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THE UNFATHOMABLE INFLUENCE OF KOLMOGOROV

By Nikoral N. CHENTSOV
Keldysh Institute of Applied Mathematics

A. N. Kolmogorov contributed much to mathematical statistics, both
through his own statistical works and through the researches of his
students and disciples in statistics. But the case will be made that he
influenced statistics still more through his general mathematical concepts
and approaches. This paper gives some examples of unexpected applications
of Kolmogorov’s ideas in topics of nonparametric statistics.

Andrei N. Kolmogorov (1903-1987) was an outstanding mathematician of
the twentieth century, one of the leaders in several branches of pure and
applied mathematics and, especially, in probability theory, where he developed
the set-theoretic basis of the subject and contributed to the origin and develop-
ment of many new subfields.

Among the personal contributions of Kolmogorov to mathematical statistics
one should recall first of all his famous paper [Kolmogorov (1933b)] where the
limit distribution of the normed deviation VN sup,|Fy(x) — F(x)| of the empir-
ical distribution function Fy(x) from a continuous theoretic one F(x) was
determined. Conversion of the problem statement, where the theoretical distri-
bution is unknown and the empirical one is given, leads to the Kolmogorov
goodness-of-fit test which is widely used now in nonparametric statistics, along
with the test of Kolmogorov’s disciple, N. V. Smirnov [see Smirnov (1939a, b)]
and the Cramér-von Mises test [see von Mises (1931), Cramér (1928) and
Smirnoff (1936, 1937)], where the above deviation is measured in a somewhat
different way.

It is not so widely known that there were periods in Kolmogorov’s life when
applied statistics was his main occupation. I should mention first of all the
years of the Second World War when he solved some statistical problems of the
theory of artillery fire [Kolmogorov (1942, 1945a, b). Later, in 1948-1951,
Kolmogorov worked on problems of quality control [see Kolmogorov (1950,
1951)] and queueing theory. It is said that it was Kolmogorov who advised,
during the hard days of 1941, how the barrage balloons should be quasis-
tochastically distributed to make it difficult for the Nazis to bomb Moscow.
Just at that time an incident occurred that could have had a tragic end for
Kolmogorov. One stuffy summer evening he got out of the local train dressed
in an elegant white suit with a rucksack on his back and walked towards his
country house. He was soon stopped by a patrol who assumed that a white
spot against the asphalt background might serve as a reference point disclosing
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the highway to enemy aircraft. Then A. N. removed his suit, put it into his
rucksack and went further in shorts.

The next patrol arrested him as a suspected saboteur—paratrooper. He was
immediately transported to the Security Service Building. Fortunately, the
security officer called to the duty official of the Academy of Sciences with the
question: “Find out right away if Academician Kolmogorov is alive. A suspi-
cious-looking man in shorts with the identity card of Academician Kolmogorov
has just been arrested.” Kolmogorov liked to hike. He usually went in shorts
with a rucksack on his back, not only on summer walking tours but also
during winter ski ones. Lazar A. Lusternik (member-correspondent of the
USSR Academy of Sciences and the then deputy secretary of the Department
of Physical and Mathematical Sciences) knew this very well. So he replied to
the security officer: ‘“Seems to me that man in shorts is Academician
Kolmogorov himself ... .” From time to time Kolmogorov and Lusternik told
what had happened, the Lubyanka Building being usually left out of the story.

We may also mention an early work, Kolmogorov (1931), where he deter-
mined for which distribution types the sample median is preferable to the
sample mean as an estimate of a location parameter. There are also several
papers on the analysis of variance [Kolmogorov (1946, 1949b) and Kolmogorov,
Petrov and Smirnov (1947)] that were unknown to Western experts and that
anticipated parts of Scheffé (1959).

Kolmogorov was constantly interested in the usefulness of probability and
statistics methods in other branches of knowledge: linguistics, physics, meteo-
rology, geology and, especially, biology. He did not keep aloof in 1939 when the
theory of Lysenko (which denied the theses of classical genetics, including
Mendel’s laws) was officially supported in Soviet biology. Instead, Kolmogorov
analyzed by the y2-test the statistical data which were used by Lysenko
supporters to refute the law of 1:3 ratios. Kolmogorov (1940) showed the
deviations of their observed data from this ratio to be nonsignificant. It was
rather dangerous to make such statements at that time. I recall (though I am
not sure) that in the fifties he carried out some other studies of the same kind
but they were not published.

