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We analyze the following model: One person, called “helper” observes an
outcome x™ = (xp,...,%,) € X" of the sequence X" = (X,..., X,) of iid.
RV’s and the statistician gets a sample y" = (,..., ¥,) of the sequence
Y™(8, x™) of RV’s with a density [T, f( 0, x,). The helper can give some

(side) information abou(ti ch" to the statistician via an encoding function s,:
. e

Z™ > N with rate(s,) = (1/n)log # range(s,) < R. Based on the knowl-

edge of s,(x™) and y™ the statistician tries to estimate § by an estimator 0,.

For the maximal mean square error

RYSinf  inf By, — 0
e = 1N mn Su; -
n( ) g, sp:rate(s,)<R 062 ol !

we establish a Cramér-Rao type bound and, in case of a finite 4, prove
asymptotic achievability of this bound under certain conditions. The proof
involves a nonobvious combination of results (some of which are novel) for
both coding and estimation.

1. Introduction. It is usually assumed in statistics that the statistician has
free access to the data (samples). This assumption is not always justified. A
scientist may be interested in the correlation between the values of physical
measurements taken at places that are far apart. In this case data have to be
communicated. Since there may be limitations on the capacities or permittable
costs of the channels used, it becomes important to select suitable data or
perform some more sophisticated data processing in order to meet some specified
goals of the statistician. Whereas in computer science the communication aspect
has already entered complexity considerations, for instance in parallel computing
[Yao (1979)], it has been introduced only recently in statistics in the context of
bivariate hypothesis testing [Ahlswede and Csiszar (1986)]. There data reduction
is measured by the rate needed to transmit the reduced data and the perfor-
mance of a best test based on those data. It was emphasized by these authors
that this may be the beginning of a whole program, which also includes
estimation problems.

As a further contribution to this problem we investigate here the effect of
partial side information about remote data in estimating the distribution in a
parametric family of distributions. It was our aim to establish the first results in
this area and not to strive for the most general conditions on the family of
distributions under which an asymptotic theory of estimation can be developed.
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142 R. AHLSWEDE AND M. V. BURNASHEV

We use the mean square error criterion and under certain familiar regularity
conditions we establish a Cramér-Rao type bound and its asymptotic optimal-
ity. The characterization of this bound is in terms of a generalized Fisher
information.

In the terminology of information theory it is not a single-letter character-
ization. This means that it involves not only product distributions and is, in
general, not suited for a numerical evaluation. To find a single-letter characteri-
zation is a task of formidable mathematical difficulty. The situation is similar to
the testing problem mentioned above, where the role of Fisher information is
taken by the Kullback-Leibler divergence. However, in spite of the close connec-
tion between these information measures there are also differences to the effect
that Fisher information allows a certain local single-letterization. This fact
makes it possible to derive single-letter characterizations of our Cramér-Rao
type bound for some classes of parametric families of distributions and for other
more irregular classes to at least establish lower and upper bounds on its value.

In this paper we have focused on the need for data reduction in order to cut
down the communication costs. Often it is also the case that data are available
to the statistician only in an implicit form and they can be revealed only at high
costs of computation. Those costs are to be considered in conjunction with errors
suffered from statistical decisions. They can again be lowered by some kind of
data reduction.

In summary it can be said that inclusion of the communication as well as the
complexity aspect will challenge the body of classical statistics. Some demands
can be met by modification of existing models and procedures; others require
new concepts.

The organization of paper is as follows: In Section 2 we formulate our model
and the estimation problem, which we investigate. In Section 3 we recall first the
notion of Fisher information and some of its familiar properties. Then we
introduce our related J function, which takes the role of Fisher information in
our problem. It involves concepts from multiuser information theory [cf. Csiszar
and Koérner (1982)]. Some basic properties are established. In Section 4 we state
and prove our Cramér-Rao type inequality, first for the unbiased and then for
the biased case.

Before we state and prove our results on asymptotical achievability of this
bound for finite & in Section 7, we present, in Section 5, our main auxiliary
result on coding the side information and, in Section 6, we introduce and analyze
the regularity conditions used. Finally, in Section 8 we discuss a case in which
the J function “single-letterizes” and can be evaluated.

2. A model for parameter estimation in the presence of side informa-
tion. We consider a one-parametric family of density functions dependmg on a
nuisance parameter. Formally, we are given:

(2.1) A one-dimensional parameter space ® = (a, b), —0 < a < b < c0.
(2.2) Two o-finite measure spaces (£, &, u) and (¥, &, v).
(2.3) A probability density function p with respect to p.
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(24) A set {f(-]0,x): 0 € O, x € X} of conditional probability densities with
respect to ».

