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INFORMATION INEQUALITIES FOR THE BAYES RISK

By LAWRENCE D. BROWN! AND LESLAW GAJEK

Cornell University and Instytut Matematyki

This paper presents lower bounds, derived from the information in-
equality, for the Bayes risk under scaled quadratic loss. Some numerical
results are also presented which give some idea concerning the precision of
these bounds. An appendix contains a proof of the information inequality
without conditions on the estimator. This result is a direct extension of an
earlier result of Fabian and Hannan.

1. Introduction. The principal results of this paper are a series of lower
bounds for the Bayes risk of an estimator under scaled quadratic loss. These
bounds are all derived from the information inequality. The first explicit
bound is in Corollary 2.3. Improved bounds are in Theorem 2.7 and Theorem
2.9; another is in Theorem 2.10.

The bound in Corollary 2.3 was also established earlier by Borovkov and
Sakhanienko (1980) using a different method of proof. Their proof actually
involves slightly milder regularity conditions. It does not, however, make
explicit the connection to the information inequality, nor does it seem to lead
to results like Theorems 2.7, 2.9 or 2.10.

Section 3 of the paper contains several examples which illustrate the
applicability and the degree of precision of the bounds in Corollary 2.3 and
Theorem 2.7. The bound in Corollary 2.3 is sharp in the case of estimating the
expectation parameter of an exponential family under a conjugate prior.
Generally speaking, the bounds become less precise as one moves away from
such a situation. Hence, in general, the bounds become more nearly precise for
larger sample sizes. ,

Conventional proofs of the information inequality generally contain an
assumption about the estimator in addition to assumptions about the family of
distributions. [See, for example, Cramér (1946) or, more recently, Lehmann
(1983), Theorem II. 6.4.] Such assumptions are inconvenient or inappropriate
for various rigorous applications of the information inequality such as those
here or in the sequel to this paper, Brown and Low (1991). Furthermore, such
assumptions are unnecessary. Fabian and Hannan (1977) and Simons and
Woodroofe (1983) have proved versions of the information inequality which
avoid such inappropriate conditions. [See also Pitman (1979).] The Appendix
begins with the result of Fabian and Hannan and then provides more conve-
nient regularity conditions which imply those of Fabian and Hannan. This
yields conditions (A6) or (A7), which are of a familiar form. We note, however,
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that the approach of Simons and Woodroofe, based on the Hellinger distance
may be satisfactory for some cases where the approach of the Appendix, based
on the Hilbert norm, fails to apply.

One possible application for lower bounds on the Bayes risk, such as those
given here, is to obtain lower bounds on the minimax risk. This subject is
explored in Brown and Low (1991).

Lower bounds on the Bayes risk are also a convenient avenue to certain
classical asymptotic results such as the fact that (in standard situations) the
set of superefficiency has Lebesgue measure zero. However, for the full state-
ment of such results one really needs a bound on the Bayes risk under
truncated quadratic risk. Such a bound is developed and used in Brown (1988).

2. Inequalities for quadratic loss. This section presents a lower bound
on the Bayes risk of an estimator under quadratic loss. The bound is derived
directly from the usual information inequality.

Setting. Let X be an observable random variable with probability densi-
ties p, relative to some o-finite measure ». Assume 6 € @, where ® € Ris a
(possibly infinite) interval. It is desired to estimate # by a € R under
loss L(#,a) = m(8)Xa — )%, where m > 0 is a specified weight function. Let
R(8,8) = E,(L(8,5(X))) denote the risk of the nonrandomized estimator 8.
Let ©° denote the interior of 0.

Let g(-) be a probability density with respect to Lebesgue measure on ©.
This is the prior density. For any estimator &, let B(g,8) = [R(9,6)g(6)do
and let B(g) = inf;B(g,8). B(g) is the Bayes risk under g. Let sp(g) =
{6: g(8) > 0} and let csp(g) denote its closure.

Information inequality. To state the information inequality, define e(9) =
E,(8) whenever it exists. Let I(6) denote the Fisher information. Usually,

I(9) = Eo((}%ln po(X))z).

