that with probability 1, as n — o,

— — _ _ -1
(g3 (T’ pf(d,,]{G(s)(l F(s -))(1—F(s))} " dF(s)
‘4 uniformly in ¢ € (d, a].

Hence, in view of (4.17), application of Rebolledo’s (1980) martingale central
limit theorem gives the desired conclusion [cf. Gill (1980), Theorem 4.2.1]. O
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LEMMA 6. Define U¢) by (4.16). Under the assumptions (4.1), (4.2) and
(4.6) of Theorem 5(ii), for every € > 0,

lim sup P{ sup|U,(¢)| = s} -0 asdl7g-

n—o t<d

Proor. Take d € (74, 7*). As in the proof of Theorem 3, choose b > 0 such
that (2.15) holds and define Q, by (2.16). Let d,, = 7¢ A G,,"(bm~?~%), and
let A=Q,n {26(m(n))* <cn* for all large n}. Then P(A) =1 and (2.17)
holds for all large m on A. By Lemma 5, {U,(¢), #(¢), t < d} is a martingale,
and on A, for all large n,

) < 0(1 = F (@) [* [Lin, o0 enn/ B )] dA(5)

m(n

—2
<2n(1 - F,(d)) '/[' [I(Gm(,,)(s)zb(m(n))‘(l“'))

d p(nyr @1
(4.24)

x{m(n)(1 = F(s =))Gpu($)} "] dA(s)

<21 -F@)"[  dF/Guy

m(n)

since 1 — F, > 1 — F. By Lenglart’s (1977) inequality, for every ¢ > 0 and
5>0,

(4.25) P{ sup U2(¢) > 32} <6 + P[U,)(d) = 8¢%).
t<d

Letting n > © and d | 75 in (4.24) and (4.25) and making use of (4.7), we

obtain the desired conclusion. O

LEMMA 7. Suppose that F is continuous on [a,7*) for some a € (1g,7%).
Then under the assumptions (4.1), (4.2) and (4.8) (with 0 < B < 1) of Theo-
rem 5(iii), for every € > 0,

1limsup P{ sup (1 - F,())U,(¢) = 8} -0 asxT7*

n—ow x<t<t*

ProoF. Since F and therefore F, also are continuous on [a, 7*), it suffices
by Lemma 2.9 of Gill (1983) (see also the proof of his Theorem 2.1) to show
that for every ¢ > 0,as n » w and x 1 7%,

) (4.26) P{ sup |V, () = s} -0,

x<t<t*
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where

Vault) = [ (1= F(s))dU(s)

= pl/2 /[lc t][(l - F‘n(s —))I(Rm(n)(s)zcn“)/Rm(n)(s)] de(n)(s)'

Since 1 —F,>1—F, F(x) <1 for x <7* By (4.14), {01 — F )/ -
F.(1)), #(¢), t < v*} is a martingale with mean 1. Therefore, by Doob’s inequal-
ity, for every 0 <8 < land n > 1,

P(B;,)=1-35,
(4.27) . ~
where B; , = {1 — F,(s) <8 (1 — F,(s)) forall s < r*}.

Choose b > 0 such that (2.15) holds and define the event A as in the proof of
Lemma 6. For x € (a, 7%),{V, ,(t), #(¢), x <t < 7*} is a martingale by Lemma
5, and for all large n, we have on A N B; ,,

. (1-F(s-))?
Vo) 2287 [ p e

(4.28)
XI«l—F(s—))Gm(n,(s)z b(m(n))~ 1) dA(s).

If1 — F(r* —) = 6 > 0, then the right-hand side of (4.28) is majorized by

25-2a-zf[x *)[Gm(n)(s)]_ldF(s)

(4.29) |
<267%92 (F(1* =) — F(s)} PdF(s) > 0 asx?7*,

[x,7%)

in view of (4.8) with B < 1. Now assume that F(7* —) = 1. Define s,, by
1 — F(s,,) = {2cm -}/ +B)_ By (4.8), for all large m,

(4.30) inf (1-F(s))G,(s)>(1—F(s,))"" =2ema,

as<s<s,

and therefore s, <7* s, > 7* as m »> . On A, for all large n,
inf R, »(8) = c(m(n))* by (4.30), and therefore by (4.13),

Q<8< Spp)

(1 -F,(8)/(1 - Fy(a))

(431) _ exp(—ftd./\) _ (1 _ F(t))/(l — F(a)) fora<tx< Sm(n)

recalling that F and F, are continuous on [a, 7*). For all large n, it follows
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from (4.28) and (4.31) that on A N B; ,,,
(4.32) (V, )(t) <267%(1 - F(a))_zj;tdF/Gm(n) fora <x <t <s,,,)

moreover, on A N B; ,, we obtain by (4.28) and (4.31) that for x > ¢ and

T*> 2% A Sy

(V,.,.2(8) <267%(1 ~ F(a))*

* {f[x,smm]d” Gy + 7 (m(2)) (1 = F(5 )’

t
(4.33) Xf I(I—F(s)ib(m(n))_(l“”) dA(S)}

sm(n)

