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SIMULTANEOUS ESTIMATION IN DISCRETE
MULTIVARIATE EXPONENTIAL FAMILIES

By JINE-PHONE CHOU
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Let X have a discrete density of the form f(x) = #(x)£(6)67" - - 6,7,
where #(x) is nonzero on some infinite subset of Z”. Consider simultaneous
estimation of the 6, under the loss .Z,,(6,8) = Z¥_; 6, ™(9; — 8,)%, m = 0.
For integers m > 1, estimators are found which improve on the maximum
likelihood estimator or uniformly minimum variance unbiased estimator.
The improved estimators are distinguished by the property that they do not
depend on m for “large values” of the observed vector. On the other hand,
we prove admissibility of a class of estimators, intluding the MLE and
UMVUE, for some discrete densities of the indicated form under squared
error loss (m = 0).

1. Introduction. Let X = (X,,..., X,) be a random vector with a dis-
crete exponential density of the form

(1.1) F(x) = t(x)E(0)0F -+ 630,
Here t(x) has a support E which is an infinite subset of Z? ={..., -2,

—1,0,1,2, ...}?. We consider the problem of estimating 8 = (8,,...,8,) with
loss function

p
(1.2) Z(6,8) = ¥ 677(6; - 8,)%,

i=1
where m is a nonnegative integer and & = (§,,..., 8,) is an estimator.

Since Stein (1956) first showed that the uniformly minimum variance
unbiased estimator of a p-dimensional normal mean is inadmissible for p > 3,
a number of authors have considered improved estimators for parameters of
continuous and discrete exponential families. The work on discrete exponential
families has concentrated on distributions with independent marginals and the
improved estimators depend critically on the loss functions. Recent results in
this field may be found in Hwang (1982a), Ghosh, Hwang and Tsui (1983) and
Tsui (1984).

In this paper we prove inadmissibility results under (1.2) with integers
m > 1 and some admissibility results when m = 0. Our inadmissibility results
apply to densities with dependent marginals as well as independent marginals,
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and the improved estimators are independent of m for large x. Here are
examples of the settings we have in mind.

ExampLE 1.1. X =(X,,..., X;,) has independent Poisson marginals: X, ~
P()).

Exampie 12. X =(X,,..., X,) has independent negative binomial
marginals: X; ~ NB(r, 6,).

ExampLE 1.3. X =(X,,..., X,), p = 2, has the negative multinomial dis-
tribution with density

(% + - +a, +r— 1)1
)l () (r = D!

where x; =0,1,2,...,r>1,0 <6, and L7_, 0, < 1. This distribution arises
frequently in capture-recapture models relating to several types of objects, if
in the recapture stage one samples until r objects of a particular type are
captured. For capture-recapture models, see, for instance, Seber (1962, 1982)
and Smith (1988). Some applications and properties of the negative multino-
mial are discussed in Sibuya, Yoshimura and Shimizu (1964).

1oeen 0;,,(1_31_... _gp)r’

(1.3) f(x) =

ExampLE 1.4 (Quota fulfillment distribution). Here is a coupon collector’s
generalization of the negative multinomial. For this let there be objects of type
1,...,type p and suppose objects are sampled with replacement until at least
r; 2 1 of type i have been observed, i = 1,..., p. X; denotes the number of
type i counted when sampling ceases. With § = (9,,..., 6,), 6, the proportion
of type i, the density of X = (X,,..., X)) is given by

(1.4) f(x) = (tl(x) + o +tp(x))49’1‘1 e 05,

where 0 <6, <1,LF 6, =1land, with A; ={x:x;,=rj, x;,>r,i=1,..., p}
for r; > 1,

(05 o2, 1)
tj(x) = (xl)' ce (xj—l)!(xj - 1)!(xj+1)! cen (xp)'