However, the influence of Kolmogorov on the development of mathematical
statistics cannot be reduced to the effects of his statistical works or of the
studies of his followers in applied statistics. First and foremost, it was the
influence of the mathematician which determined both the trend of theoretical
studies [see, for example, Kolmogorov (1949a)] and their mathematical level.
His ideas and conceptions of a general mathematical nature seemed to have
the most striking effect upon the development of our province of science. In
fact, we were captivated by these ideas and conceptions. I might be mistaken
but this is my personal perception of A. N. Kolmogorov and I should like to
describe how some of my own work was related to his. .

I was a disciple of Kolmogorov in the second generation: Eugen B. Dynkin
was my mentor during all my years of studying at Moscow University; after
1952 when I started working at the Steklov Mathematical Institute I simulta-



THE UNFATHOMABLE INFLUENCE OF KOLMOGOROV 989

neously took a postgraduate course under the guidance of N. V. Smirnov. My
personal scientific contacts with Kolmogorov were minimal.

Functional approaches to the calculation of the limit distributions of tests
[see the review in Kolmogorov and Prohorov (1956)] acquired popularity in the
fifties. In particular, the justification of the heuristic approaches of Doob
(1947, 1949) to the Kolmogorov—Smirnov theorems was extensively discussed
[see Donsker (1952) and Anderson and Darling (1952)]. While working in the
seminar of E. B. Dynkin, I learned that the finite dimensional distributions
describe well the behaviour of the trajectories of a Markov process if the
probability of two nearly simultaneous jumps of the trajectory is sufficiently
small. Having examined several variants, I found that under the condition

(1) ?\lllpElgN(t +7) - §N(t)|2I§N(t) - §N(t - 0)|2 < C|T + 6|2’
¢

which restricts the possibility of repeated jumps, the convergence of probabili-
ties of the trajectory &,,(¢) to stay in a band follows from the weak convergence
of finite-dimensional distributions, £,(¢) = {(¢), for a sequence of processes
£n(2) whose trajectories have no discontinuities of the second kind.

The condition (1) is easily verified for £4(¢) = YN[Fy(F~1(¢)) — t]. My
report at the “large’” seminar on probability theory was greeted with much
interest. However, by the end of the discussion, A. N. noted that the additional
condition I introduced for the process trajectories £,(¢) to have no discontinu-
ities of the second kind appeared to be unnecessary. He said: ‘ This property is
sure to follow from (1). Look into my theorem in the paper of Slutsky (1937),
where the continuity of the trajectory £(¢) with probability 1 is derived from
the simpler condition

(2) supE|£(t +7) — €(0)f <Clr'*s,  £>0,p>0.
t

And he was right (while I was discouraged). My work was appropriately
revised. Thanks to the initiative of E. B. Dynkin, it was published a year later
in the first issue of the new Soviet journal Probability Theory and its Applica-
tions [Cencov (1956)]. Specifically, it contains a very short proof of the
Kolmogorov (1933b) theorem mentioned previously from general theoretical
results [see Billingsley (1968)]. Meanwhile, condition (1) and its generalizations
to other powers in the manner of (2) were called Kolmogorov-Cencov condi-
tions in Doob (1960). Statistical applications were not considered in subse-
quent studies [Skorohod (1956), Kolmogorov (1956b) and Cramér (1966)].
Nevertheless, I would like to note that the metrization of the Skorohod
topology on the space of functions without discontinuities of the second kind
introduced by Kolmogorov (1956b) and modified by Billingsley (1968), has
been underestimated in other fields of applied mathematics. For example, the
authors of some highly accurate difference methods in gas dynamics essentially
try to approximate numerically a desired discontinuous solution in the
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Kolmogorov metric without being aware of it [see Zabrodin, Sofronov and
Chentsov (1988)].

In the years that followed I happened to be involved in the theory and
practice of transport phenomena computation by the Monte Carlo method. In
order to estimate the unknown density p(x) of the observed data I suggested
[Cencov (1962)] to estimate the coefficients

(3) ay = [p(x)eu(x)r(x) dx = E[0,(£)r(£)]

of a series expansion for the density using a suitable basis {¢,(x)} orthonormal
with the weight r(x). In principle, this method is more economical than the
histogram method [which is obtained by a special choice of ¢,(x)], and the idea
of it was then hanging in the air. Soon it was noted by a number of other
statisticians, the first of them being Van Ryzin (1966) and Schwartz (1967).