Consider now a fixed sample size n € N = {1,2,...}. One person, called the
helper, shall observe a sample x" = (x,...,x,) € Z" of the sequence X" =
(Xy,..., X,) of ii.d. RV’s with joint density p” = I1}_,p and the other person,
called the statistician, shall observe a sample y" = (..., y,) € ¥" of the
sequence Y(8) = (Yy(9),...,Y,(8)) of random variables with a joint density in
the family {I1}_, f(,6, x,): 0 € ©}.

The sequence x" = (x,, x,,..., X,,) of nuisance parameters is not known to the
statistician. However, the helper may give him some (side) information about x”.
If he can transmit at a rate R > 0, then he can inform the statistician via
encoding functions s,: " — N with

1
(2.5) rate(s,) = ;logusnu <R.

Here ||s, || denotes the cardinality of the range of s,,. It is convenient to introduce
(2.6) S(R) & {s,|s,: ™ > N,rate(s,) < R}, R=>=0.

Based on the knowledge of s,(x") and y” the statistician tries to estimate the
parameter § by means of an estimator

(2.7) 024,y s,(x")).

We use the maximal mean square error criterion

(2.8) e (0,5,) 2 sup E,|0 — 6)%.
[2=1¢]

Since the helper and the statistician are cooperative we are led to study the
minimax square error
(2.9) e(R)2 inf supE,0-6? R=0.

s,€%(R),0 00
In particular we are interested here in the asymptotical behavior of the function
e, (R) when n — co. We establish a Cramér-Rao-type bound and, in case of a
finite 4, we prove asymptotic achievability of this bound under certain regular-
ity conditions. In some cases this bound can be evaluated.

ExAMPLE 1 (Symmetric Bernoulli case). Let 2= {0,1}, ® =(0,1), ¥=
(0,1}, and let Py (0) = Py(1) = 1, P(0/6,0) = P(1|6,1) = 6, P(0|6,1) = P(1|6,0)
= 1 — 6. Notice that without any side information about X, P(0|6) = P(1|0) = ;
for all § and it is impossible to estimate 6.

By our theory and the calculations in Section 8, upon division by n, the
bound here is, according to (8.8), [#(1 — 8) + c(1 — ¢)]J(1 — 2¢) 2, where c satis-
fies 1 — h(c) = R and h is the binary entropy function.

Notice that the term 8(1 — 0)/n is the mean squared error for the usual
estimator of # when the X ’s are available to the statistician (R = 1, ¢ = 0). The
formula shows how the bound increases when R decreases. At the extreme R = 0
we get ¢ = } and therefore the value infinity.
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EXAMPLE 2 (A Gaussian case). Sometimes no deep theory is needed. Suppose
that Y(0) = 6 + X, + Z,, — 0 < 8 < o0, where the Z, are in #°(0,1) and the X,
are ii.d. and take finitely many values. If the statistician knows X" =

(X,..., X,), then an optimal estimator has the form
R 1 n n n 1
6 = —( Y Y- ZX,) and E,(6,-6)" = —.
=1 t=1 n

Now in case R > 0 the statistician can be informed about the value X7, X, with
an accuracy ~ e~ %, ¢ > 0. Therefore, for any R > 0 we get E, (6, — ) ~ 1/n.
Here the X,’s could be errors in measurements known to the helper.

3. On Fisher information, mutual information and the J function. We
assume throughout this section that all functions defined do exist. Sufficient
conditions for this are given later when needed. We present first properties of
Fisher’s information, which are either folklore or else easy to derive.

For a parametrized family {#(6): § € ©®} of random variables with » densities
{(f(-10): 6 € B} such that f,(y|0) = [3f(y|6)]/0 exists for r-almost all y € %,
the Fisher information at 8 is defined by

(3.1) 1(6;Y) = I(6) = /@/I—f;g—;,:gl—v(dy).

Similarly, if {(Y(8), Z(6)): 6 € ®} has the conditional densities f(y|6, z), then
forz € 7,

| fo( 168, 2)
(32) I(H; Y|Z = Z) = /@/m)—v(dﬂz)
and
(33) 1(6; Y12) = [ 1(6; Y\Z = 2) (216)»(dz)

is the Fisher information of Y about # conditionally on Z. We also use the
shorter notation I(6|z) [resp. I(|Z)] if the meaning is clear from the context.

LEMMA 1. Let {(Y(8), X,V): 8 € O} be random variables, where (X, V)
does not depend on Y(0). Then

(a) I(6; Y| X) = I(6;Y),
(b) I(8; Y|XV) > I(6; Y|V),

if these quantities exist.

Of course (a) is a special case of (b) and (b) can be derived from ‘(a). Since
under the stipulated conditions I(#; X) = 0 and since Fisher information is
nonnegative, this is a consequence of the next lemma.