Now, we extend the previous distribution further by allowing for partial
fulfillment of quotas, and no quota restriction on some types. Conveniently,
define r; = 0 if there is no quota restriction on type i. Let X, denote the
number of type i observed when precisely a of the inequalities X, > r, > 1 are
satisfied, 1 <e < #{i, r;#0, i =1,..., p}. The distribution of X =
(X, ..., X,) is denoted by Q(a,r,0), where r = (r,,..., r,), r; a nonnegative
integer. Some properties of this distribution are discussed in Young (1961) and
Arnderson, Sobel and Uppuluri (1982).

lAj(x)-

ExampLE 1.5 (Gas station distribution). Let N be a nonnegative integer-
valued random variable and suppose that given N=n, X = (X,,..., X,) is
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multinomial with parameters =, 6,,..., 6,. Accordingly the density is

(% + - +x,)!
(1L8)  f(x) =g(x+ o 4x,) s Een e 0,

where x; =0,1,...,0<6;, XP_.0,=1 and L% _, g(n) = 1. This distribution
arises naturally in many situations including the following example: Suppose
that there are p different types of gasoline, and the total number of sales over
a fixed period of time is random with p.d.f. g. Let X, denote the number of
purchases of gasoline to type i when time expires, and 6, denote the true
proportion of customers who use gasoline of type i. The density of X =
(Xy,..., X)) is given by (1.5).

We begin in Section 2 with those distributions having support E = {x > x°}
for a point x° in Z? (here > is the usual partial ordering in R”). In such a
case, it is easy to derive an unbiased estimator D(x) of the difference between
two risk functions R(6,6 + g) and R(6,5) under _7,, m > 1, where
0 + g and & are arbitrary estimators of 6 with finite risk, ie., ED(X) =
R(6,5 + g) — R(9, 8). By choosing g such that D(x) < 0 for all x and with
strict inequality for some x, an improved estimator can be constructed. This
technique traces back to Stein (1973). It is used in Section 2 to construct
estimators which improve upon the UMVUE and, more generally, upon esti-
mators which are larger than a ‘“semi tail upper bound” [see Hwang (1982b)].
Applications are made to the distributions in Examples 1.1, 1.2 and 1.3. For
these distributions, the improved estimators are of Clevenson-Zidek type
(1975). For independent negative binomials under .Z,, m = 2,3,..., the
improved estimators have simpler form than those previously found, for
example, by Ghosh, Hwang and Tsui (1983). For the negative multinomial
distribution with density (1.3), all estimators 6(x) with ith component x,/
(x; + -+ +x, + r + a), a class which contains the UMVUE and MLE, can be
improved by a class of estimators under .#,, m =1,2,..., provided p is
larger than a specific bound depending on a (see Example 2.5).

There is also a discussion pertinent to the quota fulfillment distribution in
Section 2. Here the difference inequality technique is not directly applicable.
However, by decomposing the density suitably, one may use the previous
result to produce a class of estimators which improve on the MLE of 6 under
Z,,, m > 1, provided p is large enough.

Section 3 contains admissibility results under ;. For the negative multino-
mial distribution and for any p, we demonstrate the admissibility of a class of
estimators including the UMVUE and the MLE. This contrasts sharply with
the results of Hwang (1982a) who showed the inadmissibility of the UMVUE
for p > 3, when the marginal distributions of the X, with density (1.1) are
independent. Admissibility results, relating to the gas station and quota
fulfillment distributions, are also provided.
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2. Construction.

2.1. Improving upon usual estimators by solving difference inequalities.
Let e; denote the vector with 1'as ith component and 0 for others. Now
suppose X has a p-variate discrete density of the form (1.1) which satisfies the
conditions:

(2.1) Support E = {x > x°} for some x° in Z?.
(2.2) For m =1,2,..., there exists ¥ in E such that
t(x + (m — 1)e;) > t(x + (m — 1)e;)
whenever x > ¥ and x; < x;. \

(2.3) For some ¢ with ¢ + X7_,%, + m — 1 > 0, b with b +
min{%;,i =1,...,p} + m — 1 > 0 and a nonnegative
number «,

t(x —e;) x;,+b

> = >0
t(x) (%, + - +x, +a)

whenever x > ¥ and x;, > X, + m.

