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A WEIBULL MODEL FOR DEPENDENT CENSORING!

By SHERRIE E. EMOTO AND PETER C. MATTHEWS
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A bivariate Weibull model is proposed for censored survival data when
there may be dependence between the survival and censoring random
variables. The model is based on marginal transformations of the Pickands
class of bivariate exponential distributions. Assuming the model to hold,
the joint distribution of survival and censoring times is shown to be
identifiable, and the maximum likelihood estimator of the parameters is
shown to be consistent.

1. Introduction. The ability to estimate a survival distribution in the
presence of censoring is important and has been studied extensively. If one is
not willing to make parametric assumptions about the exact form of the
underlying survival and censoring distributions but is willing to assume
independence between these two mechanisms, Kaplan and Meier (1958) pro-
vided an estimator which is consistent, among other desirable properties.
Many other estimators have been proposed which outperform the
Kaplan-Meier estimator in various situations, but most still depend on the
assumption of independence between the survival and censoring variables.

In recent years some work has been done, too, on estimation of the survival
distribution without this independence assumption. Some of this work will be
discussed in the following paragraph. Any work in this area must confront the
problem of identifiability; without some assumptions it is impossible to infer
the survival distribution from censored data or to judge whether the censoring
and survival mechanisms are independent. Cox (1959) first discussed this
problem. See Puri (1979) for a review and a list of references.

Most work in dependent censoring therefore relies on fairly strong assump-
tions on the form of the dependence between the survival and censoring
mechanisms or is concerned only with bounds on the survival distribution.
Fisher and Kanarek (1974) used stretching factors to produce a family of joint
distributions with different levels of dependence. Moeschberger (1974) consid-
ered the bivariate Weibull distribution arising from the Marshall-Olkin bivari-
ate exponential distribution. Peterson (1976) gave worst case bounds on the
survival distribution without any assumptions. Williams and Lagakos (1977)
provided conditions for the Kaplan—-Meier estimator to be consistent even in
the presence of dependence. Slud and Rubenstein (1983) gave bounds based on
specific knowledge about hazard ratios. Robertson and Uppuluri (1984) ex-
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tended the Kaplan-Meier estimator to nonparametric estimates with depen-
dent margins. Klein and Moeschberger (1984) assumed a particular form of
dependence and gave bounds on the survival distribution in that case.

Here a model based on a bivariate Weibull distribution is presented. Identi-
fiability assuming the model is shown and the maximum likelihood estimator
(MLE) is shown to be consistent. An algorithm for fitting the model is
presented and applied to a data set. The bivariate Weibull used is the one
resulting from marginal transformations of the Pickands (1976) bivariate
exponential. See Galambos [(1978), page 264] for a discussion of this distribu-
tion. This model places relatively weak nonparametric (parameterized by a
measure) restrictions on the form of the dependence between the survival and
censoring distributions. See Tawn (1988) for a discussion and references on
the use of parametric subfamilies of this family of distributions in bivariate
extreme value modeling. Tawn briefly discusses estimation for this model in
the complete data case and dismisses it as troublesome. The methods of
estimation given here apply to the complete data case as well, although the
complete data problem appears to be no easier than the case of censored data.

The model consists of all bivariate Weibull distributions with unequal shape
parameters that can arise as minimal extreme value distributions. Thus, if a
minimal extreme value distribution is reasonable for the joint distribution of
censoring and survival, then this model should be appropriate. The model
contains all independent bivariate Weibull distributions with unequal shape
parameters. Thus, if one would fit independent Weibull distributions to cen-
sored survival data, then one can fit this larger model and see how much the
results deviate from independence. It is possible to formulate similar models
with marginal distributions coming from a shape family different from the
Weibull family. For many of these, similar results should hold.

4 The remainder of this article is organized as follows. Section 2 describes the

model. The likelihood for a data set is derived in Section 3. Section 4 demon-
strates that the model is identifiable. In Section 5 the maximum likelihood
estimator is shown to be consistent. Section 6 gives an algorithm for fitting the
maximum likelihood estimator. The algorithm is applied to a data set in
Section 7. Finally, Section 8 is a discussion of the applicability of the model
and possible paths for future investigation.

2. The model. The model is based on the bivariate exponential distribu-
tion of Pickands (1976), hereafter referred to simply as the bivariate exponen-
tial distribution. This distribution leads to a characterization of all bivariate
minimal extreme value distributions, in that they can be derived from this
distribution by univariate transformations of the two margins. See Galambos
[(1978), pages 258-259] for a discussion. Here we will consider marginal
transformations of this distribution of the form x - x!/%, y — y/B o # B,
which is the class of all bivariate Weibull distributions with unequal shape
parameters that are bivariate extreme value distributions.

The following notation will be used. A sample of n survival times D,,..., D,
and a set of n potential censoring times C,,...,C, exists but is not observ-
able. Within a pair, D; and C; may be dependent. The pairs (D;,C,),
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i =1,...,n, are independent, each with joint distribution function Fj, .. The
marginal distributions of D and C are F, and F;. The pairs are not
observable, only (7}, 8,), i = 1,...,n, where T; = min(D;,C;) and §; = Ip ¢,
In all the models considered P(D; = C;) = 0, so ties will be of no concern. Let
Fr 5t,i)=P(T<tnd=i) for 0<t <o and i = 0,1. A survival function
will be denoted by an overline, ie., F,(d) = P(D > d). Finally, a hazard
function will be denoted by A,

d —
hp(x) = — alog Fp(x).