Fisher information has an additivity property, which is a direct consequence
of the multiplicative property of conditional densities.
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LEMMA 2. Let {(Z(0),...,Z,8),V(0): 8 € O} be random variables, where
V may depend on 8. Then with Z'"' = (Z,,..., Z,_,),

n
(a) 10;Z,...,Z2,)V) = Y I(8; Z|V, Z*"),
t=1

if the quantities are defined. In particular, if Z\(0), ..., Z,(0) are independent
for all 8 € O, then

(b) 16:2,....2) = Y. 1(6; Z,).

We draw attention to the fact that Lemma 1(a) is generally not true, if X does
depend on 6. The situation is similar as for mutual information, where condition-
ing does not necessarily increase its value.

ExampLE 3. Let X,Y be binary random variables such that
Py (0010) =6,  Pyy(1110) =1 -6,
Pyy(0116) = Pyy(1016) = 0.

Then I(0; X)=10;Y)=1/0 + 1/01 — 6), but also I(§; XY) =1/0 +
1/(1 — 6). By Lemma 2, therefore,

I(0; X|Y) =1(6; XY) - I(6;Y) =0
and by symmetry also
I(0; Y|X) = 0.

Another extremal case occurs in

ExXAMPLE 4.

PXY(OOW) = ny(llw) = ——2—,

|

Pyy(0116) = Pyy(1016) = 9"
Here
PX(0|0) = Px(lw) = PY(O|0) = Py(llo) = %

and thus I(6; X) = I(6; Y) = 0, whereas

1
I(6; X|Y) = 1(6; YIX) = I(6; XY) = T—5 + -

Next we recall the definition of Shannon’s mutual information. For a pair of

RV’s (X, Y), where X takes only finitely many values, the mutual information is

dPY|X(y|x)
ZxPX(x)PY|X(ny)

(34) I(XAY)= ZPX(x)/logd( ) dPy,x(ylx).
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For Y = X we get the entropy H(X) = I(X A X) as a special case. Further-
more, for finite-valued Y we can also write I(X A Y) = H(X) — H(X|Y), where
H(X|Y)= H(X,Y) — H(Y) is the conditional entropy. There is also a condi-
tional mutual information I(X A Y|Z) = H(X|Z) — H(X|YZ). These quantities
have additivity properties similar to those of Fisher information [cf. Csiszar and
Korner (1982)].

Before we can introduce the o/ function, which plays the same role for our
estimation problem with side information as inf,_g I(8; Y) does in classical
minmax estimation theory, we have to recall a few definitions familiar in
multiuser information theory, in particular also in coding problems involving
side information [cf. Ahlswede and Korner (1975); Ahlswede (1979)].

Let U be a RV with values in a finite set %, which for every § € ® has a
joint distribution P ynye(0) with X" Y™(0). We use the abbreviation
Ue X"eY? if for every 6 € 0O the triple (U, X", Y"(8)) forms a Markov chain
in this order.

It is convenient to have the definitions

(3.5) M,={U:UeX"eY" U finite valued }
and for any R > 0,
(3.6) M (R)={U:Ue,,I(X"AU) < Rn},

where I( X" A U) is the mutual information between X" and U. Define now for
R >0,

1
(3.7) J(R)= sup inf —I(6;Y"U)
Ues (R) g0 I
and
(3.8) J(R) = lim J,(R).
n— oo

Here the existence of the limit readily follows from the subadditivity of nJ (R)
in n, which can be shown by considering auxiliary variables U, which are pairs of
independent variables U’, U".

Even though presently we do not have an example, it seems that in the
language of information theory, JJ,(R) does in general not single-letterize, that
is, J(R) > J|(R) may happen. This makes it usually impossible to even approx-
imately calculate J( R). However, we have a method by which J(R) = Ji(R) can
be shown in some cases.

For the analysis of J,(R) we use the functions

1
(3.9) J(0,R)= sup —I(6;Y"U),
Ues (R) T
(3.10) J™(R) = inf J™(6, R).
@

They have two nice properties, which we now prove and later use for finite Z.
However, they extend also to general RV’s X.
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LEMMA 3. For every § € ©, J™(0, R) is concave (N) in R.

Proor. We follow an argument that is by now standard. There is no loss in
generality if we assume n = 1. First notice that the constraint (U A X) < R
can equivalently be written as H(X|U) > H(X) — R. Let now

(l]t’ Xt’ (Yt(a))OEG)’ t= 1’2y
be two families of random variables with
PX,Y,((*) = Py Py x fort=1,2.

Further let T' be a random variable with values in {1, 2}, which is independent of
all other variables.
If Ue X,oY(0), 0 €0, t=1,2, then also

(T, UT)eXTeYT(O), 00,
and

(H(XT|UT1T):I(0; YTlUT1T)) = Z PT(t)(H(thl]t)’I(ai Yt|ljt))

t=1,2

Varying P over all distributions on {0,1} we get all points on the line segment
[(H(X,10,), 1(6; |U)), (H(XoUy), 1(8; Y| Up))]

and thus the concavity of J" in R. O

Next we establish a less obvious property

LEMMA 4 (Local single-letterization).