For example, if X = (X,..., X,) is a random vector with independent Pois-
sons or negative binomial marginals, or has a negative multinomial distribu-
tion, the conditions are satisfied. Now we are going to construct estimators

which improve upon the usual estimators of the parameter 6 = (6,,...,6,) in
(1.1) by solving a difference inequality. We use the convention 0/0 = 0, and for
x = (xy,...,%,) we define s(x) = s = LP_, x; throughout.

The following lemma generalizes the identity of Hudson (1978) and Hwang
(1982a) to the dependent case.

LemMa 2.1. Let X have density (1.1) and satisfy condition (2.1). For a
real-valued function g and an integer m, if E|g(X)| < « and g(x) = 0 when-
ever x, <m + x2, then

t(X + me,)

(X “~g(X + me,).

1

Proor. The proof follows by a change of variables. O

From Lemma 2.1 with m = —1 and g(x) = 1, it follows that §%(X) =
(82(X)), 8X(X) = (X — e;)/t(X), is an unbiased estimator of 6. Moreover, it
is the UMVUE if the parameter space contains an open set in R”. Let § be an
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estimator of § with E|8|® < «. For an integer m, assume that for all i =
1,...,p, E¢X(X) < © and ¢,(x) = 0 whenever x, < m + x°. Then under the
loss function £, from Lemma 2.1,
R(6,6 + ¢) — R(0,6)
= ED(X)
P (t(X + me;)
24) =E _—
o) -EY (S5

i=1

[(d)?(X + me;) + 28,(X + me;)d;( X + mei))]
HX+ (m—1)e)
B t(X)
In particular, if 8(x) = %), the function D(x) reduces to
P [t(X+ me;) t(X+ (m - 1)e)

¢xx+(m—1n»}

2(X) =Y ~p2(X + me;) + 2
(2.5) i1 t(x) t(X)

X(;(X + me;) — (X + (m — 1)ei))}.

2.1.1. Improving upon 8°. If we find ¢(x) such that Z(x) < 0 for all x,
with strict inequality for some x in the support, then §%(X) + ¢(X) improves
upon 8°(X).

Suppose that there exist %, @, b, « and m such that conditions (2.2) and
(2.3) hold. For these %, a, b, a and m, define #(X) = (¢,(X)) by

—h(s)(x; +b)
(s(x) + )™

(2.6) bi(x) = Io(x), i=1,...,p,

where Q, = (x: x > %, x;, > %, + m}, ¢ > a,

2(c +m)

(2.7 W—2(a+1)>0 ifm+b>0,

c+m=0 f m+b<0,

and h(-) is a nondecreasing function such that ~ # 0,

0<h(') <min{2p — 2(a + 1),

(2.8) 2(c+m)/(m+b) —2(a+1)} if m+b>0,
0<h(-)<2p—-2(a+1) ifm+b<0.
» For example, if X = (X, ..., X)) is a random vector of independent Poissons,

we may choose ¥ =0, a=b=0, a =0, m a positive integer, and define
¢ (x) = [—h(s(x)x;/(s(x) + c)]l(xizm)(x), where ¢ > 0, h(-) is nondecreas-
ing, h # 0 and 0 < A(-) < min{2p — 2,2¢/m}.
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THEOREM 2.1. Assume that X has the density (1.1) and satisfies conditions
(2.1)-(2.3). For estimating 6 under the loss function £,,, m = 1,2,..., 8%(X)
is dominated by 8%X) + ¢(X), where ¢(X) is given in (2.6), provided
p>a+1l. '

Proor. See the Appendix. O

Note that the improved estimator does not depend on m if x is large.