=26"%(1-F(a))*[  dF/Gp,

X5 Sm(n)

+ 0((m(n)) -(1-a)X2/(1+B)—-1} log m(n))

Recalling that 8 < 1 and that P(A N B; ,) > 1 — 8, we can apply Lenglart’s
(1977) inequality as in (4.25) to obtain the desired conclusion from (4.29),
(4.32) and (4.33). O

ProoF oF THEOREM 5(ii). Let a € (74, 7*). In view of Lemma 6, it follows
from (3.18) and Theorem 5(i) together with an argument similar to the proof
of Theorem 2.1 of Gill (1983) that (1 — F))U, [= n/%(F, — F,) by (4.15)]
converges weakly in D(—=, a] to p/%(1 — F;)W. Hence, it remains to show
that
(4.34) supn'/?|F,(t) — Fg(¢)| —»p 0.

t<a
Take K > 0 such that K(1 — F(a)) > 2¢ and choose b > 0 such that
(2.15) holds. Let d,, = 74 A G, (bm~@"®), D, =15V sup(s < (7* + 75)/2:
G, (s) <Km 1"} and define Q, by (2.16). From (4.1), it follows that
lim,, ,, D, = 7; and that for all large m, G, (s) > Km @ ® if D, <s <a.
Hence, for all large m,

(1-F(s))G,(s) 2K(1-F(a))m 1> 2cm=0-2
forall s € (D,,,a].
Since m(n) > n, it then follows from (4.35) that on Q, for all large m,

(4.35)

4.36 e on
( ) D’"(:)n<35a {R pmn)(s) = cn

By (4.5),

(4.37) nl/2 '/['d D, ]|I(Rm(n)(s)2cna} - I(s>fG) | dA(s) < nl/2 f[d ]dA(s) e
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as n — ». From (3.17), (4.36) and (4.37), it follows that
supn'/?|A,(¢) — A(¢t)| —»p O,
t<a

and therefore the desired conclusion (4.34) follows. O

Proor oF THEOREM 5(iii). In view of Lemma 7, it follows from Theorem
5(ii) together with an argument similar to the proof of Theorem 2.1 of Gill
(1983) that (1 — F,)U, [= n'/%(F, — F,)] converges weakly in D(—, %) to
p'/%(1 — F;)W. Since we have already proved (4.34), it remains to show that

sup n'/2|(1 - F,(¢))/(1 - F,(a))

(4.38) a<t<t*
~(1 = F(2))/(1 - F(a))| =5 0,
where a € (74, 7*) is such that (4.8) holds and F and therefore F, also are
continuous on [a, 7*). Let o,, < 7* be a solution of the equation
(4.39) F(r* =) - F(a,,) = {2em= -0} /P,

Note that in the case F(v* —) = 1, o, is the same as the s, introduced in the
proof of Lemma 7. By (4.8), for all large m,

(440) inf (1-F(s))Gu(s) = (F(r* =) = F(5))""* = 20m =0~

a<s<o,

Defining A as in the proof of Lemma 7, we obtain from (4.40) that on A,

inf R, (s)= c¢(m(n))® foralllarge n,

and therefore as in (4.31), for all large n,
(1= F,(t))/(1 = F,(a))=(1-F(¢))/(1 - F(a))

fora <t < 0,,(,),

(441) on A.

Moreover, since a,, > a for all large m and since F and F,, are continuous on
*
la, ),

{Fn(T* _) - Fn(o'm(n))}/{l - Fn(a-m(n))}

= ]. - exp{_f I(Rm(,,)(s)zcn") dA(S)}

(a'm(n)y )

(4.42)

<1- exp{—f dA}

(Omny, ™)
= {F(T* _) - F(Um(n))}/{l - F(a-m(n))}‘

Since B < 1 — 2a, (4.39) implies that

(4.43) F(* =) — F(0,) = O(m~A=0/A*R) = o(m~1/2),

From (4.41)-(4.43), the desired conclusion (4.38) follows, recalling that
F(a) > 0 and that F(a) — Fg(a) = 0,(n"'/?) by (4.34). O
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5. Some numerical results and discussion. We first give some numer-
ical results when the data are subject only to right censorship (i.e., ¢, = —) by
i.i.d. censoring variables T; with a common distribution function 1 — G to
illustrate the difficulty with the Kaplan-Meier estimator (1.2) in the case
F(r* =) <1 and G(r* —) = 0 ‘and to show how the modified product-limit
estimator Fn avoids this difficulty by using the weight function Iy . cne
with ¢ =1 and a =1/4, where Y,(s) =X} ,Iix 155 and N,s)=