The Pickands bivariate exponential distribution can be characterized in
several ways. The best for the purposes of this article is to represent the
bivariate random variable as a function of a Poisson process. See de Haan and
Pickands (1986) for the best current results and a history of this technique.
Their representations use a homogeneous Poisson process. Here it will be
more convenient and intuitive to use a nonhomogeneous process. Consider the
quadrant Rj = (0,%) X (0, ), along with two rays R, and R. Intuitively,
these are horizontal and vertical rays at ‘“infinity;”’ R, goes from (0, ) to
(0,0) and R, goes from (»,0) to (o,). See Figure 1 for the intuitive
placement of these rays. Consider a measure M on Q = R;U R, U R of the
following form. For a segment in R, or R,, M is A, or A, times Lebesgue
measure, respectively, where A; > 0 and A, > 0. On R}, M is defined by a
nonnegative measure u on (0, 7 /2) satisfying

1
+ df) < oo,
'/;o,w/z)( sinf® cos# )M( )

M is most easily given on R in polar coordinates. For a section of an annu-
lus centered at 0, the set w = {(r,0)|0 < R, <r < R,, 6, <0 < 0,}, we have
M(w) = (R, — Ry) X [4, 4,n(d6). This defines M for arbitrary Borel subsets
of Q. As an example, see Figure 1. There, for the segment A of R,

~ow3mon
O = N Aoy 0w 8

0123 45¢67389 .
death

Fig. 1. The set Q along with two subsets A and B.
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M(A) = 414, and for the region B of R3, M(B) = (6 — 2)(}3u(d#6). To avoid
degeneracy, we assume that either u((0,7/2)) > 0 or that both A, and A, are
positive. The relevant Poisson process is then the Poisson process on () with
intensity M; i.e., for o C Q, the number N(w) of points in o is Poisson with
mean M(w), etc. Let (d;,c,),... denote the points in a realization of this
process. For this Poisson process a bivariate exponential distribution arises
from considering D* = inf(d,,...) and C* = inf(c,,...). Under the preceding
assumptions, the set of points is infinite almost surely and each of D* and C*
is finite but nonzero almost surely. Then

P(D*>dnNC*>c)
=P(N(w) =0)

w(de) n(de)
—CA, — c/; )

= eXp _d)\d - d N
0,arctan(c/d)) Sin 6

[arctan(c/d),=/2) COS 0

where o = {(x,y) € Q|x < d or ¥ < c}. The Pickands bivariate exponential has
P(D*>dnNnC*>c) =exp(—f max(pd, (1 —p)c) dT(p)),
[0,1]

where T is a positive measure on [0,1]. Taking p = (1 + cot )™}, calculus
shows the representations to be equivalent.

Note that if u assigns mass 0 to (0, 7 /2), then D* and C* are independent,
since deaths can only be caused by points on R and censorings can only be
caused by points on R, which are independent Poisson processes. Loosely,
more mass of u near the center m/4 corresponds to stronger dependence,
while more mass near the edges corresponds to weaker dependence.

As mentioned previously, the model involves marginal power transforma-
tions of this kind of bivariate exponential distribution. Let F (x) =1 —
exp(—x%), the Weibull cumulative distribution function with scale parameter 1
and shape parameter a, for @ > 0. For any measure M as defined previously
and the derived random variables D* and C*,let D = F; (1 — e~ P") = (D*)V/«
and C = F;'(1 —e ¢)=(C*"P. Then D and C have a bivariate Weibull
distribution with parameters a and B. In what follows, other shape families
could be substituted for the Weibull and similar results would obtain. For
simplicity we will discuss only the Weibull. For possible ease of application of
the result to other shape families, formulas will be given in general terms
involving the marginal distribution function rather than the special transfor-
mations for the Weibull.

The full model will now be formulated. The unknown parameters are A,
A, @, B, and the measure p. To make the model identifiable, the restriction
a # B is placed on the model. If one is considering this model in practice, this
is not likely to be too serious a restriction. Thus, the final model is that a
sequence of independent replicates of T' = min(D,C) and & = 1, _ are ob-
servable. Their joint distribution is assumed to arise from a bivariate Weibull
distribution as before, with unknown parameters a, B, Ay A, and u, a



1560 S. E. EMOTO AND P. C. MATTHEWS

measure. Restrictions are that a« # 8, either w((0, 7 /2)) is positive or both of
Ay and A, are positive, and
1

" +
f(o,w/z)( sin 0 cos 6

) w(do) < oo,
The set of all parameter values satisfying these restrictions will be denoted A.

3. The likelihood. To derive the likelihood of T and 3, recall that
P(D*>dnNnC*>c¢)

conf-aff | BOO)_ g o)

[r,w/2) COS 0O ©,r) sin @

where r = arctan(c/d). In the preceding formulas a simple calculation shows
that the value of the integral is the same whether any atom of u at r is
included in the first integral or the second. It has arbitrarily been placed in the
first. Next, by transforming D* and C* to D and C, we see that

P(D>dnC>c)=P(D*> —log(F,(d)) nC* > —log(Fy(c)))
- exp[log@w))(Ad S oot

(3.1) [R,w/2) C€OSO

n(do) )]

,R) sin@

+log(F;3(c))()¢c +

where R = arctan(log( F—‘B(c)) /log(F (d))). For the Weibull, —log(F (x)) is

just x“.
Define
log( F,(t
R(t) = aICtanlzzEF—BEt;;'

Then,

— —_ dé

Fr() = exp[log(Fa(t))()td " [R(®) w/Z)MC(()S 0) )
(3.2) _ (d6)

+log(FB(t))(Ac + o, ke sin 0 ) i

Differentiating the negative of the logarithm of (3.2) with respect to ¢ yields
the hazard function for T,
de
[ A+ n(do) ]

d _
hp(t) = [— P73 log(FB(t)) (0, R(t)) sin @
[ #(d(’)]
Ag+

(R@t),w/2) €OS 0

(3.3)

+

d —
% log(F,(2))

+ uw{R(2)} [log2(F (1)) + log?(Fy())] .
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The first term in (3.3) is the hazard at time ¢ due to censoring, the second is
the hazard due to death, while the third is the hazard for simultaneous

censoring and death.
ProposITION 3.4. P(u{R(T)} # 0)=0.