[In unusual cases it may be sensible to define I even when (4/38)ln p,(x) fails
to exist. See (A.2) of the Appendix.] For notational convenience, define V(8) =
I7%(#) and assume 0 < V(8) < «, for all 8 € @. The following conclusions of
the information inequality will be needed for later application. These will be
referred to as Assumption 1.

AssuMPTION 1. (Information inequality). Let 8, € . If Var, (8) < «, then
e(0) exists on a neighborhood of 6, is differentiable at 6, and

(2.1) Var, (8) = V(8,)(e'(8,)).

The validity of Assumption 1 requires some regularity conditions on the
family {p,}; no conditions are needed on the estimator, §, other than the
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condition Var00(6) < o present in the statement of the assumption. The
Appendix discusses this fact and Theorem Al asserts that Assumption 1 is
valid if {p,} satisfies condition (A.3) and one of the conditions (A.4)-(A.7).

The main results of this section follow from the formula contained in
Theorem 2.1.

THEOREM 2.1. Assume that V(-), m(-) and g(-) are absolutely continuous
on O, that csp(g) is compact with csp(g) C O° and that Assumption 1 is valid
for all 6 € O@°. Then

2

(2.2) B(g,d) = C+D + Q1(d) + @,(b) + Q3(b),
where h(8) = m(0)g(8), b(8) = e(9) — 6 and
(2.3) C = [V(0)h(0) do,
[(VR) (0)]
(24) D= [ %

(25) v =v(b) = [6(8)(VR)(6) d6 = - [b'(0)V(8)(6) db,

C+D CD \?
(2.6) Qo) -~ (v~ 515 =0
(2.7) Q,(b) = [(b (9) + ~) V(0)h(0)d6 = 0,
(2.8) Q4(b) =[(b(e) - %( h()a() )) h(6)d6 > 0.

Proor. The final equality in (2.5) follows from integration by parts. By
virtue of Assumption 1,

(2.9) R(8,5) =m(0){Var,(8) + b%(8)} =m(8){V(8)(1+b'(6))* +b2(6)).

Hence
B(g,8) = [{(1+'(6))*V(6) + b%(6)}m(6)£(6) do
= ]V(a)h(a) de + 2fb’(a)V(0)h(0) de
(2.10) +](b'(o))2V(e)h(o) de + sz(o)h(o) de
=C-2y+ f(b'(o))2V(0)h(0) de + fb2(0)h(0) de

2 ')’2

=27+ o+ Qb)) + T+ Qy(),
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since
2

(2.11) Qu(8) = [(B(0)V(O)R(0) - =

by (2.5) and Q4(b) = [b%(6)h(6)d8 — y2/D. The expression on the right of
(2.10) is a quadratic form in y. Let y, = (C~' + D™1)~! and complete the
square on the right of (2.10) to get

B(g,8) =C — 7o+ vo (v — 70)® + Q(b) + Q3(b),
which is the same as (2.2). O

REMARK 2.2. The assumption that csp(g) be compact with csp(g) c 0° is
much stronger than necessary. It can be replaced by the weaker assumption
that D < « and the integration by parts in (2.5) is valid. [If D < wand C = o,
it is easy to show from (2.10) that B(g, §) = «.]

Corollary 2.3 is an immediate consequence of (2.2) since Q,, i = 1,2, 3, are
all nonnegative quadratic forms in b and b’

CoROLLARY 2.3 [Borokov and Sakhanienko (1980)]. Under the assumptions
of Theorem 2.1,

2 1 1 -1
2.12 B > =C—-|=+ = .
(2.12) () 5+ 3)

REMARK 2.4. The important inequality (2.12) is due to Borovkov and
Sakhanienko (1980), and was established by them under somewhat weaker
conditions than required in Corollary 2.3 or 2.7. Their method of proof is
somewhat different than that used above and does not involve a result like
Theorem 2.1. It is not at all clear to us whether one can use their methods to
yield the somewhat improved inequalities contained in Theorems 2.7, 2.9 and
2.10.