ExawmpLE 2.1 (Independent Poissons). For estimating A = (A;,...,1,) un-
der Z,, m=1,2,..., the UMVUE §%X) = X is dominated by 6™(X) =
8(X) + ¢(X), provided p > a + 1. Here ¢(x) has the form (2.6) with « being
any nonnegative number, ¥ being any nonnegative point in Z?, b satisfying
1-m—-min{%;, i=12,...,p}<b for a>0 or 1 —m — min{%;, i =
1,2,...,p)<b<0 for «a =0, and a satisfying a + s(x) + m — 1> 0 and
x; = (x; + b)/(s(x) + a)* if x; > m + %;. If we choose a = 0, X =0 and b =0,
then the improved estimators can be written §"(X) = (X,) — (h,(s)X,(s +
¢) ' x > n(X)), where ¢ > 0, h,, is nondecreasing, k, #0 and 0 <h,, <
min{2p — 2,2c/m}. Note that for £, the improved estimator proposed by
Tsui and Press (1982) is 6'(X). Moreover, for any .2, m = 1,2,..., if we
require ¢ > p — 1, then these 6™ are Clevenson and Zidek (1975) estimators.
Furthermore, they have some better results for this problem.

ExamMPLE 2.2 (Independent negative binomials). For estimating 6 =
(6,,...,6,) under £, m = 1,2,..., the UMVUE 6%(X) = (X,/(X; +r — 1))
is dominated by 6%(X) + ¢(X), provided p > a + 1, @ > 0. Here ¢(x) is given
in (2.6) with a being any positive number, and %, a, b satisfy the same
regularities as that in Example 2.1 except x; > (x; + b)/(s(x) + a)?,
is replaced by x;/(x; +r — 1) > (x; + b)/(s(x) + @)*. In particular, if
we choose a=1, =0 and b=0 in (2.6), then ¢,(x) has the simple
form, —h(s)x(s + c)‘zl(xizm)(x), where ¢ >r —1, ¢ > m, h(-) is nonde-
creasing, £ # 0 and 0 < A < min{2p — 4,2¢/m — 2}. Different improved esti-
mators have been constructed by many authors, for instance, Ghosh, Hwang
and Tsui (1983).

ExampPLE 2.3 (Negative multinomial distribution). For estimating § under
Z,, m=12 ..., the UMVUE 8%X) = (X,/(s + r — 1)) is dominated by
8%X) + ¢(X). Here ¢(x) is given in (2.6), provided p > a + 1, a > 0. Note
that « given in (2.6) is an arbitrary positive number and X is any nonnegative
point in ZP”. If we choose ¥ = 0, « = 1 and b = 0, then §°(X) is dominated by
8%X) — (h()X,(s + ¢) L x, . (X)), where ¢ >r—1, ¢c>m and h(") is
nondecreasing with 4 # 0 and 0 < 2 < min{2p — 4,2¢c/m — 2}.

2.1.2. Improving other estimators. Under the independence assumption,
Hwang (1982b) defined a semi tail upper bound [an estimator is a STUB if
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every estimator 8(X) which is larger than it for sufficiently large X is
inadmissible] and constructed STUBs for various cases. In Theorem 2.2 we
extend these results by finding a class of STUBs without the independence
assumption. ‘

THEOREM 2.2. Let X have density (1.1) and satisfy (2.1)-(2.3). For estimat-
ing 8 under £,,, m =1,2,..., the estimator §°(XX1 — k/(s(X) + B)) is a
STUB, provided k>0 and p > a + 1+ k. In particular, every estimator
8(X) = 8%X)1 — k/(s(X) + B)) for sufficiently large X is inadmissible and
dominated by 8(X) + ¢(X), where ¢ is given in (2.6) with some specific c, h
and ;.

ProoF. See the Appendix. O

REMARK 2.1. From Theorem 2.2 and its proof, it is obvious that under .,
m=1,2,..., every estimator 8(X) > 6% X) for large X is dominated by
8(X) + ¢(X) where ¢(X) is given in (2.6) with X replaced by some large x,
provided p > a + 1. Some applications of Theorem 2.2 follow.

ExampLE 2.4 (Independent negative binomials). For estimating 6 =
(6,...,6,) under Z,, m = 1,2,..., all estimators 8(X) = (X,/(X; + r + )
are inadmissible, if p > 3and [/ < —1.

ExampLE 2.5 (Negative multinomial distribution). For estimating 6 =
(6,...,6,) under #,,, m = 1,..., the MLE 8(X) = (X,/(s + r)) is inadmissi-
ble if p > 4. Moreover, all estimators of the form §*(X) = (X,/(s +r + a))
are inadmissible under .#,,, m = 1,2, ..., provided p > p(a), where p(a) = 4
if a <0and p(la)=4+a if a > 0.