Proor. Consider the set of points @ = {(d, ¢) € Q|ld* = c¥}. For any atom
0 of u, @ intersects the ray tan(9) = d/c in only one point. For any such
intersection point (d,, ¢,), M({d = d, U ¢ = ¢,}) = 0. Since u can have only a
countable number of atoms, the union U of all such sets has M-measure 0 as
well. However, u{ R(T')} # 0 if and only if the point from the Poisson process
leading to the observed death or censoring lies in U. Since M(U) = 0, the
proposition is proven. O

Since P(u{R(T)} # 0) = 0, the last term in (3.3) can be dealt with arbitrar-
ily in the joint likelihood of T' and §. It could be included in either of the
previous two terms by closing the corresponding endpoint of the interval of
integration. As we shall see later, in order that maximum likelihood estimates
exist, this term must be included in each of the other two hazard terms by
closing both intervals of integration. This will make both hazards, and hence
the density, upper semicontinuous. The joint likelihood of T' and & can then be
written, for ¢ > 0,i=0or 1,

. 3 r(de)
f(t,i) = eXp(log(Fa(t))[)‘d + [R(),7/2) COS 0 ]
_ n(de)
+log(FB(t))[/\c+ 0, R(ty sin @ ])
(3.5) p @)
_ 12
X([—E{lOg(FB(t)) [Ac + ©,R®)] sin 0 ])

p(do) ])

[R(®),w/2) €OSO

d _
x( —%log(Fa(t)) [Ad+

The first term is F(z). The last two terms are, respectively, the hazards of
observable censoring and observable death h(¢,0) and k(¢ 1) at time .
For future reference note that

(3.6) Fp5(t,1) = ['Fr(s)hq(s, 1) ds
0

is the subdistribution function of observable deaths.

In practice the survival distribution Fj, is usually of foremost interest. In a
model of this form it is a Weibull distribution with shape parameter « and
scale parameter

n(de)
©,m/2) cosf

Ad=Ad+
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Similarly, the marginal censoring distribution is Weibull with shape parameter
B and scale parameter

A, =\ +f w(dh)
¢ ¢ ©,7/2) sin 0 )

For any dependent Fj, . there is an independent bivariate distribution with
the same Fy ; [see, e.g., Cox (1959)]. For any bivariate Weibull (D, C) consid-
ered here, denote such a pair of independent random variables by D and C°.
Geometrically, it is easy to describe these variables: D’ is the leftmost point
above or to the left of the curve D = C; C° is similarly the lowest point below
or to the right of this curve. The hazard functions for D* and C ¢ are simply
the same as the observable hazards, i.e., h pi(¢) = hp(¢, 1) and hod(2) = (2, 0).
Their cumulative distribution functions can be found by exponentiating the
integrated hazards or, equivalently, by integrating M over the relevant regions
of a graph like Figure 1 and using a Poisson process argument. One of Di or
C‘ may be improper if A, or A, is zero.

LemMA 3.7. Fix a and B. Then the likelihood of a single observation f(t,1)
as a function of Ay, A,, and p is bounded by (B/tX1 — i) + (a/t)i. Further, if
A, (A,) is bounded above by K, then for t near 0, f(¢,1) is bounded above by
aKt* Y + BKtP~ (i — 1).

Proor. If i = 0, the maximum is attained by taking

N A G B R wde)
¢ Jo,r®) sin@ " JR@),n/2) cos O

The result follows, and a similar calculation proves the case i = 1. The second
assertion can be proven similarly. O

4. Identifiability. Identifiability follows from a demonstration that the
model parameters can be obtained from the distribution functions and likeli-
hood. Dividing the likelihood f(¢,i) by P(T > ¢) and setting i to 0 or 1 gives
the individual hazards. h,(¢,0)/h (¢, 1) is an increasing function of ¢ if and
only if B > « and is a decreasing function of ¢ if and only if 8 < a. Thus, the
hazards determine which of these cases obtains. If B > «a, then

log h(¢,0 log h,(t,1
B=1+ lim gl——) and oz=1+lim———g l )
to  logt t—0 log ¢
The case B < a is similar. Once 8 and a are known, then all the integrals
deé do
A+ [ w ) and M+ [ w(d6)
0,¢) sin @ {¢,m/2) COS 0O

are known. These clearly determine u, A4, and A,.
Note that the same sort of identifiability proof will work for other families
of marginal transformations besides the Weibull. Let {F,, F,} be a family of
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pairs of marginal transformations. The following proposition gives one set of
circumstances under which the model will be identifiable. Its proof is an exact
analog of the Weibull case.

ProroSITION 4.1. In order that the complete model F,;, F,, Ay, A, u be
identifiable, it is sufficient that the following two conditions hold:

(a) F, and F, are identifiable from FT, 5
(b) for any pair Fy, F,, the range of R(t) is the interval (0,7 /2).

This makes clear why the case o = 8 must be excluded; condition (b) would
be violated and the parameters A,, A, and u could not be identified. Further,
although the shape parameter a of the survival distribution Fj, can be
identified, the scale parameter cannot be.

5. Consistency of the maximum likelihood estimator. The purpose
of this section is to consider maximum likelihood estimation of the parameters
of the joint distribution. It will be seen that maximum likelihood estimates
exist with probability approaching 1 as the sample size grows. In fact, they will
exist for practically any natural data set. The maximum likelihood estimates
will in general be nonunique. However, any choice of MLE will be shown to be
consistent for the true parameter. If interest is only in the marginal survival
distribution, then much of the nonuniqueness will disappear.

THEOREM 5.1. Let A* denote the set of MLEs based on a sample of size n.
Then P(A* empty) » 0 as n — « and the set A} converges in probability to
the singleton {a = (a, B, Ag, A., 1)}, the true parameter value.