An inequality related to (2.12) is developed in Bobrovsky, Mayer-Wolf and
Zakai (1987) building from an earlier result of Van Trees (1968). That inequal-
ity agrees with (2.12) when I(6) is constant. It is weaker in a number of other
common examples, although there also exist examples where it is stronger
than (2.12) or (2.16).

REMARK 2.5. The right side of (2.12) depends on V, h since C = C(V, k),
D =D(V,h). Let V,h; be any two absolutely continuous functions with
compact support. Suppose 0 < h; < h and 0 < V;h, < Vh. Then

C3(Vy, hy)
B(g) = ,
C(Vy, hy) + D(Vy, hy)

since B(g,8) = [(1 + )?Vh + [b%h > [(1 + b)2V,h; + [b%h, and the
derivation in Theorem 2.1 can be legitimately applied to the right side of this

(2.12)
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inequality. Similar remarks apply to inequalities stated later in this paper. The
following formal statement is one consequence of this remark. It extends
Corollary 2.3 to cases where csp(g) is not compact in ©°,

COROLLARY 2.6. Assume that V() and h(-) are absolutely continuous on
®° = (a, b) [with (—a), b < =] and that Assumption 1 is valid for all 6 € ©°,
Assume D < . Leta < ¢ < b.

If b = © (a = —o, resp.), assume

-1

(2.13a) 1imi‘2fiV2(0)h(0) do =0 [nmi-Z/f ,resp].

If b < ©(a > —x, resp.), assume

lim (lni)_sz_i_l(b — 0)"2V2(9)h(8) d0 = 0

i—o c

(2.13b) .
[lim (lni)_zf G a) " 2V2(0)h(6) do =0, resp.].

Then (2.12) is valid.

Proor. Consider the case where ¢ = —, b = ». Let £,(0) = [(i — |8])* /i]
and let ~;(8) = k2(0)h(8). Then B(g) = C2/(C; + D,), where C; = C(V, h)),
D, = D(V, h;), by Remark 2.5. C; - C, since h; < h and h; - h. Also, direct
calculation and the Cauchy-Schwarz inequality yield

= [(Vh)(6)]? = [(VR,)(0)]
I R ey

10 B S () B
(2.14)
< f” [(VZ()B() i (1 - %%(0))d6 + 2DY?m, + m?,
where

i (0T 4
= V2 k2 — 2
m2 f (0)[k @ k2(0)h(6) do i2'[—iV (0)Rh(6) do.
Note that m; - 0 by (2.13a), so that D, » D by (2.14) and dominated
convergence. Hence C?2/(C; + D;) » C2/(C + D) and the corollary is proved

in this case.
The proof for a = —», b < » is similar except that for § > ¢ the definition

of k; should be replaced by k,(6) = (In(i(b — ¢))) "'In*(i(b — 6)). Entirely
analogous arguments apply to the other possibilities for a and 5. O

The inequality in Corollary 2.3 can generally be improved by a more careful
treatment of the terms @, in Theorem 2.12. Here is our principal result in this
direction.
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THEOREM 2.7. Make the assumptions in Theorem 2.1. Assume also that
(Vh) is unimodal with maximum at 6, € ©°. Let

0 (Vh)(6)
“(O) =G * “Dhs) *
Vh)'(6
v(9) = ———(0 _)f)o) >0,
v(0)h(6)
WO =56y + k(o)
and
(2.15) B = [(u(6) ~ 7)*w(6) do,
where
_ Ju(8)w(6) do
T T w(e) do
Then
1 1 1\7?
(2.16) B(g)zC—(—C—+B+E)

Proor. Let B(0) = b(8)/y + 6/C so that @, = y*(B)?Vh and @, =
y? f (B — u)?h. Now note the inequality
217)  [(B(6) ~ B(6,))°v(6) d6 < [(B(8))*V(6)h(6) do,

which follows upon applying the Cauchy-Schwarz inequality to B(6) —
B0, = ]9 B'(¢) dt and then interchanging the order of integration. Let 8, =
B(6,). Then

Q; + Q3= 72/{(3 - Bo)zv +(B—Bot+ Bo— u)zh}
= v [{(B = Bo)*(v + h) + 2(B — Bo)(Bo — u)h + (B — u)*h}.