2.2. Improving upon the MLE for Q(a,r,0). Let X be Q(a,r,8) (see
Example 1.4). For simultaneously estimating 6;, we are going to improve upon
the MLE. Note first that if p > 2, the support of X is not {x > x°} for any x°
in Z”, hence the results of Theorem 2.1 and 2.2 cannot be directly applied to
solve the problem here. However, we can decompose the density into several
parts and then think of each part as a “modified” negative multinomial
density. For example, the density in (1.4) is f(x) = f(x) + - -+ +f,(x), where,
for j=1,...,p with A; given in (1.4),

(%4 -+ =1+ - +x,)!
(x)!- (r = 1)L (x)!

giﬁl e 0}{‘, e g;cplAj(x)'

fi(x) =

THEOREM 2.3. Let X = (X,,..., X,) be Q(a,r,0) with a + #{i,r; = 0} >
5. For estimating 0 under £,, m =1,2,..., the MLE §X) =
(X;/(X, + - +X,)) is dominated by 6(X) + ¢(X), where $(X) = ($(X)) is
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given by
—(x;, —m)

¢:(x) = Ls, s rem)(%), i=1,...,p.
(21 + - +x,)? -

Proor. See the Appendix. O

REMARK 2.2. There are many possible choices for ¢(x). For example, ¢,(x)
can be chosen as follows:

—h(s)(x; —m)

ix = ]'xv>r~m x),
¢dx) (Jcl+---+xp+c)2(’_‘+ (%)

where —1 <c¢ <0, h(-) is nondecreasing such that 0 < h(-) < 2(a + #{i,
r; =0} —3)and A(-) # 0.

3. Admissibility of usual estimators under squared error loss. For
some random vectors X with density (1.1), we can prove admissibility of
standard estimators by using an induction argument on p together with the
“local”” admissibility property of a ‘‘modified”’ Bayes rule w.r.t. some prior and
subset of the support of X, and a ‘“modified” Blyth method [Berger (1980)].
For simplicity, (8)., B a real number, denotes max{0, 8}.

TaHEOREM 3.1 (Negative multinomial distribution). Let X have density
(1.3). For estimating 0 under the loss function .£(0,b) = L ;. 5(6; = b,)%, Sa
subset of {1, ..., p}, all estimators

: {X;—aj},
83(X) = ———
a(X) s(X)+r—a’
where a =(a;,...,a,), a;>0, LF_,a,—r<a <1, are admissible for

all p.
Proor. See the Appendix. O

It follows from Theorem 3.1 that for all p, the MLE §/(X) =X,/
(X, + -+ +X, + r) and the UMVUE 6}(X) = X,;/(X; + -+ +X, +r — 1) of
0, are adm1ss1ble under the squared error loss function. In contrast these two
estlmators are inadmissible for all loss functions .Z,,, m =1,2,..., and
p =4

THEOREM 3.2 (Gas station distribution). Let X have the density (1.5). For
estimating 0 = (64,..., 0p) under the loss function given in Theorem 3.1, all
estimators
' {Xi—a;}.

{s(X) —s(a)}.

where a = (ay,...,a,),a;>0,X7_;a, <1, are admissible for all p > 2.

8,(X) =
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Proor. The proof is similar to that of Theorem 3.1, and is omitted. O

It is a consequence of Theorem 3.2 that the MLE X,/(X, + e +X,) is
admissible. ‘

ReMARK 3.1. In Theorem 3.2, g can be an arbitrary discrete distribution
with finite or countably infinite subset of N U {0} as support. If g is degener-
ate at a positive point n, X is multinomial or binomial (if p = 2). Thus for
simultaneously estimating 6;, the MLE X,/(X, + --- +X,) is admissible un-
der squared error loss, or the loss function given in Theorem 3.1, for all p > 2
and n. However, this result was subsumed under Johnson (1971).

