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A COMPARISON OF GENERALIZED CROSS VALIDATION
AND MODIFIED MAXIMUM LIKELIHOOD FOR ESTIMATING
THE PARAMETERS OF A STOCHASTIC PROCESS!

By MicHAEL L. STEIN

The University of Chicago

Wahba compared the performance of generalized cross validation (GCV)
and modified maximum likelihood (MML) procedures for choosing the
smoothing parameter of a smoothing spline. This work makes a more
careful study of the two procedures when the stochastic model motivating
the modified maximum likelihood estimate is correct. In particular, it is
shown that in the case of the linear smoothing spline with equally spaced
observations, both estimates are asymptotically normal with the GCV
estimate having twice the asymptotic variance of the MML estimate. The
impact of using these estimates on the subsequent predictions is also
calculated. Conjectures on how these results should generalize to higher
order smoothing splines are developed. These conjectures suggest that the
penalty for using GCV instead of MML when the stochastic model is correct
is greater for higher order smoothing splines, both in terms of the efficiency
in estimating the smoothing parameter and the impact on subsequent
predictions.

1. Introduction. Wahba (1985) has compared the performance of gener-
alized cross validation (GCV) and modified maximum likelihood (MML) (what
Wahba calls generalized maximum likelihood) for choosing the smoothing
parameter of a smoothing spline. Up to the order of approximation considered
in her paper, Wahba (1985) found that in terms of the performance of
subsequent predictions, GCV does at least as well as MML in a variety of
situations and does much better in some situations. In particular, Wahba
(1985) considered the behavior of predictions based on GCV and MML esti-
mates when the Gaussian stochastic model that motivates the MML estimate
is true. This circumstance might be considered the most favorable for MML
and yet Wahba (1985) showed that, to first order, predictions based on a
simplified version of the GCV do asymptotically as well as a similarly simplified
version of the MML. A special case of her results is obtained by assuming the
underlying process is Brownian motion and observations are taken at equally
spaced intervals subject to iid Gaussian errors. The optimal linear predictors
form a linear smoothing spline in this case. The covariance structure of the
observations is particularly simple andthis special structure will be exploited
here to obtain the asymptotic distributions of the MML and GCV estimates of
the smoothing parameter, which is essentially the ratio of the variance of the
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1140 M. L. STEIN

increments of the Brownian motion to the variance of the observational errors.
In particular, in Section 2, for such a process observed at 0,n~1,2n"1, ..., 1,
the MML and GCV estimates of the smoothing parameter are shown to be
asymptotically normal with variance of order n~!/2 instead of the usual n~!
and the asymptotic variance of the GCV estimate is twice that of the MML
estimate. This result is used to approximate the density and the mean squared
error of predictions based on the GCV and MML estimates. Stein (1989) gives
rigorous proofs of these approximations when the MML estimate is used. In
Section 4, I make conjectures as to how these results should generalize to
higher order smoothing splines. For example, when the underlying process is
integrated Brownian motion, which corresponds to using the cubic smoothing
spline, the asymptotic variance of the GCV estimate of the smoothing parame-
ter is conjectured to be 10/3 that of the MML estimate.

The linear smoothing spline has been largely ignored in the splining litera-
ture, probably because it is not differentiable at the observation locations and
thus does not yield a sufficiently smooth regression surface for most problems
in nonparametric regression. There are two reasons for studying this model
despite this problem. First, it is easy to study and we might hope that the
results obtained will give insights into how estimates of the smoothing param-
eter in the higher order splines should behave. Furthermore, if the indepen-
dent variable represents time or geographic location rather than the values of
a covariate for some population, then this model is not at all inappropriate.
Indeed, in the geostatistical literature, covariance structures for mineral de-
posits that are like the covariance structure of Brownian motion plus noise
over at least relatively short distances are perhaps the most frequently used
type of model [Journel and Huijbregts (1978), Chapter 4].

2. Estimating the smoothing parameter. Suppose W(x) is a Gaussian
process on R satisfying EW(x) = u and y(h) = sE(W(x + h) — W(x))? =
a?|h| for all x. The function y(-) is known as the semivariogram in the
geostatistical literature [Journel and Huijbregts (1978)]. By describing the
covariance structure of W(-) in terms of y(-), the distribution of W(:) is not
quite specified, as var(W(x)) is not defined. If we set var(W(0)) = 0, then
cov(W(x),W(x") = 20 min(|x|, |x'|)I,. . o); that is, W(-) is just Brownian mo-
tion with var(W(1)) = 202. However, all of the results in this and the next
section depend on the covariance structure only through y(:), so we will leave
var(W(x)) undefined.