Choose B — B, to minimize the integrand on the right and get
@+ Qs> v*[(u =~ Bo)’w > y*[(u~u)’w = yE"

1

Thus,

R

5 E) (‘*“)—1’

Qi+ Qt Q> (
(2.18)

Q I

* (e
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where the second inequality results from minimizing the quadratic in vy.
Combined with Theorem 2.1, this is the desired result. O

REMARK 2.8. The preceding result can be extended to cases where V& is
not unimodal, as follows. Let 0 < h, < h, where VA, is unimodal and A, is
absolutely continuous. Substitute 4, in the definition of v; call the modified
value v,. Then let w, = v;h/(v, + h) and define E~! as in (2.15) but using w,
in place of w. The conclusion (2.16) of the theorem is then valid with this
modified value of E since (2.17) is valid with v, in place of v. (Remark 2.5 is of
course also relevant to Theorem 2.7 and a result analogous to Corollary 2.6
can be proved.)

The alternate result below does not rely in any way on unimodality of (VA).
In the examples presented in Section 3, (2.16) is slightly better than (2.20) and
(2.21), but there are other examples where the latter does better.

THEOREM 2.9. Make the assumptions in Theorem 2.1. Let q(8) = 0 be
absolutely continuous. Let u(0) be as in Theorem 2.7 and let

A, = [u(6)(qVR)(6) do,

Ay = [q(0)V(8)h(6) do,

(2.19) 4y [LEDO)
h(6) ’
A, + A,
Assume E| < . Then
2.20 B C 1,1 L)\
(2.20) (8) 2 —E+5+E—1 .

REMARK. In several examples the choice
(2.21) q(0) =u'(0)V(0)h(0)
seems to yield satisfactory results in (2.20).

Proor. The Cauchy-Schwarz inequality, integration by parts and mini-
mization of a quadratic yields @, + @, > y2E{ . Proceeding then as in the
proof of Theorem 2.7 completes the argument. O

The preceding results all began by writing e(8) = 6 + 5(8) in the proof of
Theorem 2.1. It is possible to fix a(#) and begin by writing e(8) = 6 + a(8) +
a(6). This results in a formally different version of Theorem 2.1 and in
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different inequalities analogous to those in Corollary 2.3 and Theorem 2.7.
Theorem 2.10 expresses the analog of Corollary 2.3. Its proof is similar in style
to that of Corollary 2.3 and is thus omitted.

THEOREM 2.10. Make the assumptions in Theorem 2.1. Let a(-) be an
absolutely continuous function. Define

r(0) = a(6)R(6) — ((1 + r'(6))V(6)h(6))".
Assume that [or(6) d6 = 0, and define

R(8) = [* r(2) dt.

R(6) - ) o
[f V(6)h(6) } [f h(0) } } ’
where

(2.23) C(a) = [(1 + a'(0))*V(0)h(8) do + [az(o)h(e) de.

Then

(2.22) B(g) = C(a) —

Note that (2.22) is identical to (2.12) when «(68) = 0 so that » = (VA) and
R = Vh.

REMARK. There evidently exist multivariate extensions of the above re-
sults. One such extension (not the best possible) is presented in Theorem 2.1’
and Corollary 2.2' of Brown (1986); see also Shemyakin (1987).

3. Examples. The examples in this section display some feasible applica-
tions of the inequalities in Corollary 2.3 and Theorem 2.7. They have been
chosen in part to display the degree of numerical accuracy of these inequali-
ties. Some of the examples are also related to the minimax analyses discussed
in Brown and Low (1991).

