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DECISION THEORETIC OPTIMALITY OF THE
CUSUM PROCEDURE

By Y. Ritov

The Hebrew University of Jerusalem

Suppose X, X,,... are independent random variables such that for
some unknown v, each of X,,..., X,_, is distributed according to F,
while X,, X, . ,, ... are all distributed according to F,. We prove a result of
Moustakides that claims that the CUSUM procedures are optimal in the
sense of Lorden. We do that by proving that the procedures are Bayes for
some stochastic mechanism of generating v.

1. Introduction. Let us assume that X,, X,,... are independent ran-
dom variables, X;,..., X,_; have a common distribution F,, while
X,,X,,1,... are all distributed according to F,. We assume that F;, and F,
are known, v is unknown and X, X,,... are observed sequentially. We wish
to find a stopping time N that detects the change point » as soon as possible.
Let F, be the o field generated by {X,,..., X,}.

We define the optimality of a stopping time in the sense of Lorden (1971).
That is, we consider the conditional expectation of the loss function given the
least favorable event before the change point. One possible formal definition
of the problem is: look for a procedure that minimizes sup, ess-sup
E{(N —v + 1*|F,_,} subject to EAN) <y, where E, is the expectation
operator when the change point is at time v. It was proved in. Moustakides
(1986) that the CUSUM, or Page, procedures are optimal in that sense. We
consider a slightly different version of this problem, which is more standard
from the decision theory point of view. As a consequence, we obtain an
alternative proof of Moustakides’ (1986) result. We believe that our proof is
instructive, since we prove that, in some sense, the CUSUM procedure is a
Bayes procedure, a fact that is not mentioned in Moustakides (1986). To be
exact, we consider the situation as a sequential stochastic game: The statisti-
cian chooses a stopping time N, while nature chooses the change time v, and
both 1., and 1,.,,; should be a (random) measurable function of
X, X5, ..., X,

2. Main results. Let U,,U,,...,V,,V,,... and W,,W,,... be indepen-
dent random variables, all defined on the same probability space, U, ~ U(0, 1),
V.~Foand W, ~F,i=1,2,....

Let N, be the class of all random variables v such that 1,,_,, is a measur-
able function of U, and 1,_,, is a measurable function of 1, _,,, U, and

{v=n
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Vi,...,V,_;. Given v € N, define X, = 1,.,V, + 1, _,,W,. The class of all
stopping times for the sequence X;, X,,... is N,. For any N € N, E(N is the
expectation of N applied to W;,W,,... and E_N is the expectation of N
applied to V,,V,,....

Let L, = dF,/dF(X,) be the likelihood ratio. For simplicity, we assume
that L, is a continuous random variable both under » <n and v > n. Let
Sy=0and S, =L, max{1,S,_,} for n > 0. A CUSUM stopping time with
threshold A, N, € N,, is defined by N, = inf{n: S, > A}.

We consider the loss function

1) I(»,N)=Cly., - Cymin{N,» — 1} + C(N—» + 1)".
{N <v} 2 ¢

This loss function is quite reasonable. It pays to use the machine as long as
possible before the change. On the other hand, one pays for false alarms and
for using the machine after the change.

A strategy for nature is a specification of P(v = njv > n, X,,..., X, _,),
n=12,....Let v,(0 <p < 1) be defined by

P(vp = n|vp > n,Fn_l) =p(l - Sn_1)+.

Note that since the change may happen at any n such that S,_; <1,
P(Vp <) =1.
Let p, = 0 and for n > 1, define p, by

Pn P
= S
1-p, 1-p

n-

LEMmmMma 1.

P(v, < n|F,) = p,.

Proor. First,

P(v,<1F,)  P(y,=1) P
1-P(v,<1F) 1-P(y,=1)"" 1-p "

Thus the claim is true for n = 1. We lcontinue by induction. Assume that
P, <n - 1|F,_,) = p,_,. Clearly,

P(v, <n|F,_,)=P(v,<n - 1|F,_,)
+{1 - P(v, <n - 1|F,_)}P(v, = n|F,_,, 7, > n)

=Pn-1 + (1 _pn—l)P(Vp = n|Fn—1y Vp = n)
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Hence, the definitions of p,_,, v, and some algebra now yield
P(Vp = nIFn—l) _ Pp-1t (1 _pn—l)p(l - Sn—1)+
l_P(Vpsann—l) (l_pn—l){l_p(l_sn—1)+}
_ Pn-1 1 " p(l _Sn—1)+
1-p,.11-p(1-8, )" 1-p(1-85,. )"
p Sn—1+(1_p)(1_sn—1)+
1-p 1-p(1-8,.)"

p
= ?; max{l, Sn—l}‘

Hence

D p

P(v,<n|F,) Py, <n|F,_,)
1-P(v,<n|F,) 1-P(y,<nF, )

L

n

- P max(1,8, )L,
1-p

Lemma 1 follows. O
Our main result is as follows.