Suppose we observe

(2.1) y;=W(8j) +e;, forj=0,...,n,

where the ¢;’s are iid N(O0, 72) and independent of W(-) and & is the distance
between neighboring observations. We will mainly consider 6§ = n~! in this
paper. Taking 6 = n~! would be standard when considering problems in
nonparametric regression and § = 1 would be standard in time series analysis.
Based on these observations, the best linear unbiased predictor of W(x) has
the form Y A,y;, where the mean square prediction error is minimized subject
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to the unbiasedness constraint EX A,y; = EW(x) for all u. The unbiasedness
constraint is just ¥ A; = 1, and the mean square error of a linear unbiased
predictor can be evaluated in terms of y(:) and 7% in the present case it is
given by

n 2
E(Z)\jyj—W(x)) -722 A2+2022/\|x—811—80 2 AAyl) — K.
=0 Jj=0 J=0 Jk=0

The best linear unbiased predictor, or kriging predictor, minimizes this expres-
sion subject to the unbiasedness constraint. We see that the minimizing A;’s
depend on o2 and 72 only through 8 = o2/72

This kriging predictor is in fact identical to a linear smoothing spline. In the
present setting, the smoothing spline f(-) of degree 2m — 1 is defined as the
minimizer of

1
n+1

M=

(2.2) (F(2)) =) o A[ ()’ d

J

By taking A = 26/(n + 1) and m =1, f(x) is identical to the best linear
unbiased predictor defined above [Kimeldorf and Wahba (1970); Wahba and
Wendelberger (1980)].

For purposes of obtaining the kriging or splining predictor, the essential
parameter that needs to be estimated is 6, or equivalently, A. Wahba (1985)
compares two methods for estimating 6, generalized cross validation (GCV)
and what she calls generalized maximum likelihood. Since her generalized
maximum likelihood estimate is in fact identical to the modified maximum
likelihood (MML) estimate of 6 as defined by Patterson and Thompson (1971)
in a different context, I will refer to this estimate as the modlﬁed maximum
likelihood estimate. Denoting these estimates by 8oy and 8,5, respectively,
in this section both estimates are shown to be asymptotically normal with the
asymptotic variance of fgcy twice that of 6y . This result for o, assumes
that its asymptotic distribution can be determined by taking a linear approxi-
mation of the equation obtained by setting the derivative of the GCV criterion
equal to zero.

Let us consider 87,;,. The modified maximum likelihood estimates of 6 and
72 are determined by maximizing the likelihood of the contrasts of the
observations; that is, the largest set of linear combinations of the observations
that are linearly independent and have mean zero [Patterson and Thompson
(1971)]. The modified maximum likelihood estimates do not depend on the
particular definition of the contrasts; for simplicity, we will consider Z = (y, —
Yor-++»¥n — ¥Yn_1). By construction the distribution of Z does not depend on u
and the log likelihood of 72 and 6 given Z is

n 1 1
1(r2,6;Z) = —Elog27r— nlog v — Elog|T+ 26681| — 2—2-Z'(T+ 2051)"'Z,
T
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where T is the n X n tridiagonal matrix
2 -1
— 1 .
-1
-1 2
Now T has the eigenvalue decomposition S’A S, where A is a diagonal n X n
matrix with ith value 2(1 — cos(wi/(n + 1))} and S is an orthogonal n X n

matrix with ijth element (2 /(n + 1))/?sin(7ij /(n + 1)). Letting X = SZ, the
log likelihood is

n 1
1(r2,0; X) = — —log2m — nlog r — —log|A + 208I]
2 2
(2.3) 1
- —X'(A + 2051)7'X,
27

where X ~ N(0, 7%(A + 26061)). An additional simplification is possible in that
|T + 2661 = |A + 2681| can be explicitly evaluated. Let U, (a,b) bethe n X n
symmetric tridiagonal matrix with a on the main diagonal and & on the
off-diagonals, where a > |2b|. By row reductions,

|U.(a,b)| =a|U,_i(a,b)| — b%|U,_y(a,b)]|.

We have a linear difference equation with initial conditions |U,(a, )| = @ and
|Uy(a, b)| = a? — b?; it follows that [Strang (1976), page 186]

U 5 lia+c\»*1 1/a—c\n*!
el - () 2]

where ¢ = (a® — 4b2)'/2, In the present case, a = 2 + 206 and b = —1.