ExampLE 3.1. Let m(6#) = 1. Suppose {p,} is an exponential family with
expectation parameter § and g is a conjugate prior. Then (and only then),
subject to mild regularity conditions, (2.12) is actually an equality. This follows
since the Bayes procedure in this case is linear. This linearity is sufficient (and
necessary) for equality at all 6 in the information inequality. [See Lehmann
(1983), page 123 and references cited therein.] Furthermore in this case both &
and (Vh) /h are linear, and, as it is easy to check, it then follows that
Q, = @3 = 0 so that (2.12) is an equality. If m(6) # 1, then equality holds in
(2.12) if and only if h is proportional to a conjugate prior density. [The
regularity conditions needed for the direct assertion are those in Corollary 2.6.
They are usually (always?) satisfied if the Bayes risk is finite. Concerning the
converse assertion, see Wijsman (1973), Joshi (1976) and Miiller-Funk,
Puckelsheim and Witting (1989)].
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ExampLE 3.2. Note that the bounds in Section 2 rely on X only through
the Fisher information of {p,}. Thus the same bound applies to all families
with the same information function. In particular, suppose p, is a location
family, p,(x) = p(x — ), m(8) = 1 and g = N(u, 0?) is normal with mean
and variance o2. Then

2 0.2

3.1 B =
(3.1) (g)ZC+D ic?2+1°

where i = [((p")?/p) is the (constant) information for {p,}. From Example 3.1,
this bound is sharp if and only if {p,} is a normal location family.

Similarly, suppose p,(x) = 6 'p(x/8) is a scale family and g is an inverse
gamma density with index A and scale B8 (i.e., ! has the indicated gamma
density). The information function is I(8) = i /62. In this case it is natural to
choose m(8) = i /62 to normalize the loss. Then

This bound is sharp if and only if p, is a gamma density with index « and
scale 6 since then & = mg is proportional to a conjugate prior density. See
Gajek (1988) for further results related to (3.1) and (3.2).

ExampLE 3.3. Now suppose X ~ N(6,1), m = 1 and
3.3 ] > cos? 6 6l < L

. = — - < L.
(3.3) 8(6) = 7 cos® 0,
Then Corollary 2.3 yields

1

34 B >
(34) (&) = 7o

as noted in Borovkov and Sakhanienko (1980). See also Bickel (1981). Since
this is not a conjugate prior this bound can be improved by use of Theorem
2.7. Direct manipulation yields

cos? ¢

L2 w/2
) E-'=4— 2t — tant)® t
(35) 'rrj;) ( tant) 772+2L2tcottd

This expression can easily be numerically evaluated.

Table 1 gives values of the bound in (3.4), of the improved bound

-1

L2
(3.6) B(g)>1- (1 g+ E—l)

obtained from (2.16) of Theorem 2.7 and of the actual Bayes risk as evaluated
by a rather lengthy, two-stage numerical integration. From this table one can
see that here Theorem 2.7 provides a moderate improvement to Corollary 2.3.
Note, as earlier, that these bounds on B(g) apply to any family with constant
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TaBLE 1
Values of the bounds in Example 3.3

L Bound(3.4) Bound(3.6) Bayes risk B(g)
0.5 0.02470 0.03145 0.03164
1 0.09198 0.1135 0.1156
2 0.2884 0.3305 0.3427
3 0.4770 0.5177 0.5375
5 0.7170 0.7399 0.7578
10 0.9102 0.9150 0.9214
20 0.9759 0.9765 0.9779

information. [For constant information I(8) = ¢, the bounds should of course
be evaluated at Lc and be multiplied by ¢ ~'.]

ExaMPLE 3.4. Let X have a noncentral y2 distribution with p degrees of
freedom and noncentrality parameter 6. Let m = 1. Suppose 6 is distributed
under g as o2 times a central X,% variable. This prior is plausible for such a
situation (as would also be any other gamma distribution) and has been
specially chosen for the discussion here because its Bayes risk can be explicitly
evaluated. Its value is

dpo?

o2+ 2

o2
(3.7) B(g) = ,
2(0? + 1)°

corresponding to a Bayes estimator 8(x) = o*(1 + 0% % + pa?(1 + 0?) L
Since the distributions of X are not an exponential family, the bounds of
Section 2, which are calculated next, do not attain this value.