ProposiTION 1. Suppose C; — Cy > C;. Let A be the unique solution of
(2) C,-Cy,E,N,=C,E,N,.
Then for some p € [0, 1],
El(v,,N,) = nglf\; sup El(v, N) = sup Ingf;sEl(v, N).

c vENg vEN,

ProOF. Suppose that nature uses a v, strategy. The optimal strategy of
the statistician should be based only on,the a posteriori probability that the
change has already occurred, i.e., given N > n, the decision N = n should be a
function only of P(v, < n|F,). But P(v, < n|F,) = p,, by Lemma 1. We prove
now that the optimal procedure is a threshold one, i.e., stop the first time p,,
or equivalently S,,, is above a given level. We call the interval 2, 2 + 1,...,l a
cycle if p, =p and [ = inf{n >k, p, = p}. Since all cycles are alike, any
stopping rule & that is a function of p, only is characterized by
£0(8), qo(8), (¢,(8), q,(8)), i.e., the expected length of the cycle and the probabil-
ity that the change will be declared during the cycle, respectively, under the
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assumption that the change point will be after the end of the cycle (was before
its beginning). Note that ¢,(8) is the expected time until either a change is
declared or p, = p. Now, the risk of the procedure is the expected value of the
loss during the cycle multiplied by the expected number of cycles, or

(1 _P)(01QO(3) - Czto(é)) + pCiyty(8)
(1= p)ao(8) + pgy(d)

To find the class of optimal procedures we find the minimizer of the
numerator subject to a fixed value of (1 — p)qy(8) + pq(8). Using a standard
Lagrange multiplier argument we can consider the loss function

(1 _P)(01QO(5) - Czto(a)) + pCyty(8) + )‘[(1 —P)qo(9) +pQ1(5)]

for some Lagrange multiplier A.

Now this loss function is linear in p and therefore the risk function is
concave. Since we certainly should stop immediately if p = 1, the optimal
procedure should be a threshold one. This last step of the argument is
equivalent to the proof of the optimality of the SPRT procedure [cf. Lehmann
(1959) pages 104-106]. We obtained that the CUSUM is an optimal answer
tov,.

But how does nature choose p? Clearly, both E,(N,) and E(N,) are
increasing functions of A, convergingto1las A — 0 and to ©» as A — «. Hence
(2) can be solved.

Moreover, let A(p) be the optimal value of A when nature chooses the
change point according to v,. Then E{N,,, ranges continuously from 1 to
as p ranges from 1 to 0. Therefore nature can pick a value of p for which
A(p) = A, where A satisfies (2), i.e., C; — CoE {Ny,)} = C3E{Ny).

Suppose the statistician uses a CUSUM procedure with this A. We claim
that the suggested strategy for nature [v, with A(p) = A] will maximize the
expected loss: nature can choose either v = @ or v < w. If » = « is picked,
then the expected loss will be C; — C,E_{N,}. Otherwise, nature may choose
any n < N,. But, if S,_; < 1, then the expected future loss is C3E,{N,}. It is
smaller than that when S, _; > 1, since the expected time from n to N, is
monotone in S,_, (note that S,, is stochastically monotone in S, for any
m > n). Nature should therefore not pick any n if S,_; > 1 (it will be better
to pick ») and can randomize between n and infinity if » > n and S, _; < 1.
Hence C;E,{N,} is the maximum that nature can ensure and the suggested
procedure guarantees it.

We conclude that the above pair of strategies is a saddle point of the game.

O

We prove now the main result of Moustakides (1986).

ProposiTioN 2. A CUSUM procedure with A > 1 minimizes sup, ess-
sup E{(N — v + 1)*|F,_,} among all N € N such that E_N > E,N,.
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Proor. Suppose that for some N € N,, E_LN > E_N, and sup, ess-sup
E{(N —v + D*|F,_,} < E,N,. Then there exists N’ € N, that satisfies both
inequalities strictly [e.g., P(N'=N+1)=1 - P(N' = N) = ¢ for some ¢ > 0
and the randomization is independent of everything else].

Let (v,, N,) be the saddle point of the game with loss function

IP(v,N) =1y, — CP min{N,v — 1} + C(N —v +1)".
Note that by (2),
(3) CPE.N, = 1 — CPE,N,.
Now,

(4)
E min{N,,v, — 1} - E,N, and Emin{N',», -1} - E,N' asp — 0,

E(Ny—v, +1) =P(Ny > v,)E(N,y — v, + 1N, > 1)
= P(N, > v,)E N,

and by the definition of N’,

E(N'-v,+1)" =P(N'2v,)E(N' - v, + 1|N' = 1,)

(5)

< P(N' > v,)supess-sup E,{(N' — v + 1) "|F,_,}

(6)
<P(N' > v,)supess-sup E{(N, — v + 1)+|Fn_1}

= P(N' > v,)E,N,.
Now,
1-ElI”(v,,N)=P(N' 2v,) + C¥Emin{N',v, — 1} - C¥E(N’' - v, + 1)+
> P(N' 2 v,) + C{PE min{N', v, — 1}
(7) ~ C{PP(N' = v,)E,N, [by (6)]
=P(N' > vp)(l — C$¥E,N,) + CSPE min{ N’, v, — 1}
= C{®[P(N' 2 v,)E.N, + Emin{N',v, - 1}] [by(3)].
Similar expressions but with equalities throughout, hold for I(v,, N,):
(8) 1-EI(v,, N,) = C{"[p(N, 2 v,)E.N, + Emin{N,,v, - 1}].

Since P(N' > v,) » 0 and P(N, > v,) — 0 as p — 0, we obtain from (4)
and (8) that

(9) glll}) {1 -E®(v,, Ny)}/CP = E Ny,
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while (7) implies that
(10) 1i21;i31f{1 - El®(v,, N')}/C{ > E,N' > E_N,.

We conclude from (9) and (10) that for p small enough, EI‘"(v,, N') <
El’®(v,, N,). This is a contradiction since N, is Bayes. O
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