Calculating X takes O(n?) operations, although if n + 1 is composite, the
fast Fourier transform can be used to reduce the computations. Once
X2 ..., X2? has been calculated, the log likelihood given in (2.3) requires
n + O(1) multiplications /divisions for each value of 6. Order n algorithms are
available for both the modified likelihood function [Kohn and Ansley (1987)]
and the GCV criterion function [O’Sullivan (1985) and Hutchinson and de
Hoog (1985)] for all positive integers m. Specializing the algorithm of Kohn
and Ansley (1987) to the present case, the modified likelihood function takes
4n + O(1) multiplications/divisions, which can be reduced to 3n + O(1) by
using the explicit formula for the determinant given here. Thus, if evaluation
of the modified likelihood function for many values of 8 is required, it may be
preferable to use (2.3) despite the initial effort needed to compute Xz ..., X2

The modified maximum likelihood estimates of 6 and 72 denoted by BMML
and 73, are given by the solution to

1 B
0= 51(72,0; X)=- ;tr(A +2081) " + 5 X'(A +2051)°X
T
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and
a 9 n 1 , -1
0=57—_§l(7',9;X)=—“272'+§;2X(A+2031) X.
Wahba (1985), page 1384, notes that her generalized maximum likelihood
estimate of 6 is in fact the same as that obtained by maximizing the likelihood
of the contrasts. The Fisher information matrix for 6 and 72 based on X is

n/(274) st 2tr(A + 201) "
5r-2tr(A +201)"  20%tr(A +201) % )
If 6 = n~ 1, for fixed § > 0, as n > =,

n ak 0\
Y {2(1 — cos + —)}
A1 n+1 n

. .

- 0 - .
= f (1+——cosy) dy + O(n’)
0

tr(A + 20n"1) "

2/ n
n

(24) )1/2

92-1(2 + n=10)’ '(2n710 + (8/n)"

Jml(2j -2k —3)M(2k -1 (2+n70
X
P EI(j—Fk—1)! n='e
(25 - 3)!
= 22-172(j — 1)167-1/2
where (2j + DI!=1-3---(2j + 1) and (= 1! = 1 [Gradshteyn and Ryzhik
(1980), page 383]. Since the components of X are independent, it follows from

standard results on maximum likelihood estimates that for 6 = n~1, By, and
#2.,. are asymptotically efficient and

n/* (B, — 0) . N((O) (25/293/2 0 ))

n1/2(€'%,[ML - 72) 7 0/ 0 274

It is important to note that 8y, — 0 is O,(n~'/%), whereas #20, — 72 is the
more usual O,(n~'/?). it can be shown that the asymptotic covariance matrix
of &2y, and 73y is the same as that for the minimum variance quadratic
unbiased invariant estimates of o2 and 72 as found by Stein (1987).

If we instead set 8 = 1, by approximating tr(A + 201 )~/ by an integral as in
(2.4), we can obtain

) -0 -1
n1/2(A2MML 2) -, N((O),2(1+0—(20+02)1/2)
0

TMMmML — T

) + 0(n’)

n/*1/2 + 0(n’),

L 20+ 62)°%  —7%(20 + 62)
220+ 6%) 2+ 0) ||
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Now that the distance between neighboring observations does not depend on
n, we get the more familiar asymptotic results in which both 6, — 6 and
%I%AML - 7'2 are Op(n_1/2). R
Now let us consider the asymptotic behavior of 6y. For the setup given by
(2.1), it can be easily shown that the expression I — A()) as defined by Wahba
(1985) is equal to C'(T + 2061)~'C, where C is the n X (n + 1) matrix
1 -1
C = " . . . )
1 -1
so that f;y is the minimizer of [see (1.2), Wahba (1985)]
12 _
|C(T +2081)7'Z|  Z'(T + 2081) " 'T(T + 2081)'Z

[tr (T + 2051) ¢ [tr T(T + 2061) 7]
X'(A +205I) "A(A +2081)'X

(2.5) -

[n - 206 tr(A + 2061) Y]
X'Q0)X
(tr Qo(6))*
where @Q;(8) = (A + 2061)77 — 208(A + 2081)"Y*D. Furthermore,
(d/d6)Q;(6) = —2(j + 1)6Q;, (0). Thus, any local minimum of (2.5) satisfies
(2.6) X'Q(0) X tr Qy(6) — X'Qx(8) X tr @,(8) = 0.

Assuming that the asymptotic distribution of 5GCV can be obtained by taking a
first order Taylor series of (2.6) about the true value of 6, we obtain the
approximation

5 e i XQ,XtrQ,—XQ,XtrQ,
Gev 26 3X'Q,XtrQ, - X'@,XtrQ, - 2X'Q,X tr Q,
1 XQ,XtrQ,— XQ,XtrQ,
2572 tr @, tr @, — (tr Q1)2

where we have suppressed the dependence of @; on 6 and the second approxi-
mation follows by replacing the denominator of the previous line by its
expected value. Applying Liapunov’s theorem [Chung (1974), page 200] to
X'TQ, tr @, — @, tr @,1X, which is a sum of independent random variables, it
follows from (2.4) and (2.7) that when 6 = n™ 1,

n1/4(éGCV - 0) -, N(0,27/%6%/%),

(2.7)

b

and when 6 = 1, |
n*(fgey — 0) - N(0,4(20 + 02)3/2/{1 +0—(20+ 02)1/2}).