At that time A. N. was participating in a round-the-world cruise aboard the
scientific ship Mendeleev, and my paper approved by N. V. Smirnov, was
communicated to Doklady Akademii Nauk SSSR by Academician M. V.
Keldysh. It contained a formula for coefficient estimation,

(@ ak = N e EO)RED) + o g (¢ r()],
an estimate of the density itself
(5) THa() = af1e1(0) + o Faf e,

and a bound for the mean norm of the error. Also posed and solved in this
paper was the problem of almost optimal choice of the system {¢,} and
approximation dimension. I used approaches that were being developed by
A. N. not long before that time to solve the well-known Hilbert’s 13th problem
on representability of a function of several variables by superpositions of a
function of a smaller number of variables [see Kolmogorov (1955)].
Kolmogorov’s final result was so unexpected that it should be cited here: Any
continuous function of several variables may be represented by means of
superposition of continuous functions of one variable and addition [Kolmogorov
(1957)]. A similar superposition theorem in terms of smooth functions is not
valid. Investigating the problem, Kolmogorov gave some asymptotic character-
istics of totally bounded sets in function spaces. They are now widely used in
the theory of numerical methods. In particular, they are essential in solving
the so-called ill-posed inverse problems. That was just what I needed. The
problem under consideration was posed in the following way. Let ¢@, ..., ¢
be a sequence of independently observed values of some random variable ¢
with unknown distribution in (Q, &) and let &% be the given
a priori class of all the feasible densities p(x) that could describe the distribu-
tion of the observable £ The problem is to construct a density estimator,
(D, ..., M) > 7x(+), to be optimal on the class Z.

The quality of a numerical method is usually measured with a guaranteed
upper bound of its error (i.e., the deviation of a calculated value from the true
one). Such a confidence limit is given in our case by a #-bound b5(N) = b(N, §)
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of some quantile ¢{V) of a random variable ||7%(-) — p(-)||. As
1/
My <67 [Elmz () - p(I]

from the well-known Chebyshev-type inequality, one may describe the accu-
racy of a decision rule (or, more precisely, the inaccuracy of it) in the
framework of Wald’s paradigm. The mean value u{"’ = E[|7%(-) — p(-)|” is
then treated as the risk corresponding to a loss function L(p, 7%) = |75 — p||”.
Thus, the asymptotic quality of the estimator 7 %(-) may be measured by the
order with which the mean value E||7%(-) — p(-)||” decreases as N — .

For the L,(r)-norm of the deviation 7% , — p we have

2 n
(6) E|7%., —pl?=|F.lp]l —p|" + ¥ Daf,,
k=1

where F,[pl(-) is the orthogonal projection of p(:) on the subspace &,
determined in L,(r) by the basis vectors ¢,(*),..., ¢,(+). Under the natural
assumption

(7) Vp(r)eZ,VxeX, |In[p(x)r(x)]|<A(L),

where A(p) < », the second summand in (6) is of order nN~!. Therefore, the
subspace ®, should be chosen to minimize the maximal deviation of the class
& from @,. This minimum d,(Z,r) is called the nth Kolmogorov linear
width of the class & in the L,(r) metric. It first appeared in Kolmogoroff
(1936) [see also Tihomirov (1960)]. As the dimension n increases the value
d (&) = g(n) decreases. Thus the construction of an asymptotically optimal
(in order) algorithm may be reduced for the given N to determine n* = I'( N)
minimizing g(n) + CnN~!. The corresponding risk does not exceed

(8) mnin[g(n) + CnN71Y].

It was well known [see Hodges and Lehmann (1951) and Girshick and
Savage (1951) in the case of one-dimensional families &] that lower bounds
for the minimax and Bayes risk for quadratic loss functions follow from the
Cramér—-Rao inequality. Let s,(Z#, r) be the radius of the maximal n-dimen-
sional sphere 3, imbeddable into the class &, and let s,(%?) = h(n). Then,
integrating the information inequality over 3, we find that the lower bound
for the risk of the projection estimator (5) is not less than

(9) max min{3h(n),cnN"'}

for some c. If g(n) < h(n), the bounds (8) and (9) are weakly equivalent; so
the estimator (5) based on the subspace ®, corresponding to the nth
Kolmogorov width at n = I'(IN) has the best order of decrease of the risk (6).

The outlines of this theory connected with Kolmogorov’s width concept can
be extended to estimation in other norms with loss functions of the form
|lw#(-) — p(+)||”. Since the Pythagorean equality (6) no longer holds and the
error cannot be so easily decomposed into the sum of systematic and random
errors, we should take into account that the norm of the sum of two terms
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exceeds the larger norm for the two terms by no more than a factor of 2, which
yields, instead of (8), the upper bound

min max{2g(n),2CnN"1},

coinciding with (8) within a factor of 2.