(a) J¥(8, R) =J'0, R) for all 6, R, n.
(b) J™R) = JYR) for all R, n.

ProoF. It is clear from the definitions (3.9) and (3.10) that (a) implies (b).
The relation J*(8, R) > J%(0, R) readily follows by choosing U = (U,,...,U,)
as a sequence of independent random variables. The issue is the reverse inequal-
ity. Lemma 2 gives the decomposition

n
(3.11) I(6;YU) = ¥ I(6; Y| Y* U ).
t=1
For a fixed 6 define now U, = (U, Y*~'(9)) and notice that
Ue X,oY,(0).

We verify first that

(3.12) H(X"U) < ¥ H(X)U).

t=1
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Indeed,
n
H(X"U) = Y H(X,|U, X" ")

t=1
and since

H(X)U, X1, Y"") < H(X,U, YY)
it remains to be seen that
H(X)U, X*') = H(X U, X1, Y*"1)
or equivaléntly that I( X, A YU, X' 1) = 0. Now
I(X, A YU, XY < I(X7 A YU, XY < (UX™ A YEHXEY)
=I(X"AYTUXEY + I(U A Y:liXxn) =0
because the first and second summand vanish by the independence structure and
Markov property, respectively.
Now by the definition of J*,
I(0; YU, <JY6; I(X, A U,)).
Thus by (3.11) and the concavity of J,

—1(0 YNU) < — 2Jl(0 I(X,AU)) <J' 6

t 1

i 1(X, A 1)).

§|>—‘

Finally, by (3.12),

n 1
Y I(X, A U,)s;I(X”AU)sR

t=1

S|~

and
1
—I1(6; Y U) < JY(6, R)
n

follow, because J' is monotone increasing in R. O

REMARK. The standard proof for single-letterization of entropies [cf.
Ahlswede and Korner (1975); Csiszar and Koérner (1982)] is based on a “dual
trick.” Instead of U, one uses V,= (U, X*°1). Thus H(X"U) = X H(X,|V,)
has immediately the right decomposition and H(Y™|U) remains to be analyzed.
This approach would in the present situation have the advantage that V, does
not depend on 6 and could lead to a single-letterization of J( R). Unfortunately
we do not know whether

I(6; Y"U) < X I(6; Y} V,).
t=1
This would imply J(R) = J(R).
However for the Kullback-Leibler divergence the analogous result is not true
[Ahlswede and Csiszar (1986)] and very likely, in general, J(R) # J(R). In any
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case, this is the main problem left open in our investigations. Next we present a
sufficient condition for JJ,(R) = J(R) to hold.

LEMMA 5. If J(R) = JY(R), then J(R) = J(R).

PRroOOF. Since

1
J*(R) = inf sup —I(6;Y™U)
0 Ues (R) T

1
> sup inf—I(6; Y"|U)
Ues (R) § 1

and since by Lemma 4(b), J™*(R) = J%R), the assumption ensures JI(R) >
J,(R). The reverse inequality is obviously true. O

In Section 8 we show that for the symmetric Bernoulli case (Example 1) the
condition J|(R) = J(R) holds. In the light of the fact that the second deriva-
tive of the Kullback-Leibler divergence is one-half the Fisher information, it is
very remarkable that for the hypothesis testing problem with side information
for two members of that Bernoulli family the relevant divergences do not
single-letterize. This is exactly the example of Ahlswede and Csiszar (1982).

ExXaAMPLE 5. Locations families
{f(yx,0) =f(y—08x): —0 <8 < 0 }

are an important class of problems for which the answer has the desired
single-letter characterization, because I(6; Y|X = x) is independent of § and the
hypothesis of Lemma 5 is trivially satisfied.

4. The informational inequality. We refer to our Cramér-Rao-type in-
equality (Theorems 1 and 2) also as “the informational inequality” and to its
bound as “the informational bound.”

To simplify matters, we consider first the unbiased case. An estimator 6 is
unbiased for an encoding function s, if 4

(4.1) Ed(Y", s, (X") =0 forall§c 0.

Needless to say, it is essentially impossible to decide whether such estimators
exist. However, their study makes the role of the function J, transparent. The
informational inequality for our estimation problem with side information can
readily be derived from the classical Cramér-Rao inequality with the help of
well-known properties of the Fisher information (see Section 3). We also use
here, for the biased case, a form of the Cramér-Rao inequality that is contained
in Theorem 2.1 of Ibragimov and Khas’minskii (1975a).
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PROPOSITION 1. Suppose that the density function f(y|0) is absolutely con-
tinuous in 0 for almost all y and that

(i) 1(0) exists for 8 € O,
(i) I(0) is positive and locally bounded.