THEOREM 3.3 (Quota fulfillment distribution). Let X = (X,,..., X,) be
Q(a, r,0). For estimating 6 under squared error loss, the MLE
(X;/(X, + -+ +X,)) is admissible for all p > 2.

Proor. The proof is similar to that of Theorem 3.1, and is omitted. O

Note that although, for all p, the MLE is admissible for .£}, it is inadmissi-
ble for all .#,,, m = 1,2,..., and for large p.

ReMARK 3.2. In Theorem 3.3, if p = 2, a = #{i, r; # 0} = 1, X is a nega-
tive binomial distribution and obviously the MLE is admissible.

REMARK 3.3. As before, in Theorem 3.3 the loss function can be replaced by
that given in Theorem 3.1, and the class of admissible estimators includes all
estimators ({X; — a;} . /{s(X) — s(a)},), a, = 0, s(a) < 1.

APPENDIX

Proor or THEOREM 2.1. It is sufficient to prove that ¢(x) is a solution of
D(x) < 0 for all x, with strict inequality for some x, where 2(x) is given in
(2.5). For x # %, there exists some j, such that x;, <, so ¢,(x + me;) =
¢ (x +(m —1e;) =0forall i =1,..., p. Therefore Z(x) = 0 for all x # %.

Now suppose x > %. Because t(x — e;)/t(x) > (x; + b)/(s + ¢)* whenever
x; > m + %;, and h(-) is nondecreasing,

h*(s + m)(x; + m + b)
(s+m+c)?
—h(s+m)(x;, + m +b) N h(s+m)(xi+m—1+b))]

+2
(s+m+c)™t (s+m+c—1)"

.@(x) < t—(l;)—iélt(x +(m - 1)ei)[
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Define

h% (s +m)(x; + m+b
d(x;lx) = ( as = .)

(s+m+c)
i —h(s+m)(x; +m +b) N h(s+m)(x;, +m —1+b)
(s +m +¢c)*™ (s +m+c—1)"" ’

then
P h(s +m) N
Eld(xilx) T [h(s +m)A(B - 1)*"!

~2AB(B - 1)“*' + 2(A - p) B**?]
h(s+m)
= 1
(B-1)*"'Ba+2

[A(s + m)AB«*!

+2(a + 1) AB**1 — 2pBa+2?]

h(s+m)
T (B-1)*"'B
+p[(m + b)(h(s + m) + 2(a + 1)) —2(c + m)]} <0,

where A=s+mp + bp, B=s + m + c. Note that these two inequalities
follow from the facts, (B — 1)**! > B®*! — (« + 1)B* for all a > 0, (2.7) and
(2.8); the first inequality is strict for those x satisfying h(s(x)) # 0. Since it is
impossible that the d(x;|x) are positive forall i = 1,..., p, define x; = max{x;,
i=1,...,p, dlx]x) < 0}. Because (x + (m — le;) > t(x + (m — 1e;) and
d(x;lx) < d(x;lx) if x; < x;, it follows that

%iéf(x + (m = 1)e))d(x;lx)

1 Y t(x+ (m— 1)e)d(x,lx)

t(x) i»xinio

{(h(s+m) +2(a+1) —2p)s

D(x)

IA

+ Y tlx+ (m—1)e)d(x;x)

1, x>%;

< t(%)t(x +(m - 1)ei0)l§1d(xi|x).

From the property of L?_; d(x,|x), the proof is complete. O

Proor oF THEOREM 2.2. Let ¢ = (¢;) be as given in (2.6) with Q; =
{x:xzfc,xi2§i+m},andforagivenﬁvﬁthk >kand p —(a+1)— k>0,
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¢ > a, h and % satisfy the conditions:

@D r=2m+c)/(m+b)—2a+1)—-2k>0 if m+b>0, or m+
c>0if m+b<0;
(i) ¥ > % and for all x'>% + m + s(x) >0, 8(x) > 8% )1 — k/
(s(x) + B)) and k(s(x) + m + ¢)/(s(x) + m + B) < k; 3
(iii) A(-) is nondecreasing with £ # 0,0 < h < min{2p — 2(a + 1) — 2k, 7}
fm+b>00r0<h<2p—2a+1)—2kif m+b<0.