The proof will follow a slight modification of a theorem of Bahadur (1967),
as given in Grenander [(1981), pages 349-353]. The plan of the proof is to
compactify the parameter space A by taking all weak limits of the distribu-
tions in the model and then to verify that all the conditions of Grenander
(1981) are satisfied. A quirk of the Weibull family is that if X, has a
univariate Weibull distribution with parameters «, and A,, where a, - »
and A, ~ x~ %, for some x > 0, then X, converges in distribution to a point
mass at x. It follows that for a single observation the Weibull likelihood is
unbounded and the conditions for consistency of the MLE do not apply
immediately. However, for two or more observations this problem evaporates.
A similar pathology can occur for the bivariate Weibull if there is at most one
death or at most one censored observation. For proving consistency in the
bivariate situation, the following remedy will be used. First, prove that if the
maximization is restricted to any subset of the parameter space of the form
{almax(a, B) < K} and the true value of the parameter lies in this set, then
this restricted MLE is consistent. Next, it will be shown that the unrestricted
MLE must eventually be in a subset of the above form (the subset depends on
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the true value of the parameters), so the unrestricted MLE will eventually be
the same as the restricted MLE and will thus be consistent as well.

For convenience, the theorem of Bahadur, as in Grenander (1981), will be
restated here. Let A be a metric space with distance d(-, - ). Let X denote the
space on which the random variables of interest are defined. Assume each
distribution in A has a density f with respect to a o-finite measure v.

DEFINITION 5.2. A compact metric space A is said to be a suitable compact-
ification of A if the following hold:

(a) A is an everywhere dense subset of A;
(b) for any a, € A, the function

f(x,ay,¢) =sup{f(x,a)la €A, d(a,a,) <ce}
is measurable in x for ¢ small enough;
(c) defining f(x,a,,0) = lim, _,, f(x, a,, ), we have

ff(x,ao,O)v(dx) <1 foranya, € A;
X

for Bc A and h an extended real-valued function, write h(B) =
sup{k(a)le € B}.

For a sample x = (x,,..., x,,), consider the likelihood function
L,(a;x) = I_—Ilf(xr,a)'

The set of maximum likelihood solutions, possibly empty, is

An = {a'a EA’ Ln(a;x) = Ln(Ayx)}

THEOREM 5.3 (Bahadur). Assume that the following hold:
(a) There exists a suitable compactification A,

[ f(x,A)}
(b) E, |log— | <» foranya € A;
f(x,a)

(¢) fora € A and a, € A with a # a,, we have
v{xlf(x,a) # f(x,a0,0)} > 0;

(d) Ais openin A;

(e f(x,a)=f(x,a,0) forall x, for any a € A.

Under conditions (a)-(e) it is true with probability 1 that A is not empty for
n large enough, and the set A, converges to the one containing the single point
a = true value of the parameter.
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To apply Theorem 5.3, a suitable metric must be defined. This metric,
denoted d,, metrizes weak convergence of random vectors T, § when mapped
into [0, 1] X {0, 1}. For technical convenience a second metric d, is defined as
well. For s €[0,1] and a € A, let

. s T . .
G,(s,1) =FT’5(1——s’l) =Pa(1 T <s,6=i| fori=0,1.

Then, G,(s,1) + G(s,0) = P(T/(1 + T) < s). Define a metric on A by
d(a,b) =inf{e|lG,(s —&,i) — & < Gy(s,i) < G,(s +¢&,i) +¢
fori=0,1}.

Convergence in this metric is equivalent to weak cohvergence of (T'/(1 + T'), 8).
In terms of d, the assertion of Theorem 5.1 is

(5.4)

(5.5) lim P( sup dq(a;,a) > e) =0 forall e > 0.

- a, €A%

Consider as well another metric d, defined on A. For s € (0,1) and a € A,
let

n(de)
[R(s/(1-s)), m/2) COS 6

jd(ays) = Ad +

and
do
jc(a,s)=)¢c+f M(, )
0, R(s/(1—s)] sin 6
Define d, by
dy(ay, az) = max(la, — ayl, 18, — B, inf {el¥ s € (0,1),
(56) jd(alys - 8) - £ de(a2’s) de(alys + 6) +¢ and

Jlay, s — ) — & <j(azs) <jlay,s+e) +e}).

Later the parameter space will be compactified by adding some limit points
in d;. To prove Theorem 5.1, these must be identified. Consider a sequence of
distributions {a,,, B,,, Agn»> Aens 4,,} in A. By tightness this sequence must have
a d, convergent subsequence. Then, without loss of generality, suppose the
full sequence is convergent. To examine the possible limit points consider the
following possibilities.

5.7.1. All of «a,, B,,la, — B,|, Ay, and A, remain bounded away from 0
and ® as n — o,

Then any subsequence has a further subsequence on which «,, 8 ,, Ay,
and A_,, and hence u, A; and A, as well, converge in d, to a point in A. Each
of these further subsequences must converge in d, to the same limit point, or
else the limit points will be indistinguishable, contradicting the identifiability
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results of the last section. Thus, the full sequence must converge to this d,
limit point, a point in A.

5.7.2. Al of a,, B,, Ay, and A, remain bounded away from 0 and « as
n — o but |a, — B,] = 0. Then the limiting distribution of D, C is a bivariate
Weibull. This distribution is not necessarily representable as the result of
marginal transforms with the same shape parameters of a bivariate exponen-
tial unless a randomization scheme for deciding ties is introduced. The limiting
cumulative distribution function of T,

t t
F.(¢t) = limG|——,0]| + G| ——,1
7(t) = lim (1+t’) (1+t’)
is a Weibull cumulative distribution function. ’

5.73. a,— 0or B, — 0. If a, — 0 the limit of G(s,1) is flat except for
jumps at 0 and 1, since the limiting distribution of deaths has point masses at
0 and “»”’ (the masses depending on the behavior of Ay, ). A similar situation
arises if g, — 0.