In both cases, the asymptotic variance is twice that of 8yy,;..
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3. Predicting with an estimated parameter. In this section, we con-
sider the effect of using an estimated value of 6 on subsequent predictions. As
a first step, we give a very accurate approximation to the best linear unbiased
predictor by deriving an exact expression for the best linear unbiased predictor
in a modified scenario. Consider the situation described by (2.1) except that
now j ranges over the integers instead of from just 0 to n. For x € [0, §), the
best linear unbiased predictor of W(x) based on this doubly infinite sequence
of observations that are & apart and where 8 = 02 /72 is

80(1 + x0) } o
- x0

{56(2 + 50)}"/* Y. a(860)'y_

Jj=0

W(x;5,0) = [
(3.1)

=]

— (8~ x)ﬁ’} Y a(86)y;,

Jj=1

80(1+ (6 —x)0)
+
[ (66(2 + 56)}'/*

where a(¢) = 1 + ¢t — {#(2 + t)}'/2. We see that the predictor depends on x, §
and 6 only through 66 and x6, so we can write

Ww(x;6,0)= Yy b;(66,x0)y,.

Jj=—»

The optimality of this predictor can be demonstrated by showing that Wx;8,0)
is unbiased and satisfies the orthogonality condition that W.(x; 5, 8) — W(x) is
uncorrelated with all contrasts of the observations. The unbiasedness condi-
tion can be verified by straightforward calculation. To obtain the orthogonality
condition, it suffices to show that W.(x;8,0) — W(x) is uncorrelated with
y, —y;, for all k>1, y, —y, for all 2 <0 and y, — y,. For example, for
k > 1, we have

cov(W(x;8,8) — W(x),y, —y1)

It

72(b,(560,x0) — b,(56, x0)}

— 2502 f b,(80,%0)(j — 1) + (k — 1) 3 bj(60,x0)}
Jj=2 j=k+1

=0,
by elementary calculations. Furthermore,'
720{56 + 2x0(5 — x)}
(66(2 + 66)}"?

(3.2) E(W(x;8,0) - W(x))" =

Muth (1960) gives a one-sided version of (3.1) in which y; is observed 6nly for
j=<o.

For the remainder of the paper, set 6 = n~! and let W(x;0) = W(x;n"1,0).
Again suppose y; is only observed for j = 0,...,n, and consider predicting
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W(x), where k/n <x <(k + 1)/n, by

Wo(x;0) =S 1 Y b, (6071, (x — kn=1)0)y;,
j=0

where

S=Y b_,(0n7% (x— kn"1)0).

i —
0

TM:

W, (x;60) should provide a good approximation to the best linear unbiased
predictor of W(x) when n is large and x is not too close to 0 or 1 because
of the geometric decay of the weights in (8.1). Specifically, let W(x 0) be
the best linear unbiased predictor of W(x) based on y,,...,»,. Letting z =
min(x, 1 — x), it can be shown that for all n sufficiently large,

E(W,(x;6) — W(x;6))" = 0(e™*""),
where ¢ is any constant less than z. Furthermore, using the orthogonality
property of best linear unbiased predictors, it follows that
E(W,(x;6) — W(x;0))’
= E(W(x:6) — W,(x;60))" + E(W,(x;8) — W,(x;6))",
so that
(3.3) E(W,(x;0) — W(x;6))" = O(e=""),

for any ¢ < z. Thus, as long as x is not too near 0 or 1, Wn(x; 6) and W(x;0)
are very similar.
To evaluate the effect of estimating 6 on predicting W(x), consider

W, (2;0) — W(x)
= {(Wo(x;0) — W(x)} + {W,(x;6) — W,(x;0))},

where 6 is some estimator for 6. If 6isa function of the contrasts of the
observations, which is the case for 6,5, and 6oy, then the two terms on the
right-hand side of (3.4) are independent since the first is independent of
the contrasts and the second is a function of the contrasts. Thus, the penalty
for estimating 6 on prediction is to add an additional independent error to the
error of the optimal predictor. For a consistent estimate of 6, we should have

(3.4)

W,(x;6) = Wi(x;60) = (8 - 0) = W(xm

When 6 is Oy or Ogoy, then 6 and (d /d0)W (x;6) are asymptotically
independent normal random variables, which allows us to derive the asymp-
totic distribution of W, (x; 6,y — W, (x;60). For fixed x € (0, 1),

(3.5) nl/z{Wn(x;OMML) - Wn(x;O)} -, 27 Y%7 Z,,
(3.6) nl/z{Wn(x;éGCV) - W(x;e)} -, 12,Z,,
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where Z, and Z, are iid N(0, 1). In addition, n'/4 W, (x; 8yny) — W(x)} has a

density p,(y) satisfying
-1/2

9\ 1/2 4
3.7 p(y)= {27(72(5) + ——(1+ sn))}

2n1/2

1 o[ of9 2 74 - -1
X exp YT (5) + W(1+sn) +n'r(y),

where r;,(y) is uniformly bounded in n and y for all n sufficiently large and
s, = 0 as n - . Furthermore,

© A 2 o\ 1
(3.8) E(W,(x;0y) — W(x)) =72{(-2—7—L) + o +o(n‘1)}.