The information in X has no convenient closed form expression. However a
useful bound is given by

1
(3.8) I1(8) < 10
This can be verified as follows: For p = 1,
a2
1(6) = E(—Wlnpa(X))
1 e 2 -1 [ 2
(39) - xﬁ+ —x/p .2 —x2/2d
0 Y fo(e e ) V —xte x
1
< —.
46

The information is the same for larger p since for p > 1 both the variable and
the parameter are the sum of p independent x? variables and parameters,

respectively.
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Now invoke Remark 2.5 with V; = 46 > V(6). Use of Corollary 2.3 then
easily yields
3.10 B 4po’
(3.10) (g) 2 5219

This bound cannot be improved by use of Theorem 2.7 with V; = 46, since
E~' = 0. This is inevitable since V, = 48 is the variance function for estima-
tion of § = 2\, where A is a Poisson expectation and g is a conjugate prior for
the Poisson family. Note that (3.9) is reasonably accurate since

B(g)
Bound(2.12)

= Bound(2.12).

-1, asoc?-> 0,

and
B(g) [ 9 ]
_ < | =
Bound(2.12) ’

where the value 2 is attained at o2 = 1.

It is possible to use (3.9) to obtain better bounds on I(8). For example,
1(0) < min{(46)~%,[2(6 + p/2)]"Y}. For p > 4, this bound can be used via
Remark 2.5 in Corollary 2.3 or in Theorem 2.7 but yields negligible improve-
ment to (3.10). For p < 3, this bound cannot be used because the conditions of
Corollary 2.6 are not satisfied. For example, for p = 2, use of this bound in
(2.12) of Corollary 2.3 yields the illegitimate statement, B(g) > 3.033, whereas
actually B(g) = 3.

ExampLE 3.5. Let X have a binomial (n, p) distribution. Then X is dis-
tributed according to an exponential family with natural parameter 6 =
In(p/(1 — p)), the log-odds-ratio. Here, 1(8) = ne®/(1 + e°)? = np(1 — p).
Consider the problem of estimating § under normalized squared error loss,
L(6,a) = I(6Xa — 6) [Note that estimation of 6 under this loss is equivalent
to estimation of the odds ratio, p, under the plausible loss function L,(p, ) =
m(p)In?(b /p) with m(p) = np/(1 + p)2.] Since 6 is not a linear function of the
expectation parameter, one should not expect the bounds of Section 2 to be
sharp.

Consider the prior density g(6) = 6e2%(1 + ¢°)~%. This corresponds to the
Dirichlet (1,1) prior, 6p(1 — p), for p; this choice is explained further in Brown
and Low (1991). The bound of Corollary 2.3 yields

n
(3.11) B(g) = m = Bound(2.12).

The bound in Theorem 2.7 can also be calculated, though it requires somewhat
more algebraic manipulation as well as numerical integration of the resulting
expression for E . (One nice feature is that a symmetry argument immedi-
ately yields 7 = 0.) Table 2 gives values of this bound [labelled Bound(2.16)] as
well as Bound(2.12). It also gives, for comparison, the values of B(g) calcu-
lated via numerical integration.
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TABLE 2
Values of the bounds for Example 3.5

n=" 1 3 5 10 25 100
Bound(2.12) 0.1111 0.2727 0.3846 0.5556 0.7576 0.9259
Bound(2.16) 0.1314 0.3053 0.4186 0.5829 0.7707 0.9279
B(g) 0.1358 0.3183 0.4360 0.6043 0.7893 0.9360

Note that (3.11) yields B(g) > 1 — (8/n) + O(1/n?). It is of interest to
ask whether this bound is precise to order 1/n; that is, whether B(g) = 1 —
8/n + o(1/n)? We will show in a forthcoming manuscript that this is not the
case. The argument there involves an extension of the results of Section 2.

APPENDIX

The information inequality. This appendix is devoted to a statement
and proof of the information inequality which does not impose regularity
conditions on the statistic T'. The results here extend those of Fabian and
Hannan (1977). Alternate conditions, which can be used in place of those given
here, are established in Simons and Woodroofe (1983); see also Miiller-Funk,
Puckelsheim and Witting (1989). For simplicity, only the one dimensional case
is considered in detail. The multidimensional case is analogous and is summa-
rized at the end of this appendix.