" Iix conty Thus, 1 - F(8) = TI, _{1 — AN(8)]y ()5 wirsy/Y,(s)}, while
the Kaplan-Meier estimator F, is given by (1.2). Let n = 100 and let the X,
be i.i.d. exponential random varlables with mean 5, and the T, be i.i.d. w1th
dlstrlbutlon function 1 — (1 - t/5)%, 0 <t <5. Here 7* = 5 and F(r*) =1 -

~1, The values of F(¢) and F(¢) based on one simulated sample from this
censored model are tabulated below and are compared with the true values
F(¢) for different values of ¢. Also given are the values of Y, (2).

¢ Y, (t) F ) F@® F(t)

0.245 86 0.042 0.042 0.048
0.475 70 0.090 0.090 0.091
0.792 49 0.118 0.118 0.146
1.381 30 0.186 0.186 0.241
1.898 20 0.310 0.310 0.316
2.963 3 0.425 0.425 0.447
2.975 2 0.712 0.425 0.448
3.090 1 1 0.425 0.461

The last two rows of the table show that while F increases steeply when
the risk set size Y,(¢) falls below 3, the modlﬁed estimator F remains
constant by ignoring the factors in the product-limit estimator correspondmg
to risk set sizes less than or equal to 3. The frequency distribution of EST(4) in
100 simulations from this censored model is summarized below, where EST =
F, or F The true value is F(4) = 0.55. Also given is the mean squared error
(MSE) whlch is the average of {EST(4) — F(4)}? over the 100 simulations.

EST=1 09 >EST >0.7 0.7>EST>04 04>EST>0.2 Total MSE

F(4) 8 10 64 18 100 0.032
F @ 0 1 75 24 100 0.015

While the Kaplan-Meier estimator may have difficulties only near the upper
endpoint 7* in the censored model, its analog (1.6) in the truncated model may
have difficulties throughout the entire range ¢ > 7, as the following numerical
results show. Let n = 50 and let the X; be i.i.d. with the logistic distribution
function F(x) = (1 + e7*)7!, —» < x < », and the truncation variables ¢, be
iid. with distribution function G(x) = 0 2F(x) + 0.8{1 — exp(—x*)}. Here
7= — and F; = F. The values of the modified product-limit estimator ¥,
defined by (1.12) with ¢ = 1 and a = 1/4, and of Lynden-Bell’s estimator Fn*
defined by (1.6), based on one simulated sample from this truncated model, are
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tabulated below and are compared with the values of F. Also given are the
values of R,,,,(¢), which is the “risk set size” defined in (1.8).

¢ R, FX® Fy) F(t)

- 2.519 1 1 0 0.075
-0.551 5 1 0.2 0.37
0.450 25 1 0.39 0.61
0.629 22 1 0.53 0.65
1.274 26 1 0.65 0.78
1.837 13 1 0.84 0.86
3.369 6 1 0.95 0.97
5.069 3 1 0.98 0.99

Note in particular the nonmonotonic oscillations of R,,,,. The frequency
distribution of EST(0) in 100 simulations from this truncated model is sum-
marized below, where EST = F* or F,,. Also given is the mean squared error
between the estimator and the true value F(0) = 0.5.

EST=1 09> EST>0.7 0.7>EST>0.3 03>EST Total MSE

F(0) 6 9 67 18 100  0.049
£(0) 0 6 72 22 100  0.037

The preceding examples illustrate the potential instability in the product-
limit estimator (1.2) or (1.6) whenever the risk set is small. For right-censored
data, this is not a serious problem since the small risk set size is restricted to
the right tail of the observable range of the distribution. However, for left-
truncated data, the instability occurs in the left tail but is then propagated
throughout the entire observable range. The presence of both left-truncation
and right-censoring variables compounds the difficulties since the function
P(¢; < s < T;} is nonmonotonic in s, and nonidentically distributed truncation
and censoring variables further accentuate this problem.

We have shown how a minor modification of the product-limit estimator
avoids all these difficulties. The idea is simply to discard those factors of the
product in (1.2) or (1.6) that correspond to small risk set sizes. The preceding
examples show that by ignoring risk set sizes less than or equal to 3 the
modified product-limit estimator becomes much more stable. Moreover, dis-
carding those factors that correspond to risk set sizes less than cn® with
0 < @ < 1 even leads to uniform strong consistency and weak convergence (by
further requiring that a < 1/2) results for the entire observable range of the
distribution function, as we have established in Theorems 1-5.
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