Outlines of the proofs of (3.5)~(3.8) are in the Appendix; for details, see Stein
(1989). Similarly, I would conjecture that n!'/*{W,(x;(0gcy) — W(x)} has a
density q,(y) satisfying

a,(y) = {%((g)/ P e ))}

(3.9) , .
1 0 1/2 4
xexp[——y2{72(—) + 'nT/E(l"'Sn)} ] +n7r(y)

-1/2

2 2

and

R 2 0\'* 1
E(Wn(x?eacv) —W(x)) =72{(-2—;) + Py +o(n‘1)}.

Prediction of time series with estimated parameters has been studied by
many authors, including Bhansali (1981), Fuller and Hasza (1981), Kunitomo
and Yamamoto (1985), Lewis and Reinsel (1985) and Toyooka (1982). These
studies all use the usual time series framework of a fixed distance between
observations as the sample size increases [6 = 1 in (2.1)]. They find that the
increase in mean square prediction error caused by estimating parameters is
O(n~") as found here, but since the mean square prediction error is O(1) in
their studies, the relative increase in mean square prediction error is also
O(n~1), whereas it is O(n~1/2) here.

4. Conjectures for higher order splines. In this section, we consider
how the results from the previous two sections should generalize when higher
order smoothing splines are used; i.¢., m is taken to be greater than 1 in (2.2).
It is well known that higher order smoothing splines also correspond to
optimal linear predictions under appropriate stochastic models [Kimeldorf and
Wahba (1970)]. In fact, the smoothing spline of order m is identical to a
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problem in universal kriging of order m — 1 [Matheron (1973)]. Specifically,
suppose

m-—1

(4.1) EW(x) = ) B;x’
j=0

and that W(-) has the generalized covariance function
(4.2) G(x) = o®(=1) " P,
by which we mean that if
p
Y Asi= Y wti=0, forj=0,...,m—1,
i=1 1

then ¥ A,W(s;) and ¥ w;W(¢;) are contrasts and

P q P q
COV( Y AW(s,), )Y wi(ti)) =X X )‘iij(Si - tj)'
i=1 i=1

i=1j=1

T Me

As in the case m = 1, it will not be necessary to define the covariances of
noncontrasts. Setting § = n~! throughout this section and again defining
0 = o2/72, I would expect the following generalizations of the results given
previously in this paper to hold:

(4.3) ((no)l/(4m)(éMML - 0)) >, N((O), (am02 04))

n2(Foa — 7°) o)\ 0 2
and
(4.4) (ne)l/(4m)(éch - 9) -, N(0, bmez)’
where

8m?sin(m/2m)
T (2m - 1){2(2m - 1)V
16m?2(2m + 1)sin(7/2m)
- 3(2m — 1){2(2m - 1)}VE™’
For predicting W(x) with x not too near 0 or 1,
E(W,(x;0) - W(x))" |
(4.5) (20(2m — 1)1}/ @2
2m sin(7/2m)

m

m

n—(2m—1)/(2m)’

E(Wn(x;éMML) - W(x))2
(4.6) E(W,(x;0) — W(x))"

=~ 1+ sin(w/2m){2(2m — 1)!16n} /™,
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and
E(Wn(x§éccv) - W(x))2
(4.7) E(W,(x;0) — W(x))’
PG 1);in(7r/2m) {2(2m — 1)lon) "™,

I would also expect results analogous to (3.7) and (3.9) to hold. If these results
are true, then they imply that the relative increase in mean square prediction
error due to having to estimate 6 tends to 0 at a slower rate, n “1/@m) as m
increases. In addition, the penalty for using fccy rather than OMML also
becomes more severe as m increases.

To see why (4.3) and (4. 4) are plausible, we will consider the behavior of
Oy, and Ogoy under a model for W(-) for which it exhibits similar local
behavior as it does under (4.1) and (4.2). Specifically, suppose W(-) is a
stationary Gaussian process on [0, 1] with unknown constant mean and covari-
ance function

(4.8) K(x) = o?(=1)""'m 7 By, (lx]),

for x €[—1,1], where B,, is the Bernoulli polynomial of order 2m
(Abramowitz and Stegun (1965), page 804]. W(-) is in fact a homogeneous
process on the circle with perimeter 1, which follows from the general form of
a homogeneous covariance function on the circle [(12) on page 74 of Yadrenko
(1983)] and the Fourier series for B,,, [(23.1.18) in Abramowitz and Stegun
(1965)]. Furthermore, K(x) can be written in the form

m—1
K(x) =02 ) ajx2j + (=)™ (lx>""t = m~x?m) ).
j=0

The local behavior of W(-) under (4.2) and (4.8) will be very similar, which can
be seen by noting that W™ ~1(x) is Brownian motion under (4.2) and is
Brownian bridge on [0, 1] under (4.8). Thus, it is plausible that the asymptotic
behavior of 6y, or Ogey should be the same under the two models.