If for the estimator 8,

E,|6(Y) — 6" is locally bounded,
then

(1-v(0)

E|0(Y) -0 > 700

+b%(0), 0€80,
where
b(6) = E6(Y) - 9.

We call (s, 0) regular, if I(6; Y”|s,(X™)) is positive and E,|f(Y™, s(X™) —
6|2 is locally bounded. We introduce

(42)  #,(R) = setof all regular (s,, §) with s, € #,(R) [as defined in (2.6)]
and, similarly, '

(4.3) #:(R) = {(s,,0) € #,(R): § unbiased for s,,}.

In order to make Proposition 1 applicable to our unbiased case we have to ensure
(1) and (ii). This can be achieved by the following conditions:

(C1) I(6; XY) exists for § € 0, is positive and locally bounded.

(C2) For every y € % the function f(y|0, x) is uniformly in x absolutely
continuous on compact subsets of .

If f satisfies (C2), then also for U € .#, the conditional density p(y"|d, u)
has a derivative p, for »" = [I'v-almost all y" and every u € . We can
therefore define

(4.4) 1(6; Y"\U = u) _fw o) (dy™)
and .
(4.5) I(6; YNU) = Y. P, (u)I(0; YU = u).

Our first result is

THEOREM 1. If (Cl) and (C2) hold, then for R > 0 and every (s,,0) €
Z,(R),

A 2
4.6 sup Ep|0(Y™, s,(X™)) - 0| = ———.
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Classically one can derive from Proposition 1 the asymptotic form of the
Cramér-Rao inequality for the biased case. The derivation given in Cencov
(1972) is adaptable to our model with side information. Technically we make the
derivation somewhat more elegant by extracting its essence in the form of an
elementary analytical inequality, which we now state and prove.

ProPOSITION 2. Let g: [a, b] > R be absolutely continuous and let G:
[a, b] > R* be bounded, that is, N’ = sup, ¢, »; G(r) < 0. Then we have

te) | [ t-a T
o o0 TP B (r)} = |:(b—a)}\+ 2] ‘

ProoF. If y? denotes the left side of this inequality, then obviously
v 2 max{|g(a)|,|&(b)|}

and
Ay>1+g'(r) forre[a,bd].
Therefore
b
~2y < g(b) —gla) = [g'(r)dr<(b-a)(\y - 1)
and thus

b—a

S EE— O
Y N (- an

In the biased case we use a condition, which is much stronger than (C1). In
terms of the modulus of continuity,

(4.7) Q(8) £ sup sup |I(6;YU) - I(6";YU)]|,
Uedt, 0,0:10-6'|<8

it can be stated as
(C3) limg_, ,R(8) = 0.

THEOREM 2. If (C2) and (C3) hold, then for R > 0 and every (s,,0) e
‘@n(R)i

liminf  inf  sup Ep|8(Y™, s,(X™)) — 0" nd,(R) > 1.
nooo (85,,0)EZ(R) 0O

Here J(R) can be replaced by J(R).

REMARK. The uniformity in x required in (C2) is no issue for finite Z. In
this case one also can show by the so-called Support Lemma [Ahlswede and
Korner (1975); see also Csiszar and Kérner (1982)] that in all our formulas the
variables U can be assumed to take at most |Z] + 1 values.
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ProoF oF THEOREM 1. Since s, (X") € #,, by (C2) and its consequence
(4.5) I(8; Y"s,(X™)) exists except if it takes an infinite value. Since by Lemma 2,
I(0; Y"s,(X")) < I(8; Y"X"s,(X")) = nI(6; YX),

(C1) implies that it is even locally bounded. By assumption, (s, ) e RER)
and, therefore, Proposition 1 applies and yields

(4.8) E (Y™, s, (X)) - 0] = f<0.

1
1(6; Y, s,(X™))
Again by Lemma 2,
I(6; Y"s,(X™)) = I(6; s,(X")) + 1(6; Y7s,(X"™)).

Since X" and a fortiori also s,(X"”) do not depend on 6, we also have
I(6; s,(X"™)) = 0. Therefore,

(4.9) I(0:Y"s,(X")) =1(6; Y"s,(X")), 68€80,

and we can rewrite (4.8) in the form

A 1
4.1 E, 0 — 012 > , 00,
(4.10) ol == To; vmis (x7)
which implies
A 1
. E, 0 - 012 > .
(4 11) Sl;p 0| | = info I(0, Ynlsn(Xn))

Since any finite-valued function of X" is in ., and therefore also %, (R) C
A ,(R), we conclude with (4.11),

R 1
inf supE-lf — 012> inf - —
(Sp,0)ER(R) oeg o | s,€%(R) infy g I(0§ Y7s, (X ))
1 1
> . — =
SUPy e 4, (k) infg I(8; Y"|U)  nd,(R)

[by (3.7)]. O

PrOOF OF THEOREM 2. By the arguments that led to (4.10) we derive with
Proposition 1 in the biased case for (s,, §) € Z,(R),