Let {p,: 0 € 0} be a family of probability densities relative to some Borel
measure v. O is an open subset of R. The form of the information inequality to
be derived below is valid at 6, € ® for any real valued statistic 7 having a
finite variance at 6,. Thus, concerning the statistic 7 assume only that

(A1) Var, (T') < o.

Let e(8) = E,(T), whenever the expectation on the right exists. Because of
(A.1), this expectation exists at 6,,.

As Fabian and Hannan observe, what are needed are regularity conditions
under which e(6) exists on a neighborhood of 6,, can be differentiated at 6,
and under which there is a measurable function g such that

(A.2) e'(8y) = Eo(T(X)q(X)).
Think of g as q(x) = [(8/38)In py(x)],_,,, for this is what it will be in all
standard cases.

The only step requiring justification is (A.2). To dissect this step, define
w(dx) = py(x)v(dx). Then T(-) € Ly(w, ) because of (A.1). Assume
(A.3) Po(x) = 0 = py(x) =0 ae. (v),
* for all 6 in a neighborhood of 6,. Then (A.2) can equivalently be written as

A‘l[p0°+A(x) - 1} - q(x)]w(dx) — o,

(A4) Alli!}) /T(x) —p:o(_x)_
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for every T € L,(w). This can be expressed abstractly by saying that p,/p,, is
weakly differentiable in L,(w) at 6 = 6,, with weak derivative g. This ab-
stractly expressed condition on {p,} is thus sufficient for validity of the
information inequality for all T satisfying (A.1). It is also necessary. This
equivalence is pointed out by Fabian and Hannan (1977).

This condition makes it plain that the information inequality requires
regularity conditions only on {p,} and not on T [except for the trivial condition
(A.1)]. However, explicit conditions are desirable which imply (A.4) and can be
easily checked. The following discussion provides three separate sufficient
conditions. They are progressively easier to check, but apply in successively
less generality. The first sufficient condition is that

Po,+a(%) ‘-
lim [[A"Y——— — 1| - q(x)| w(dx) = 0.
M/[ [ () ] a( )] (d)
which says that p,/p,, is strongly differentiable in L,(w) at 6 = 6,. That
(A.5) implies (A.4) follows from the Cauchy-Schwarz inequality.

Now suppose on a neighborhood of 6,, p,(x) is absolutely continuous in 6
for a.e. x(v). Let pj(x) = (9/36) p(x) and q(x) = py(x)/ps(x). [Assume
pé(x) exists a.e. (v).] Writing p, ., as the integral of its derivative, applying
Cauchy-Schwarz and interchanging order of integration yields

j[rl[% - 1] - q(x)} wo(dx)

(A.5)

|| [ nr | = o

-/ PHEN o)
s e - i)

= f p,?o(x) w(dx)
a7t [ (i) - pi(x)

</ P o)

(by Cauchy-Schwarz)

At foooJrA/[Pt*(x) — Pi(x) } w(dx) dt

Il

pao(x)

0

dt.

A_l f90+AE00
0

0

pH(X) - p(X) T
poo(X)
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Consequently, (A.5) is satisfied if
pH(X) - px(X) |
Poo( X)

Now suppose on a neighborhood of 6,, p;(x) is also absolutely continuous
for a.e. x(v). Let pj*(x) = (3/96) pg(x) = (82/30%) po(x). Then a similar
sequence of steps yields

(A.6) E,, -0 ast— 0,.

2

0+t wn XY dw
o [P0 =P (O T _ f, P
Po poo( X) fo ‘Pao( X)
< iE foo+t p;,"*(X) 2d
< ——| dw
fo 90 pOO(X)
2
6o+t pA*(X)
=t E, ||——| |dw
";’o fo [ poO(X)
Consequently (A.6) is satisfied if for some B < o,
2
ps*(X)
A7 E,||—=—| | <B <,
( ) bo poo(X)

for every 6 in some neighborhood of 6,. To summarize:

THEOREM A.1. Suppose (A.3) and at least one of (A.4) to (A.7) are satisfied
at 0. Then the information inequality is satisfied at 0, for any statistic T for
which Var, (T') < «.