5.7.4. Neither a, nor B, approaches zero or «, but Ay, or A, approaches
0 or «. Then as in 5.7.3 the limiting distribution of the deaths or censoring
times will be a point mass at 0 or “c,” and hence either G(s, 1) or G(s, 0) will
be flat except for a jump at O or 1.

5.15. a, > or B, > . If @, > » and A; ~ dy*", then the limiting
distribution of the deaths will have a point mass at d,, hence G(s, 1) will be
flat except for a jump at d,/(1 + d,). Similar situations can occur for the
censoring variable. This situation will be ruled out in the proof and hence will
be of no further concern.

LemMa 5.8. Consider a sequence of points a, € A and another point a € A.
Then d(a,,a) — 0 if and only if d,(a,,a) — 0.

Proor. Clearly, d, convergence implies d; convergence. For the reverse
implication, suppose a, has a subsequence that converges to a in d; but not
in d,. From the preceding discussion, d; convergence implies that «,, B,,
la, — B,l, Ay, and A, all must eventually be bounded away from 0 and .
Thus, any subsequence has a d, convergent further subsequence. The conver-
gence of any such subsequence to a point @, other than a would contradict
identifiability; a, and a could not be distinguished. This implies that every
subsequence has a further subsequence converging in d, to a, so the full
sequence must converge to a. O

PropPosITION 5.9. Consider the following restriction of the original parame-
ter space
Ag = {0[, ByAg, A, ,u,lmax(a, B) < K} .
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If the true parameter value a is in Ax and maximization is restricted to A,
then Theorem 5.3 applies and the MLE is consistent.

Proor. Here x is the pair (¢,7). In what follows a will always refer to the
true parameter value, while other points of the parameter space will be
distinguished by subscripts. For any fixed K, compactify Ax by adding all
G(s,i) that are limit points of distributions in Ay in the metric d,. Denote
this space Ay. This space is compact by Prohorov’s theorem [see, e.g., Huber
(1981), page 24]. To verify that this is a suitable compactification, notice that
distributions of types 5.7.2, 5.7.3 and 5.7.4 only are in Az \ Ag.

The conditions in Bahadur’s theorem will now be verified. First note that
the compactification Ay is suitable because of the following:

(a) It is obtained by taking limit points of members of Ay, so Ay must be
dense in it.

(b) Since the likelihood is upper semicontinuous, for any point in Ay the
set where the likelihood is greater than a constant [ is open, hence a similar
set for f(x,a,, ¢) is open and measurable.

(c) For limit points of types 5.7.3 and 5.7.4, it can be seen that f((¢,1), a, €)
converges to 0 almost everywhere as ¢ » 0 for i = 0 or 1 or both. The other
value of i can be handled as in type 5.7.1 below. For a type 5.7.2 limit point a,
where both «, and B, converge to vy, choose a sequence that converges to a,
in d, and choose a d, convergent subsequence. The marginal hazards of the
limiting distribution are

©,(d6)
[R, (), =w/2) €OS O

hp(t,1) = y¢* ! lim Ay, +
n—o

and
®,(d6)

hp(8,0) =vyt" 1 limA,_ + -
T( ) ‘y noo cn ’/(O,Rn(t)] Slno

As the limit of products of pairs of monotone functions, each & ,(¢,i) will be
continuous almost everywhere. Further, any sequence that converges in d; to
a, will have a d, convergent subsequence whose hazard functions converge to
hr(t,7) at all continuity points of & ,(¢,1). Fix ¢, i, such that both the hazard
functions of the limiting distribution are continuous at ¢. By Lemma 3.7 it is
possible to choose a sequence of points @, in A such that a, is within a
distance n"! of @ and

1
f((t0,i0),@,) = f((29,80),a0,n7 ") = w

The sequence a, contains a d, convergent subsequence, so along that subse-
quence the hazard functions for @, must converge to those for a,. However,
by definition of the sequence a ,, the whole sequence f((¢,,i,), a,) converges.
Since this holds on a set of ¢ values of full measure, condition (c) of Theorem
5.3 is satisfied for this type of limit point. For type 5.7.1 limit points, points in
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Ay, a stronger result will be given in condition (e). Thus, condition (a) of
Theorem 5.3 is satisfied.

Condition (b) follows since f((¢,7); A) = K/t, and log ¢ is integrable with
respect to any of these distributions. Clearly, E (log f) < c.

Condition (c) follows from the identifiability section and the discussion of
the possible points in Ag. _

Condition (d) follows from the discussion of the points in Ax\ Ax. From
consideration of the marginal distribution of T for case 5.7.2 and G(s, i) for
cases 5.7.3 and 5.7.4, it is clear that no sequence of them could converge to a
point in Ag.

Condition (e) is the reason for the definition of the joint likelihood given. As
above, given a € A, and (¢, i), choose a sequence of points a, converging to
a in d; such that f((¢y,i,),a,) > f((ty,iy),a,n" ") —n~'. This sequence
must converge in d, as well, by Lemma 5.8. The upper semicontinuity of the
likelihood function implies condition (e) is satisfied. O

Proor oF THEOREM 5.1. We must show that almost surely as n — o, the
supremum of the likelihood will be larger on some compact set Ay (depending
on the true parameter value) than the supremum off the set, so almost surely
as n — « the MLE on this compact set, when it exists, will in fact be the global
MLE.