From (24) and (2.5), R(9,86 + ¢) — R(9, 8) = ED(X), R(8,8° + ¢) —
R(6,8° = E2(X) and

P t(x+ (m—1)e) [ §;(x + me;)
D(x) =9(x) + 2

(%) El t(x) 8)(x + me;)
For x # %, we can show D(x) = 0 as in Theorem 2.1. Now suppose x > %, and
observe first that

- 1)¢>i(x + me;).

t_(%)—izit(x + (m - 1)e;)d(x,lx),

where d(x;|x) is defined in Theorem 2.1. Hence

D(x) <

D(x) < %tz:t(x + (m — 1)e;)

h(s+m)(x;, + m +b)
(s+m+pB) (s +m+c)™!

X [d(xilx) + 2

Let
kh(s + m)(x; + m + b)
(s+m+pB)(s+m+c)*

d*(x;lx) = d(x;lx) + 2
Then with A, B given in Theorem 2.1,

Zp: d*(x;lx) < 7 his + m) (h(s +m)A+2(a+1)A - 2pB
i=1

B - 1)a+1B

2k(s+mp +bp)(s+m +c¢)
+
s+m+p
h(s+m)
S T eilg
(B-1)“""B
Note that these inequalities follow from the facts

; h
igld(xib(?) < (B—(_s;")—:n%(h(s +m)A+2(a+1)A - 2pB),

(h(s +m)A +2(a+1)A - 2pB + 2kA) < 0.
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and (i)-(iii). By the same arguments as those in Theorem 2.1,

1 P
D(x) < t(_x)t(x +(m — 1)ei°)i§1d*(xi|x) <0,

where i, is the index of max{x;, d*(x;|x) < 0}. O
Proor oF THEOREM 2.3. We only give proofs for the cases ) a =p, r; # 0

for all i, and (ii) @ = p — 2, #{i, r; # 0} = p — 1, since the proofs for the other
cases are similar.

CasE (). a =p, r; # 0 for all . For this case X has the density (1.4). We
find AR = R(6 + ¢,0) — R(5,0) = ?_, R, where, for j =1,...,p,

R=Y i (8;(x) + (Z:n(x) - 6,) B (Si(x;m_ 6;)

£, ()05 - 3.

p

The reason for i # j in the second summation is ¢;(x) = 0 whenever x; = r;.
Consider a p — 1 variate negative multinomial Y with the density

(y1 + oty t - 1)!
! (o)W, — 1!

By Theorem 2.2 if p > 5, the MLE, S(Y)=Y,/(Y,+ - +Y,  +7Y,) is
dominated by §(Y) + ¢(Y) under 7, m > 0, where ¢,(y) = d)i():)l(yp:,p), i =
1,...,p — 1. And we know that the difference between R(6,5) and R(6,
6 + ¢) is exactly equal to R,. Therefore R, < 0. Similarly we can prove
R; <

fy) = oy <o (1 =0, — - = 6,.1)".

)
Ofor j=1,...,p.S0o AR < 0.

Case (i). a=p — 2, #{i, r; # 0} = p — 1. Without loss of generality, we
assume r; =0, r;,# 0, i =2,...,p. For simplicity, let A; , = {x: x;, =1,
X <1y, x;>1;,1 <i<p, i+ k}. The density of X is

. (%, + -+ +x, — 1)!
f(x)= Z P 1_(x)0x1"-0xp.
J k=2 (xl)'(xj_].)'(xp)' Ajk 1 P
Jj*k
We find
p
AR=R(5+¢,0) —R(5,0) = ¥ R,,,
J, k=2
Jj*k
where, for example,
rp-1—1 (x +r — 1)? 0%r-197p
-1 ! P
R, , 1= Z P P p—1Yp xp41+rpd(xp_1),

1=0 (xp—l)!(rp - 1)' (1 - 01 -t = 0p—2)

p—
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and, defining Q = {x: x, =7, x;, 21, 1 <i<p — 2},

(piz [( (8;(x) + ¢;(x) — 6,)° _ (8,(x) — oi)z)

d(xp-—l) = Z

o 0" o

i=1 i

(x1 X,y X, g 1, — 1)
(xl)‘ (xP—Z)‘(xp—l - 1)!