The estimation scheme (6) is reasonable for convex classes satisfying the
condition
(10) sup sup|ln p(x) —Inq(x)| < 2A(Z),

- p,qeFPxeX

which follows from (7). Meanwhile, for classes & of more intricate configura-
tion, nonlinear methods for estimating p € & are preferable. Upper bounds
for their mean error may be obtained in terms of the s-entropy of the metric
compact &, the logarithm of the minimal number of elements in an e-net in
&. This notion was introduced by Kolmogorov in the 1950s [Kolmogorov
(1955, 1956a)]. A lower bound for the mean error may be obtained in terms of
Kolmogorov’s e-capacity—i.e., the logarithm of the maximal number of dis-
joint spheres of radius & with their centers in the set & [Kolmogorov and
Tihomirov (1959)]. Such bounds were used, for example, by Cencov (1981) and
Ibragimov and Has’minskii (1980).

The metric Ly(r) in the theory of the projection estimate =3 , described
previously seems somewhat unnatural. Even the inequality (7), which requires
that [#(:)]! < p(-) € 2, allows too much arbitrariness in the choice of metric
measuring the error and determining the loss function. Kolmogorov was
always interested in finding ‘‘information” distances between probability dis-
tributions on a measurable space (2, 2/) more adequate to the essence of the
problems of statistics. He discussed the properties of the quantity

(11) du(P,Q) =1~ [ YP(dw)Q(dw)

as of a measure of unlikeness of P and @ in a lecture at the Institut Henri
Poincaré (November, 1955). The lectures were not published but a reference to
(11) can be found in the review of Adhikari and Joshi (1956). We should also
note that the integral in the right-hand side of (11) was previously studied by
Bhattacharyya (1943) as the characteristic of likeness of P and Q. In his
lectures Kolmogorov also stressed the theoretical importance of the total
variation of the difference P — @,

(12) sy(P,Q) = [Q|P(dw) - Q(dw)|,

as a metric (in this paper Kolmogorov’s notations are modernized).
It is interesting that the distance

(13) sy(P,Q) = 2arccos fﬂ\/P(dw)Q(dw)

in the spherical Riemannian metric generated by the quadratic differential
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form with the Fisher information matrix was not regarded at that time as a
value of information unlikeness.

For several years I tried unsuccessfully to find an information metric which
would give a natural differential structure on smooth families of probability
distributions. Then, giving up all hope I followed the advice of E. A. Morozova
and turned my attention to a search for natural information linear connec-
tions. In no time a nontrivial but very simple flat connection was found
[Cencov (1964)], where exponential families of one or several parameters
having densities

(14) p(w;s) = p(w;0)exp[s/q;(w;0) — I(P,: P,)]

are, respectively, geodesic lines and completely geodesic surfaces, i.e., they play
the roles of “straight lines” and ‘‘linear subspaces.” In (14) s denotes a
canonical geodesic parameter; the basic tangent vectors at a point P,

q,(w;0) =(9/9s’)In p(“’;s)lpo

are taken for directional sufficient statistics, while the normalizing divisor
exp[I(P,:P,)] = fﬂexp[sjqj(w; 0)]P0(dw)
coincides with the exponential of the Kullback information,
I(P,:P,) = /ﬂ[ln Py(dw) — In P,(dw)] Py(dw).

Later, it was found [Cencov (1968)] that in this geometry the quantity
I(P': P") is an asymmetric analogue of half of the squared Euclidian distance
between points. In particular,

P = in I(P:P
' arglglér;( )

determines the projection of P on the completely geodesic family & with
regular boundary (as an analogue of a linear subspace) for which nonsymmet-
ric variant of the Pythagorean equality is valid:

VP,e®, I(P:P,)=I(P:P,)+I(P,:P,).

All this allowed an extension of the Kolmogorov concept of widths to collec-
tions of probability distributions equipped with the Kullback information
quasimetric and to construct (according to the scheme proposed previously for
the L,(r) metric) optimal algorithms for estimating the density, where a linear
aggregate approximates not the density but its logarithm, for a wider range of
a priori classes % [Cencov (1967, 1972), Stratonovich (1969)]. In particular,
instead of restriction (10) upon the density ratio one can manage with restric-
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tions on the second moments of its logarithm

sup |In Dg.(P’, P") — In Dy (P', P")| < A(P),
(15) P,ReP
Dg(P', P") = Dg[In(dP'/dP")(w)].

The condition (15) has a simple geometric sense. It is known [see
Cencov (1972)] that in mathematical statistics the spherical Fisher—
Bhattacharyya—Rao metric (13) is the unique (up to a constant multiple)
Riemannian metric invariant under the algebraic category of statistical deci-
sion rules-(the Markov map category).