Fix the true parameter value a and consider the likelihood for some a, with
Bo < a,. Consider observations {x,,...,x,} = {(T, 8)),...,(T,,5,)}, without
loss of generality written in order of increasing T;. Let A, denote ¥7_,5;. A
portion of the likelihood at @, corresponding to the deaths is

(5.10) IT agr;,Tro~t e 2T,
6,=1

where

n(de)
[R(T}), w/2) COSO

Al=/\d+

The remaining terms in the likelihood are bounded above by IT; _oao/T;.
Since B, < ay, R(#) is a decreasing function of ¢; hence, the A; are nondecreas-
ing. Subject to this restriction, the values of A; that maximize (5.10) are

The product (5.10) is then less than
aTSA,
=1 TL 5T
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Thus, the whole log likelihood at a is bounded by

n TiaoAn
(5.11) nlogayg+ Y. logT/ 1+ Y, log{————;—}.
1 5,=1 Y
Note the following proposition, whose proof will be deferred.

PropPoSITION 5.12.  For any fixed h > 0, there exists an «, depending on a,
such that

L({xy,...,%,},a1) ) <

lim n~1 sup log
L({x,...,x,},a)

n—e ajla;=ag, By <ap
Next, choose a, > 1 large enough to satisfy the conclusion of Proposition

5.12 with h =1 and large enough that lim, ,,n " 'H(ay,n) < —log ay — 1.
Then, once n~'H(a,, n) + log @y < 0, which for almost all samples will hold
from some n, on, (5.13) implies that

sup log a; + n"'H(ay,n)

a); >ag
is attained at a,. A similar argument with «a, < B, shows that almost surely
as n — », the supremum of the likelihood off some set Ay = {a,/max(a, B) <
K} is less than the likelihood at the true parameter value. Thus, with probabil-
ity going to 1, the MLE on some set A, when it exists, will be the global
MLE. This combined with Proposition 5.9 proves Theorem 5.1. O

Proor orF ProprosiTiON 5.12. The second term of (5.11) and
log L({x4,...,x,},a)
grow linearly in n by the strong law of large numbers. It suffices to show that
by making «, large enough the remaining two terms of (5.11), when divided by
n, can be made to be asymptotically less than —% for any 2 > 0. Let E,
denote averaging over the empirical distribution function of the deaths for a
given sample of size n,

E.g=35,") g(T).
§=1

1

Write the last term of (5.11) as
H(ag,n) = A, (ayE,log T — log E,T*).
For any fixed «,, note by the concavity of the logarithm that H(a,,n) <0
with conditional probability 1 on the set A, > 1. Since P(A; = 0) < 1 for any

a.€ A, the strong law of large numbers implies H(a,, n)/n converges almost
surely to some constant ¢ < 0. Further, by the convexity of x? for y > 1,

log E,T*" > ylog E,T.
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This implies

(5.13) |H(ay,n)| =2|yH(a,n)| fory>1.

This all says that by choosing «, large enough, lim, _,,, n 'H(a,, n) can be
made arbitrarily small. By (5.13), increasing a, will decrease the third term of
(5.11) linearly in «a,, while it will increase the first only logarithmically. Thus,
a, can be chosen large enough to satisfy the proposition. O

The convergence in Theorem 5.1 is weak convergence of the transformed
distribution functions G(s, 7). This can be combined with Lemma 5.8 to give a
more direct statement about the parameter values themselves. An argument
by contradiction using Lemma 5.8 and (5.5) shows

lim P( sup dy(a;,a) > s) =0 forall e > 0.

n—o® a, €A%
The definition (5.6) of d, then says that estimates of a and B converge in
probability to the true values, while estimates of

/(' n(de) and Ac+-/; n(de)

r, m/2) €OS 6 0,r) sin@

Ag +

converge weakly in probability to the true values.

6. Maximum likelihood estimation in practice. In this section an
algorithm for fitting the maximum likelihood estimator is presented. Two
standard minimization programs are combined to give a slow, but effective,
algorithm for estimation.

First, a more convenient notation for the data is introduced. Given « and B,
let (T}, d;,c,),...,(Ty,dy,cy) be the observed data, sorted so that T2~ ¢ is
increasing in i, where d; is the number of failures occurring at time T; and c;
is the corresponding number of observations newly censored at time T;. If
there are no ties in the observed data, then d,=6; and c; =1 — §;. Let
R, = arctan ¢£ =

First note that, given @ and B, the search for the maximum can be
narrowed to a discrete measure u belonging to a fairly restricted set.

ProposITION 6.1. Consider maximizing the likelihood for fixed o and B.
The likelihood for any parameter value (Ag4, A, ) can be dominated by the
likelihood of another parameter (Ad, )\c, v), for which Ad = A =0 and v is
supported on the points R, ..., Ry.

Proor. For any (A4, A,, u), u can be written as the sum of two measures,
one u? with support U Y (R} and the other u* assigning measure zero to this
set. For i = 1,..., N — 1, let u’ be the measure concentrated on R; and R,
satisfying

'/[‘R,,RHI]COS(H) (#(d8) — u*(d6)) =0
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and
1

/[’Ri’ Ri+1] Sin(a)

(u'(do) — p*(do)) = 0.

Further, let u° be a point mass at R, satisfying

0

r{R;}

— =+ [ *(do

sin(R,) ‘[(O,Rll sin(0)M (d9),

and let 4V be a point mass at R, satisfying

N
WY{Ry) 1
—_— =, + *(de).
cos(Ry) d f[RN, 7/2) cos(0‘)‘p‘ (df)

Let v be the discrete measure u? + ¥ (u’. Then it is easy to check that for
any observation T, i =1,..., N, the first term of the likelihood (3.5) is

unchanged, while the second and third terms cannot be decreased. O

Thus, attention will be restricted to measures v of this form, and A; and A,
will be dropped for the remainder of this section.

Note that slightly more can be learned from the proof of Proposition 6.1.
For fixed a and B, unless the optimal v puts mass on both T} and T, ;, where
¢;=0and d,,; =0, or on an endpoint T; if d, =0 or Ty if cy =0, no
measure u can maximize the likelihood except one of the form v. Thus, if 7 is
the unique MLE of (A4, A,, 1) in the class of measures with support UY_(R,},
and if ¥ has support satisfying the above restriction, then 7 is unique in the
class of all measures.