We now outline a derivation of (4.3) and (4.4) when W(-) obeys (4.8). For
Jj=0,...,n—1, define y; as in (2.1) and set y, ; =y; for j=0,...,m — 1.
Let A be a forward difference operator so that Ay, =y;,; — y;. Define Z =
(Z,,... _1), where Z; = A™y,. Then Z is a set of n contrasts and since
there are only n hnearly 1ndependent observations, y,, ..., ¥,.;, the distribu-
tion of Z must be singular. The covariance matrix of Z can be written as
?A + 2B, where A and B are circulant matrices [Good (1950)]; specifically,
for i —j =k (mod n), where |k| < n/2, the ij’th element of A and B are
given by

a,=—2(2m — 1)'n"2" + n 72"t 1g,
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and
_ [ 2m Y
bk - (m —k )( 1) )
respectively, where

&, = (—l)m‘i (?)(?)(_1)i+jli —j+ k2L

=0

Note that b, = 0 for |k| > m and a, = 2@m — D!'n"2™ for |k| > m — 1. All
circulant matrices of order n share a common set of eigenvectors [Good
(1950)], and if we let S be the matrix whose rows are these eigenvectors, then
X = SZ has a diagonal covariance matrix of the form 02U + 72V. For n > 2m,
the £’th elements of U and V are, respectively,

m—1 27 jk
_ —2m+1
u,=n { Y. gjcos "
j=—-m+1

- 2(2m - 1)!1(k=n)}

and

m+j n

m . 2wjk wk 2"
v,=(-1)" X% ( 2m )(—1)’ cos 7 (2sin——;—) ,
j=-m

using the formula for the eigenvalues of a circulant matrix [Good (1950)] and
(1.1) in Oberhettinger (1973). Note that v, = 0; it can also be shown that

m-—1

Y g =202m-1))

Jj=—-m+1

so that u, = 0. As noted earlier, the fact that X has a singular distribution is
expected. Let D = V(U + V)™, where the k’th diagonal element of (U + 6V)*
is (u, + 6v,)~! for k < n and the n’th element is zero. The MML estimate of
0 and 72 is just the maximum likelihood estimate based on X and it can be
shown that the information matrix for 6 and 72 based on X is

Lr~%(n-1) 37 2trD
(4.9) Ly T )
2T tr D 5trD

For k small relative to n, the k’th diagonal element of D is

2(2m — 1)!p~2m+1
- (27k/n)®™ + 2(2m — 1)19n=2m+1"

k

Furthermore, d, =d,_, for 1 <k <n/2, and for any fixed ¢ > 0, d, =
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O(n=2m*Y) for en < k < (1 — &)n. These results can be used to show that

® { 2(2m — 1)!n2m+1 }

n
tr D/ = dj~2
kz=:1 * kzzl (27k/n)?™ + 2(2m — 1)16n—2m*1

n oo{ 2(2m — 1)!n~2m+1 }j
dx

J

~Q—
277'/() x2™ + 2(2m — 1)!19n"2m*1
1/(2m)F(1/2m)F(j - 1/2m)

(4.10)

{2(2m — 1)16n2m+1)

2mmo’ I'(j)
(2(2m — 1)1ne}/@™ -1 1
" 2me’ sin(m7/(2m))(j — 1)! I:I ( 2m)

where the integral is evaluated using (3.241.4) from Gradshteyn and Ryzhik
(1980) and the last line follows from properties of the gamma function
[Abramowitz and Stegun (1965), pages 255-256]. (4.3) then follows from (4.9)
and (4.10) when W(-) obeys (4.8).

To obtain the asymptotic distribution of fycy under (4.8), analogous to
(2.7), we have the approximation

(4.11)
X'{(tr C)(U + 6V) " CD - (tr CD)(U + V)" C}X

7} -0= ,
aev 72{tr C tr CD? — (tr CD)?}

where C = U(U + 0V)™. Using (4.10), it can be shown that the asymptotic
variance of the right-hand side of (4.11) is given by

2tr(D — §D%)®  1662m2(2m + 1)sin(m/(2m))
(4.12) 5 ~ T
{tr(D? — 6D3)} 3(2m — 1){2(2m — 1)!6n}'/*"

Using Liapunov’s theorem [Chung (1974), page 200], it follows that the
right-hand side of (4.11) is asymptotically normal with asymptotic variance
given by (4.12). (4.4) then follows from (4.11) and (4. 12) when W(-) obeys (4. 8).
Note that the ratio of the asymptotic variances of OGCV to BMML is(dm + 2)/3,
so that the loss of efficiency in using f,cy rather than 6y, increases with m.
Furthermore, (4.3) and (4.4) agree with the results from Section 2 when
m = 1, lending further support to the conjecture that they are valid for m > 1
when W(-) obeys (4.2).