By the same argument for R, < 0 in case (i), d(x,_,) < 0. Hence R, , ; <0.
Similarly, R; , <0 for all j,k,j # k,s0 AR <0. O

In order to prove Theorem 3.1, we need two inequalities. The first follows
from Holder’s inequality: For the ordinary Gamma function T,

(A1) I'(x+a) <x°T(x) foralla,0<a<1,andall x> 0.

A straightforward calculation establishes the second:

1 1
A2 — < —201 +1)]77
(A2) %xl"'xp —[2(log n + 1)]
where Q = {(x,...,%,): 2, + - +x,=n,x,>21,1 <1 <p}
Proor oF THEOREM 3.1. We only give proofs for the cases 1) S = {1,..., p},

a;=0,i=1,...,p, -r<a<land i) S={1,...,pl, a;,=0,i=1,...,p,
a = 1. The proofs for the other cases are similar.

Case (i). Let © denote the parameter space {(6,,...,6,): 0 <6, L, 0, <
1}, and let' ©® = {(01, .50,):0<86;, LP 6, <1} Note that R(0, 8") where
o =x;/(xy + -+ +x, + r — a), can be defined and is continuous in G) Then
the adm1s51b111ty of 5"‘ in O is equivalent to the admissibility of ¢ in 6.

When p = 1 it is clear that §° is the unique Bayes estimator w.r.t. the prior
m, with dm, = 6711 — 6)~*1, ,,(6) db, hence it is admissible. Now assume
the theorem is true for p — 1. Suppose there exists an estimator §'(X) such
that, for all 6 in ®, R(9,6") < R(8,5*). With 6, =0 in both sides of the
inequality, from the property of the density (1.3) and the induction hypothesis,
we have 8/(x) =8,(x) for all i=1,.. ,p, if x; = 0. Therefore R(@s,8") <
R(9,6%). Here R(8,8) = ¥ (T2 (5; (x) 0,)%f(x|0)), where Q = {x: x; > 1,
1 < i < p}. Define the modified Bayes risk B('y, 8) = fR(O 8)dvy. For any x
with x; > 1, 8#(x) = (/0,f(x10) d=w) /([ f(x]0) d=,), where dm, =
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1/16...6,(1 — 6, — -+ — 6,)'*115(6) d6. By (A.1) and (A.2)
B(m,,8%)
I'(r —a)

1 1
+ max{a, 0} 21 p—1<
F() L(ntr-a) n+r—an((0gn+1))

n

Thus §%(X) is the unique modified Bayes estimator w.r.t. 7, and R(6,§) <
R(6, 6°) for all 6 implies §'(X) = §*(X).

Cask (ii). We also prove this by induction. For p = 1, the distribution is
negative binomial and it is well known that §(X) = X/(X + r — 1) is admissi-
ble. Assume that the theorem is true for p — 1. If there is an estimator §'(X)
such that R(6,8") < R(6,6) for all 6, and R(0, ") < R(6,5) — ¢, for some
€9 > 0 and all 6 in some open set O, we can similarly show that §;(x) = §,(x)
for all i, if x; = 0. Hence R(8,8") < R(8, 8) for all 6 and R(8, 8" < R(0 8) — &g
for all 6 in O Consider the modified Bayes risk of &, § and 6%, 0 <a <1
w.r.t. the prior 7, where 6* and =, are given in case (i). Calculation, by (A.1)
and (A.2), gives us B(m,,§) — B(w,, %) < (1 — a)M, M some constant. And
B(w,, 8") — B(m,, 8) < —gyA, where A = area(O) > 0. Therefore 0 <
B(w,,8") — B(m,,8%) < —gyA + (1 — @)®M, which converges to —¢,A as a —
1. We thus have a contradiction and the theorem is proved. O
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