E0|9(Y", s.(X")) - 0|2

(4.12) | 1+ 50,5,
" 1(6; Y7, (X))

+ b%(0,s,), 00,

where

5.(0,5,) = EH(Y", 5,(X")) ~ 6.
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Apply now Proposition 2 with the choices
(418) r=6, g=b, G=1, a=6, b=0,+n2%
Thus for (4.12) for 4, € 0,
sup E (Y™, s™) — 0[2
0[6,,8,+n""2]
(4.14) 1

>
> - 5 -
SUPy e 19, 6,+d] I(6; Y"|s,) + 2 - n'/

Since by Lemma 2,

I(6; Y"s, (X")) = f I(6; YY" 's,(X™))

t=1
and since Y'"'s (X ") X,©Y,, from definition (4.7),
(4.15) [1(8; Y"s,) = I(6'; Y"Is,) | < nQ(n™'72),
for 6,0’ € [y, 6, + n=2].
This and (4.14) imply
1
= inf, I(0; Y"s,) + nQ(n~'2) + 2n'/%°

Now we continue as in the proof of Theorem 1:

(4.16) supE,|8(Y™,s,) — 0|2
0

inf  supEy6(Y",s") — 0]
(s, 0)EX,(R) 8

1
oo ry ity 1(8; Y75.) + nQ(n~ %) + 20172
1
infy e 4 (r) 1(8; Y"|U) + nQ(n™?) + 2n'/?
1
- nd,(R) + nQ(n~V?) + 2nV/%"
This and (C3) imply the result. O

>

v

5. Encoding the side information. We assume here that 2 is finite.
Furthermore we require that

(5.1) I(0; Y|x) < 0 forxeZ,0 €< 0.
Thus also for any U € 4,
(5.2) I(0; Y"|U) < oo,

because I(0; Y*|U) = I(8; Y*U) < I(6; Y"X") = nl(0; Y|X) < o0.
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We emphasize that we make no further assumptions in this section, which is
devoted to the proof of the following basic result.

PROPOSITION 3. Suppose that % is finite and (5.1) holds in our model. If U
is a finite-valued random variable, which satisfies

UeXeY(d), 0c0,

then for any p, 8 > 0 there is an ny(p, 8) such that for every n > ny(p, 8) there
exists an encoding function s,: " — N with

A I(X" A s(X™) <n(I(X AU) + p),
(i) 1(8; Y"|s (X™) > n(l — 8)I(6; Y|U) for all 6 € ©.

The result immediately implies that J,( R) can be achieved arbitrarily closely
by suitable encoding functions. By taking X" in the role of X and letting r tend
to infinity we see that also J( R) can thus be achieved.

Constructions of encoding functions meeting Proposition 3(i) can be given by
the approaches familiar from source coding with side information [Ahlswede and
Korner (1975); Ahlswede (1979); Csiszar and Korner (1982)]. The issue is to
establish Proposition 3(ii). This requires subtle continuity considerations due to
the fact that we are now dealing with Fisher information for families of
non-finite-valued random variables, whereas in source coding one usually deals
with conditional entropies and in Ahlswede and Csiszar (1986) with divergences
of finite-valued random variables. Our approach continues the program of
Ahlswede (1979) to exploit the fact that our model is invariant under permuta-
tions of 1,2, ..., n. We thus obtain novel results (Lemmas 7 and 8). In particular
their analogue for mutual information may be useful in information theory.

We recall now some standard definitions and results [cf. Ahlswede and Csiszar
(1986); Ahlswede (1979); Csiszar and Korner (1982)]. Then we present our
auxiliary results, and finally we prove Proposition 3.

A. Preliminaries on typical sequences. The type P, of a sequence x" =
(%4.--,%,) €EZ" is a distribution on Z where P, n(x) is the relative frequency
of x in x". The joint type P,x ,» of two sequences x" € Z" and y" € ¥" isa
distribution on ' X %, deﬁned s1m11arly We denote by 2, the set of all possible
types of sequences x” € £ and, for given P € #,, we denote by 7,(P) the set
of all stochastic matrices V= (V(y|x)),ca, yea such that

V(ylx) € {O, ;i’i(ﬁ’ﬁ(x)’} forallx e, ye %.
For Pe £,
(5.3) T & (2P = P)
denotes the set of sequences of type P in 2", and for x" € ", V € ¥,(P,»),
(5.4) TP(x") 2 (Y|P o, ¥) = P(x)V(x|y) forallx €2, y € 7}
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denotes the set of sequences in #" V-generated by x". Given a random variable
X and a positive number 7, we call P € &, an (x, n)-essential type if

(5.5)  max|P(x) — Py(x)|<n,  P(x) = 0whenever Py(x) = 0.
The conditional distribution of a random variable Y given X is the stochastic
matrix Py, y defined by

Pyx(ylx) 2 Pr{Y = y|X = x}

[and arbitrary if Py(x) = 0]. Forx™ € £" with P2(x") > 0, wecall V € ¥ (P,n)
(x™, Y| X, n)-essential if

max | Pn(x) V(31x) = Pun(x) Py x(ylx) | <,
(5.6) %

V(ylx) = 0 whenever Py, x(ylx) = 0.