Let us next consider (4.5). Silverman (1984) showed that smoothing splines
can be approximated by kernel smoothers, so it is plausible that these kernel
smoothers will have mean square error very near to the mean square error of
the smoothing spline under the stochastic model for which the smoothing
spline is the best linear unbiased predictor. Specifically, following Silverman
(1984), suppose «(x) satisfies (—1)"«x®™(x) + k(x) = §,, where §, is the
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Dirac delta function. This differential equation can be solved using Fourier
transforms [Silverman (1984)] and

1 e d
K@) = o [T de

1 m
— Y exp{—|x| sin
2m 74

(2k27n1)w }

X sin + |x| cos
2m

{(Zkz—ml)w (2k — 1)77'}.

Then «(-) is an even function and satisfies

f:c(x) dx =1,
(4.13)

kax(x) dc=0, fork=1,...,m — 1.
For x € (0, 1) and not too near zero or one, consider predicting W(x) by

n
hn Z K(hnlnx _jl)yj9
j=0

which considering the results of Silverman (1984), is likely to be asymptoti-
cally optimal for optimal % ,. For n large and h, small, because (-) satisfies
(4.13), the prediction error will be nearly a contrast. If we treated it as if it
were exactly a contrast, then using (4.2), we would have

2

E(W(x) ~ h, % «(hinx - i)y,

J=0
n
=272 Y k(h,lnx — j))*
Jj=0
4.14 n m . m—
A9 aho? ¥ a(hydnr —i(=1) | — j [
Jj=0
+ 8202 Y k(h,lnx — i))k(h,Inx = j))(=1)"|n =2 - j)|"
=0

= h,7%by + o*(nh,) " *" Vb,
for n large and A, small, where
2m -1

4m?sin(m/2m)’

b, = [K(x)zdx =
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by Parseval’s relation and
(—l)m{ffx(x)x(y)lx — y" " dxdy - 2 [k(x)j*m ! dx}

(2m — 1)!
2m?sin(mw/2m)’

b,

by direct calculation. The value of A, minimizing (4.14) is given by
hop = (20(2m — 1)!}1/(2'")n_(2’"_1)/(2’")

and (4.5) follows. When m = 1, (4.5) yields 720/(2n)'/?, in agreement with
(3.2) for 6 = n~! and n large. If we let &, = h (1 + an™'/“™) where a is a
constant, then (4.14) yields

2

E W(x) opt(]' + an—l/(4m)) Z ( opt(]' +an 1/(4m))|nx _.II)

Jj=0
2
(4.15) ~ [20(2m — 1)! 1/(2m) T
{26(2m M 2m sin(w/2m)
xp-@m-n/@m|{ 4 @m - 1)a?
pl/@m)

If we assume that Oy, and gy are independent of (d /dOW (x;n71,0),
then (4.6) and (4.7) follow from (4.3), (4.4) and (4.15).

5. Discussion. Even assuming that all of the conjectures in Section 4 are
true and that (4.6) and (4. 7) are indicative of the advantage 6, has over
GGCV in sample sizes occurring in practice, one can argue that this is a small
price to pay for the potentially vastly superior performance of 0ch over OMML
when the stochastic model for W(-) is incorrect and W(-) is in fact a determin-
istic function with square integrable 2m’th derivative [Wahba (1985)]. It is not
surprising that maximum likelihood procedures can perform poorly if no
element in the stochastic model on which the likelihood is based is even
roughly similar to the underlying truth. If we want likelihood methods to yield
good predictions for a large class of functions, we need to choose a broad class
of stochastic models. One way to obtain a more flexible model would be to use
the model defined by (4.1) and (4.2) where m and o2 are both considered
unknown. However, some modification of both GCV and MML would be
needed if m were to be allowed to be any positive integer since neither
criterion is well defined when m is greater than the number of observations. If
in fact W™~ 1(-) behaves at least locally like Brownian motion, then I would
expect suitably modified versions of both GCV and MML estimates of m would
equal m with probability tending to 1 as n — «, and that the first order
asymptotic behavior of the estimates of 8 would be as given in Section 4 where
m is assumed known. For general W(-), the asymptotic behavior of estimates
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of 8 and m might be rather complicated. In particular, if W(-) is analytic on
[0, 1], then any estimate of m that yields predictions with good large sample
properties would presumably tend to infinity as n — «, although the rate of
increase may be very slow.