Remagrks. (i) It is implicit in the theorem that (A.1), (A.3) and any of the
conditions (A.4)-(A.7) imply that e(#) exists on a neighborhood of 6, and is
differentiable at 6.

(i) Condition (A.6) cannot be replaced by

lpt*(X) _ ps(X) r} -0 ast— 0

%o p(X) poo(X)
for this latter condition does not imply (A.6) nor (A.4). For an example where
the implication fails let |6] < 3 and let p,(x) = 6% /x%/3 for 0 <x < 163, =1
for 10> <x < %, =1 — 4]6%/3 for } < x < 1 relative to Lebesgue measure on
0 < x < 1. Then the above condition holds and p,(x) is absolutely continuous
in 6 for every x € (0, 1). However at 8, = 0, (A.6) does not hold and (A.4) fails
when, for example, T'(x) = x~ /3.

(iii) If (A.3) fails, the information inequality may still be valid under a
condition slightly stronger than (A.1) but still suitable for occasional applica-
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tions. Replace (A.1) by the assumption that E,(T?) < B < « for some B and
all 6 in a neighborhood of 6,. Let S, denote the support of p, . Assume

A‘lfsgopooﬂ(x)v(dx) -0 asA— 0.

Then any one of the conditions (A.4)-(A.7) implies validity of the information
inequality.

Multivariate case. In this case © is an open subset of R*. The real valued
function g(x) is replaced by a (k¢ X 1) vector valued function g(x). Think of

q(x)l as
E, Halnp,,(x)] },
0 90; 9,

for this is what it will be in standard cases. The information matrix at 6, is
defined by

1(8,) = E,,O(q(X)qT(X)),

where g” denotes the transpose of g. Let T be a (I X 1) vector valued statistic
and let e(9) = E,(T), when it exists. When the partial derivatives of e(-) exist,
define V7e(6,) to be the (I X k) matrix with (V’e(9)),; = (3e(0))/36,. The
multivariate information inequality asserts that

(A.8) Varo(T) (er(go))l (00)(V7e(00))

Here Var, (T') denotes the (I X ) variance-covariance matrix of T' and the
inequality symbol means that the difference of the two sides of (A.8) is positive
semi-definite. I~ denotes the symmetric generalized inverse of I.

The general regularity conditions needed to establish (A.8) are (A.3),

(A1) E,(ITI?) <o
and
(A4) iiir})fT(x) A‘l[%)x—) - ll - q"(x)v|w(dx) =0,

for every T € Ly(w), v € R*.
Condition (A.5"), which implies (A.4'), is related to (A.5) as (A.4) is to (A.4);
that is,

p00+Av(x)
poo(x)

for every v € R*. Next, assume that {p,} is absolutely continuous on a
neighborhood of 6, a.e. (v), in the sense that

1 T
Po(x) — pox) = fo (0 = 85) D 4uo-0p(%) dt,

A—-0

(A.5) lim [A“l[ - 1] - q’(x)v] w(dx) =0
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for every 6 in this neighborhood. Here p* = V,p denotes the (k X 1) vector
with coordinates dp,/d6;, and q(x) = V,(In p). The condition (A.6) can conve-
niently be replaced by

p#(X) - (X))
PoO(X)O ” -0 asf - 0,.

A convenient way to rewrite (A.7) is to assume p.(x) is absolutely continuous
near 6, and

(A.6) E,,

2 2

(A7) E,, Inp(X)||<B<w V1<i,j<k,

36,36,

for every 6 in a neighborhood of 6,. To summarize:

THEOREM A.1'. Suppose (A.3) and at least one of (A.4) to (A.7T) are
satisfied at 0,. Then the information inequality (A.8) is satisfied at 8, for any
statistic T for which Var, (T') exists.
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