As a notational convenience, let v, = v{R,}y/T2* + T*® . Further, let

v(d9) N oy

D; = [R;, =/2) cos(0) =j§=:i?’ Dy,, =0,
and
= v(do) _ Z 7
" Jo,rysin(8) T TP
and C, = 0.

Since the programs used to fit the MLE involve minimization rather than
maximization, from here on we will work with the negative of the log likeli-
hood, which can now be written

N
—log L(a,B,v(a,B)) = (d; +¢,)(T"D, + TFC;_,)
-1

13

(6.2) N N

- Y d;log(aT#™'D;) — ¥ ¢ log(BTLIC;).
i=1 i=1

Next note that, for fixed o and B, there is a unique value of v that minimizes

(6.2).
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PRrOPOSITION 6.3. For fixed a and B, the function (6.2) is a strictly convex
function of v on the set V={v; >0, i=1,..., N} and thus has a unique
minimum in this set.

Proor. We calculate the Hessian of (6.2) and verify that it is positive
definite where —log L is finite. This will prove the proposition. Less notation
is involved in regarding (6.2) as a function of v,,..., vy, so these will be used
as the variables in differentiation. Let A and B be the matrices
diag(T;*,...,Ty®) and diag(T;%,...,Ty?). Let C and D be the matrices
diag(d,/D3%,...,dx/D%) and diag(c,/C3,...,cy/C%), with the convention
that 0/0 = 0. Note that C and D have finite entries whenever (6.2) is finite.
Finally, let A be an N X N lower triangular matrix of ones: A;; = I(i > j). Let
¢t denote transpose. Then the Hessian of (6.2) is

H = AADXNA + BN CAB.

This is clearly positive semidefinite. A simple calculation shows that for a
vector x, x’Hx = 0 implies x = 0 where —log L is finite. Briefly, let E, be the
matrix with entries E,,; = I(i > k, j > k). Then ADA* = ¥} |D,,E,. Thus,
for each &, either Dy, = 0 or L. ,(Ax), = 0. A similar set of equalities is
obtained from B and C. If the likelihood is finite, then for each %, at least one
of D,, and C,, must be nonzero. This gives a set of at least N homogeneous
linear equations that x must satisfy to have x‘Hx = 0. It is straightforward to
check that N of the equations are linearly independent, and thus x must be
the zero vector. O

Thus, for fixed a and B, minimizing (6.2) over v is relatively easy. It is a
linearly constrained minimization problem in N variables with a convex
objective function. The Fortran subroutine NPSOL [Gill, Murray, Saunders
and Wright (1986)] is tailored for this kind of problem, and it is used in this
part of our algorithm.

Before discussing estimation of a and B, we note an interesting fact about
estimation of v. After deleting terms that depend only on « and B, (6.2) can be
written

N N

Y (e;+d;)D; —d;log(D;) + ¥ (c; +d;)C;_; — c;log(C;).

i=1 i=1
This is the sum of two objective functions in a form of isotonic regression [see
Barlow, Bartholomew, Bremner and Brunk (1972), pages 43-45], except that
the two sets of variables (D,,..., Dy) and (C,,...,Cy) are linked by the
constraints T;(D; — D;,,) = TA(C, — C,_,) for i=1,..., N. However, we
have not been able to find a way to exploit exact algorithms for fitting isotonic
regressions in this situation.

Next, we maximize the likelihood over @ and B. From the preceding
propositions, the function /(e, B) = min (—log L(a, 8, 7)) can be evaluated,
though no explicit formula for the minimum is available. However, / is merely
a function of two variables, and the IMSL derivative-free subroutine ZXMIN
[IMSL (1982)] can be used to search for its minimum. This is the procedure we
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used to maximize the likelihood, with the initial value for the iteration taken
to be the MLEs of @ and B, assuming independent Weibull survival and
censoring distributions. ZXMIN minimizes the function /(a, 8). Evaluation of
the function (e, B) is itself a minimization routin€ performed by NPSOL.
This is fairly slow, but can undoubtedly be accelerated by more efficient
minimization. .

One outstanding point is whether /(a, 8) has a unique minimum or whether
the estimated parameters obtained depend on the initial values used in the
iterative procedures. Lacking an explicit expression for I(a, 8), we cannot
prove that it is convex. However, we can offer some empirical and heuristic
evidence for its convexity. First, on the empirical side, for every data set we
have tried, the minimization procedure started from a variety of initial posi-
tions never converged to anything but the value obtained by starting at the
MLEs assuming independence. On the heuristic side, consider a univariate
Weibull distribution with shape parameter a and scale parameter A, and hence
density f(x;a, A) = aAx®"! e **". The negative log likelihood of observations
Xy,..., Xy is not a convex function. However, for fixed « it is convex in A, and
the function min (—log likelihood) is convex in a. One can hope that this last
property carries over to the bivariate Weibull.

In fitting the global MLE, the potential exists that the likelihood function
may diverge to infinity as « or B8 goes to infinity. However, as long as the data
set is reasonably large, it is unlikely that one of the estimated shape parame-
ters will diverge to infinity. Indeed, examination of the likelihood shows that
for B > a the only time the likelihood for a sample will be unbounded as
B — » is when there is only one censored observation and it is the largest T;.
In this case, the maximum likelihood procedure will try to model the censoring
distribution by a point mass at this observation. By letting B — =, the joint
distribution can approach this. A similar observation holds for deaths. Thus, if
there is at least one observation larger than the smallest death and at least one
observation larger than the smallest censoring time, then maximization of the
likelihood will not lead to divergence. This will hold for practically any real
data set.