The set of (X, n)-typical sequences in #" and the set of sequences in "
(Y|x, n)-generated by x™ are defined by

67 I¢,2 U 75 TPx.(=") = U  gv@i=n).
(X, n)-ess P (x", Y| X, n)-essV

The following basic inequalities are noted:

(5.8) 1Z) < (n+ 1), |7(P)| < (n+1)"¥
n n 2]
(5.9) Pr{X eggt=>1- pr
121 1%|

(5.10) Pr{Y"egyy (") X"=x"} =1~ o P2(x™) > 0.
n

B. Novel auxiliary results.

LEMMA 6 (Equivalence). For U € #, and for any u™ < %™ and any
conditional type V € ¥, (P,»),

I(6; Y™ X™ e T(u™), U™ = u™) = I(6; Y™ X™ € T (u™)).
PROOF. Let us use the abbreviation A = 77%(u™). Then for the conditional
density
f(Y"=y™0, X" A, U™ =u™)
(5.11)

1
= n m Z f(ymloyxmy um)Pn (xmlum)
B (A™) 2, o
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and therefore by the Markov property
I(; YN X™e A,U™=u™)
_ 2
(512) o [PRo(Al™) T afo( 3710, ™) PRy (xm )]
b P)’r’iU(AWm)—l}:me,‘xf(ymw, xm)PA'ﬁU(mem)

Since for x™ € A,

dv(y™).

(5.13) Py (Alu™) "' Ppy(x™u™) = PR(A) "' PP(x™),
and since
I(6; Y™ X™ € A)
5.14 Pm A —IZmE mo’ m Pm m 2
G (PR (A) " Tenca om0, s BRG]

om PP(A) 'Tonealo(y™0, x™) PR(x™)
Lemma 6 follows by comparison of the two quantities. O
LEmMA 7 (Monotonicity). For every nonempty B € J(u™), whereu™ € %™
and V € ¥, (P, =), we have
I(6; Y™ X™e B) > I(6; Y"|X™ € T*(u™)).
PROOF. Define the sets of components
(5.15) H(um™u)={tl<t<m,u,=u}, ue,

and let 9(u™, u) be the group of permutations of the elements in X" (¢™, u). The
direct product

(5.16) g(u™) =[] 9(u™ u)

ue¥
is a group of permutations of 1,2,..., m. For 7 € (u™) and x™ € ™, respec-
tively C ¢ '™, set
(5.17) (™) = (Xp0ys -+ Xp(my)
and
(5.18) 7(C) = {=(x™)x™ € C}.

Denote the equidistribution on J(¢™) by @ and the equidistribution on C by
Q. Observe that ‘

1
(5.19) Q=W > Q.(p)-

red(u™)

By concavity of I (Lemma 1),
I(0; Y™ X™ e TM(u™)) Y, I(6;Y™X™e n(B))

< —
|9 (u™)] TeF(u™)
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and since by the invariance of the model,
I(6; Y™ X™ e w(B)) = I(6; Y"|X™ € B),
the result follows. O

For the description of our next auxiliary result it is convenient to associate
with every type P € #,(%Z) its absolute type (n(l),..., n(a)), where for &=
{1,...,a},

(5.20) n(x) = P(x)n, x€4%.

Instead of the notation 7, we use now also the notation I "(n(l),..., n(a)).
We say that (n(1),..., n(a)) extends (m(),..., m(a)), if

(5.21) n(i) 2m(i) forieZ.

LemMa 8. If (s(1),..., s(a)) extends (r(l),..., r(a)), then
I(6; Y X" e 77(r(1),...,r(a))) = I(6; Y*|X* € T°(s(1),..., s(a)))

-—g(dn—ru»KwHX=iy

PrRoOF. By Lemma 7 we have for any ¢ with s(i) > 1,
I1(6; Y*|X° € T%(s(1),...,s(a)))
<I(6; Y |X*" ' e 7Y (s(1),...,s(i — 1), s(i) — 1,
s(i+1),...,s(a)), X, =1i)
=I(6; Y Y X"t e T Y(s(1),...,s(i — 1), s(i) — 1,
s(i+1),...,s(a)))
+ 1(6; VX, = i)
by the memoryless character of our model. The desired inequality follows by
applying this step s — r times. O
PROOF OF PROPOSITION 3. Clearly we can assume that, for some y > 0,
(5.22) HU)-I(XAU) >y,

because otherwise I(X A U) = H(U) and then, U being a deterministic func-
tion of X, the choice s,(X") = U™ would do.