APPENDIX

Outlines of the proofs of (3.5)-(3.8) are given; see Stein (1989) for detalls
We first derive an exact expression for (d/d G)W (x;0). For x € [kn ,
(k + DnY), define W*(x) = (k + 1 — nx)y, + (nx — k)y,,,. Now, W(x;6)
can be obtained by finding the optimal linear predictor of W(x) — W *(x)
based on Z. By straightforward calculation,

gi(x) = "2 cov(W(x) — W (x),y; —yj_l)
nx —k—1, j=k,
_ )2k +1-2nx, j=k+1,
nx —k, j=k+ 2,
0, otherwise.

Let g(x) = (g(x),..., 8,(x)). Then
W, (x;0) = W*(x) + g(x) (T + 20n‘11)_1Z

and W, *(x) and g(x) do not depend on 6, so

dW ) 2 (T + 20n-1) °Z
oW, (%:0) = = —g(x)(T + 26n7D)

2 i}
~ —g(x)'S(A +20n7'1) ’X,

where S and X are defined in Section 2. Calculating Sg(x), we obtain

2 W (x0
7 Wa(%:0)
4 2 2 mj
=__(n+1) 2}18‘“2( +1)
X sw—j£2—k—t——1—)——2(nx—k) in ™ si itk + 1)
2(n + 1) Mon+ 1) n+1l
X %

()\j + 249n_1)2 ’

where X = (X,,..., X,). Thus, (d/d6)W,(x;6) is normally distributed with
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mean 0 and (Stein 1989)
2

d T
(A1) var(c—lan(x;O)) N 31/295/2 172

for fixed x € (0,1).
For any estimate 6 of 8, we can write

(A2) W, (x:8) — W,(x;0) = (6 - G)iW(x 0)

+ ;5(6 - 8)’g(x)'S(A + 2n71D(8)) X,

where D(6) is a diagonal matrix with each diagonal element between 6 and 6.
Let us next show that 6y, — 6 and (d/d0)W,(x;0) are asymptotically inde-
pendent and jointly normal. We will need the following lemma, proven in Stein
(1989):

LemMmA 1. If foreach n, Z;,,i =1,...,n are iid N(0, 1),
n n
Y aZ =1, Y b2 =1 and lim max |b;,] = 0,
i=1 . nowl<i<
then

Z azn zn’z bzn(Z2 - 1) —)_/ N(O’ I)

By linearizing the likelihood equations, we can show

. V(A +20n") "'V — tr(A + 20n-17) !
OMML - 0 = —_2 + Op(n_1/4)’
2n~1tr(A + 20n71) :

where V=7"%A + 20n"1)"1/2X ~ N(0, I). Then Lemma 1 can be applied to

V(A +20n") "'V = tr(A + 20n710) "}
and
(d/d8)W(x;8) = —2n"'g(x)'S(A + 20n~11) v

and the asymptotic independence and joint normality of OMML — 6 and
(d/d6)W(x; 6) follow. Finally, we can show that the remainder term in (A.2) is
0,(n™"), proving (3.5). Using (2.7), (3.6) similarly follows.

A heuristic justification of (3.8) can be obtained using (3.4) and (A.2) and
ignoring all lower order terms. A rigorous proof is given in Stein (1989) and
depends crucially on the tail probabilities for n!/ 4(6’MML — 6) being sufficiently
small for large n, which can be shown using Theorem 5.1 of Ibragimov and
Has’minskii (1981). Furthermore, it can be shown that the fourth moment of
nYAW (x; 0yap) — W, (x; 0)} is bounded for all n sufficiently large, and by
symmetry considerations, its first and third moments are zero. From Theorem
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6.4.2 of Chung [(1974), page 168], it follows that ¢,(¢), the characteristic
function of n'/2{W (x; 0yae) — W, (x; 0)}, is, for all n sufficiently large, of the
form

bn(t) = 1= 37%(1 +1,)e% + a, (1)t

where r, - 0 as n — » and |a,(¢)| is uniformly bounded in both n and ¢.
Using (3 2), (3.3) and the independence of the two terms on the right-hand side
of (3.4), it follows that n'/*{W (x; 6yy) — W(x)} has characteristic function

291/2 1
exp[—{ gt O(n_l)}tz]{l - Zrz(l +r,)n %2 + an(n_1/4t)n_1t4}

2gl/2 2(1+s,)
= exp[—{ 557 T 4 }t2 {1+ B, (n"V4%)n 144},

where s, — 0 and B,(-) is uniformly bounded for all ¢ and all n sufficiently
large. Since this characteristic function is in L', nV/4W,(x; 0ppr) — W(x)) has
the density

tz}

1 = , (02 1+s,
p(y) = Ef_mexp —wt— 7 o5z T A2

{1+ B,(n~Y*t)n"'t*} dt,

and (3.9) follows.
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