However, there exists a whole family V? of invariant linear connections,
where the index vy € R shows the degree [ p(w)]” of the distribution density,
which is affine (up to a normalizing divisor) in a suitable parameter along the
V”-geodesic family. In the case y # 0, including y = 3, which responds to the
Riemannian case, the connections V? are not hereditary with respect to
the (tensor) powers of probability spaces corresponding to the scheme of
independent observations. Thus, condition (15) requires that for the natural
(y = 0) parallel translation of a vector tangent to &, its length measured at
one point in the natural Riemannian metric (y = 3) will not differ by more
than a factor exp[3A(#)] from the result of a similar measurement at any
other point in &.

The category of statistical decision rules was introduced in Cencov (1965)
and in Morse and Sacksteder (1966) to formalize some known concepts of Wald
and Blackwell. Many natural objects of mathematical statistics are invariants
of the category. But some of the new conclusions, such as that the simplex of
all probability distributions on a finite set proved to be a curved space with a
nonsymmetric metrization, seemed slightly strange at first. Kolmogorov, writ-
ing a report on my works, had then pointed out the methodological interest of
category approaches. He had also underlined the Kullback information
metrization [see, for example, Kullback (1958)] to be of great importance in
many subfields of mathematical statistics. Now, at the period of intensive
geometrization of statistical theory (according to an expression of Yu. V.
Prohorov), the trend of research just discussed has advanced substantially
both in the development of geometrical approaches and in the range of
statistical problems to be solved [Amari, Barndorff-Nielsen, Kass, Lauritzen
and Rao (1987) and Has’minskii and Ibragimov (1983)].

Another fundamental problem of statistical theory, the solution of which
has been obtained on the basis of Kolmogorov’s ideas and conceptions, con-
cerns the impossibility of localizing [in the metric (12) or any invariant metric]
the probability distribution P of an unknown random variable ¢ by using a
sequence of independent observations of it under the restriction that there is
no additional information about the measure P. From the Glivenko (1933)
theorem on the convergence of the empirical distribution function to the
theoretical one as well as from Kolmogorov’s (1933b) result follows only that
the localization of P in weak metrics is feasible.
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To treat the P-localization problem as an inverse problem of probability
theory, a formal description of the decision space is needed. In the classical
theory of parameter estimation the localization problem is replaced by the
problem of estimating the “true” values of parameters so that our estimates
are random vectors. In such problems as density estimation or regression,
estimating a function is again reduced to estimation of smooth parameters, but
now there is an infinite sequence of parameters; for example, the coefficients
(3) of an orthogonal expansion where the dependence of function values on
parameters a, decreases as n increases. In estimation theory of that kind, the
information inequality and other approaches of finite-dimensional theory are
valid (for this reason the class of problems mentioned previously should have
been distinguished long ago from nonparametric statistics as an independent
countable-parametric statistic).

But here we choose as estimates random probability measures on an algebra
# of events, i.e., random elements of the uncountable-dimensional space R
satisfying the axiomatic requirements of nonnegativity, total mass 1, additivity
and countable additivity. They distinguish in R# a nonmeasurable set W(%#)
to which the measurability theory of Kolmogoroff (1933a) cannot be applied
directly, nor can the Kakutani—Halmos theory [Kakutani (1944) and Halmos
(1950)]. However, there is a roundabout way outlined by Kolmogorov and
implemented by Prohorov (1961) and Cencov (1972): a random measure is first
determined on a countable set of generators of the algebra &, then it is
extended step-by-step without contradictions to the whole algebra [the method
proposed by Doob (1947) in a simpler situation]. Thus, we may treat W(%) as
a measurable set, and the whole body of measure theory, including the
inversion of the order of integration, may be used on it.

The final result of Cencov (1981) is as follows. Let IT N be a statistical
decision rule for processing the sequential independently observed values
ED L ED of a random variable ¢ in (R, #) with a collection W(Z#) as the
space of decisions Pg. For any sequence {II,} there exists a distribution
Q € W(#) such that {II} is inconsistent to localize @ by a sequence of
independent observations of the @-distributed random variable 7:

as N - o, Eovsy(Pg,Q) +» 0.

Instead of s, we may take any other metric p, invariant under the category of
statistical decision rules, because for them we always have p > c(p)s, with a
suitable constant c¢(p) [see Morozova and Cencov (1987)].

I shall not list here the ideas of A. N. used in the proof. It is sufficient to
note
that the number of references to Kolmogorov in Cencov (1981) exceeds the
number of references to Prohorov and to the author taken together.

Thus, an elementary problem of mathematical statistics—the inverse prob-
lem of probability theory—turns out to be ill-posed. The degree of ill-posed-
ness is at most 3 if the ill-posedness degree of differentiation is taken to be
unity. This follows from Kolmogorov (1933b).
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