The point that the MLE of (A 4, A, u) may not be unique can cause some
concern. However, much of the potential nonuniqueness of the MLE disap-
pears if interest is only in the marginal survival distribution Fj(¢) or censor-
ing distribution F,(¢). Suppose a« and B have unique estimates. Then, as
noted after Proposition 6.1, there may be no other (A4, A, u) that has likeli-
hood equal to that of v. Even if this is not the case, the class of MLEs of Fp(¢)
cannot be too varying, since each (A4, A,, u) must agree with the uniquely
determined » in all of the values of D; and C; that appear in the likelihood.
This may not completely determine the Weibull scale A, + [§/%u(d8)/cos(6),
but, setting I = max{i: d; > 0}, it does determine A, + [, r,;4(d8)/cos(6) for
i < I, and similar integrals of 1/sin(#), so there is not much variety in the
class of MLEs of the marginal scales. In fact, as long as there is no mass at the
angles corresponding to the first and last events, then the MLEs of the
marginal scales are unique.
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7. An example. In this section we demonstrate application of the model
to an actual data set. Data were collected during a two-year pilot stroke data
bank study initiated in 1980 by the National Institute of Neurological and
Communicative Disorders and Stroke. The goal of the pilot study was to
determine whether the collection of stroke data in this manner as a resource
for future research was feasible. Four clinical centers collaborated to provide
data on 1158 hospitalized stroke patients. A complete description of the study
can be found in Kunitz et al. (1984). For our example we use survival and
censoring data for the subset of 101 patients with diagnosed intracerebral
hemorrhages. Forty deaths occurred among these 101 stroke patients, most
during the first three months of study, while censorings were spread across the
two years of observation.

In each of Figures 2 and 3, the step function plotted is the Kaplan—-Meier
estimator (KME) of the marginal survival and censoring distributions, respec-
tively, assuming independence of the death and censoring times. The dashed
curve in each figure represents a Weibull marginal fit under the same assump-
tion. The estimated scale and shape parameters were 8.27 X 10~2 and 0.357 in
Figure 2 and 9.21 X 10~* and 1.26 in Figure 3. The solid curves in Figures 2
and 3 were generated under the bivariate Weibull assumptions of our model.
The pictured marginal Weibull distributions appear to be very different from
those produced under the independence assumption. Indeed, the scale and
shape parameters for this full Weibull model were 5.19 X 1072 and 0.59 in
Figure 2 and 3.51 X 10~2 and 0.70 in Figure 3.

The 4 parameter in the full model put positive mass on four angles, which
is typical of most data sets to which we have fit the model. In this case there

O O O O o o o o
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Fig. 2. Survival function estimates for failure time distribution.
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Fic. 3. Survival function estimates for censoring distribution.

are no masses at the first and last observations, and no masses at adjacent
observations, so i is unique, and the estimates of marginal scales are unique
as well. The distribution of the masses is as given in Table 1.

Since B > &, arctan TA-% is an increasing function in T, so as time in-
creases, the point masses of 1 will change from causing observed deaths to
causing observed censoring. Thus, the model allows the hazard rate for
observable deaths to decrease relative to the corresponding hazard rate for a
Weibull distribution with the same shape parameter in the case of independent
censoring. These discrete drops come at days 5, 29, 82 and 283. The time of
the first censored observation is 5 days while the time of the last death is 283
days. The model fit puts probability 0 on observable censorings before 5 days
or observable deaths after 283 days. This must be taken with a grain of salt;
just as point masses of the KME are not taken literally to be atoms of the
survival distribution, these point masses should not be taken as anything more

TaBLE 1
Distribution of masses

Mass Angle Time (days)
7.55 x 103 0.871 5
3.17 x 1073 0.962 29
1.69 x 10~2 1.013 82

1.22 X 1072 1.071 283
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than an estimate of a much smoother distribution. The most important things
are the marginal distributions.

Our bivariate Weibull model seems reasonable for this data set partly
because the Kaplan-Meier estimators plotted in both figures appear fairly
Weibull in shape. The KME and dependent Weibull curves should not be
compared directly, as they are fit under essentially different sets of assump-
tions. As mentioned, there is no way to test the appropriateness of the model;
however, in the case of independence, it is worthwhile to check that the
Weibull is a reasonable model. Next, the Weibull is a rich family of distribu-
tions and the dependence we allow is fairly general, even including the case of
independence of the survival and censoring mechanisms. Finally, an argument
can be made for positive dependence in that a patient who has remained stroke
free is probably more likely to be happily involved in the study and less likely
to leave than one who has suffered a stroke.

Recall from Figures 2 and 3 and previous discussion that assuming indepen-
dence of the marginal Weibull distributions leads to very different results than
operating under the assumptions of our bivariate Weibull model. For the case
of survival, each of the marginal Weibull scale and shape parameter estimates
under independence are within the same order of magnitude as that produced
under the full model. However, values in the tails of the distributions, where
interest often lies, can vary greatly, as seen in Figure 2. For censoring, the
parameter estimates under the two models obviously differ, even by orders of
magnitude. In fact, one leads to an increasing hazard rate and the other to a
decreasing rate. The two curves in Figure 3 appear quite disparate, especially
in the non-tail sections. For both survival and censoring, the independent
Weibull marginals tend to overestimate these probabilities as compared to the
dependent Weibulls of our model. Thus, by using our model in this study, one
may have a more pessimistic, but possibly more realistic, view of survival after
intracerebral hemorrhage.

How are these estimates to be interpreted? Of course, no model for depen-
dent censoring can work magic and tell us whether censoring is independent of
failure or not. What they can do is give an indication, under minimal assump-
tions, of the possible consequences of dependent censoring. If a model for
dependent censoring gives an estimated survival distribution that is signifi-
cantly different from the distribution estimated under independence, then it
may give an invéstigator cause to think about assumptions more carefully.

Acknowledgments. We would like to thank Jerzy Filar for recommend-
ing the package NPSOL and Jim Dambrosia for the intracerebral hemorrhage
data set in our example.
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