We now decompose the set of components {1,2,..., n} into the sets {1,..., m}
and (m+1,...,m+ 1}, n=m+ [l. I and m will be specified below. We com-
pose our encoding function s, from two functions s;, and s;’, where s;, will be
defined on Il ,%,, s;’ is the identity map on Il ,%; and :

(5.23) S(x™) = (s0(%1see ey X)) 8/ (Xppsisee-s X))
The reason for this approach will become apparent below. We describe now s,
by the construction of Ahlswede and Korner (1975), page 633.
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It closely resembles Feinstein’s maximal code construction in the formulation
of chapter 3 in Wolfowitz (1978). The main difference is that for the purpose of
approximation it uses codes with large error probabilities (A — 1), whose decod-
ing sets essentially exhaust the output space. The properties stated below
involve standard entropy bounds for cardinalities of sets of typical sequences [see
Csiszar and Korner (1982) and Wolfowitz (1978)].

Suppose that & < y. We specify 1, = ¢;(1/Vn) and 7, = cy(1/Vn). Then for
any A, 0 <A <1, and suitable constants c,, ¢,, there is a system of pairs
{(v;, D,)}., with the properties:

(P1) v;e Ty, for j=1,2,...,N.
(P2) D; c Iy, ,(v;) for J=12,...,Nand D;N D; = ¢ for j +j".
(P3) Pxiy(Djv;) =1 — A for j=1,2,..., N.

(P4) P3(Dy) < (1 — MPFHU™ — {vy,...,05}) + APF({vy, ..., 0n}), Where
D, = 2™ - U D,

(P5) 1/m)log(N + 1) < I(X A U) + ¢ for large m.

It follows from (P1) and (P5), the choice ¢ <y and from (5.22) that
PF({vy,...,vn}) > 0 when m — . (P4) and the fact that we can choose A
arbitrarily close to 1 imply that Pg(D,) can be made arbitrarily small for m
sufficiently large. Define now

s &™ > {(j,V):0<j<N,Ve¥(P,))

by

(5.24) sp(x™) = (4, V), ifx™e D;nIy(v).

It follows now from (5.8) and (P5) with the choice ¢ = p/4 that
(5.25) I(X™As(X™) <m(I(XAU)+p/2).

Therefore, also
I(X" A sn(X")) < m(I(X AU) +p/2) + Llog|%|
and with the choice

.o
. — nmin|'=———,
(5.26) l nmm( 2Tog@]’ )

(i) holds.
We verify now (ii). By our definitions
I(8; Y7[s,(X™)) = 1(8; Y™s,( X™)) + 1(6; Yoy o, Yols? (X1 -, X))
= Y. PP(D; nI(v,))1(6; Y™ X™ € D, n T (v;))
iLv

+ P(D,)I(0; Y™ X™ € D) + I(6; Y|X).
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Furthermore, by Lemmas 7 and 6,
1(6; Y"X™ € D;n T(v))) = I(6; Y™ X™ € T9(v;), U™ = v;)
and we can conclude that
I(6; Y"s,(X")) = U(6; Y|X)
(5.27) + ;:‘P;{"(Dj N (o)) I(8; YMX™ € TP(v,), U™ = 1)),
s
when the asterisk indicates summation over those V which are (v, X|U, ny)-

essential [recall (5.6)].
Notice that by (P2),

U*D,n Ty (v;) = D; forj=1,...,N,
v

and since Pg(D,) = O(A - 1, m - o0), we also have

(5.28) Y*PH(D;NTP(v) > 1 (A= 1, m > ).
5LV

On the other hand, again by concavity of Fisher’s information,
L PEu( 7y (0)lo))1(6; Y™ X™ € Ty (v), U™ = v,) = 1(8; Y| U™ = v;).
%

Since
I(6; Y™ X™ e Ty(v,), U™ =1v;) < mmfo(ﬂ; Y| X =x)
< ml(0; Y|X),
where
T= max Py(x)"’,

x: Py(x)>0
and since by (5.10),

. |%| | %]
gpxw(yv(vj)wj') >21- W:

we can conclude that
Y Pry( Ty (0)lo)) I(8; Y™ X™ € Ty(v,), U™ = v))
v

(5.29) 2| |2
2 1(6; Y"U™ = v;) —

1(6; Y| X).
o 10 71%) |
Notice that (5.27) and (5.29) would readily establish (ii) if the coefficients in the
two sums were equal. This not being the case we circumvent the difficulty by
exploiting the idea that the information quantities do not change very much as
long as V' varies over (v;, X|U, n,) essential types. Technically we do this with
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the help of Lemma 8 by making the comparison via longer sequences of length
k = m + 1/2. Consider any u* for which P,k is (U, n,)-essential and let W be
(u*, X|U, n,)-essential. For fixed u define s(x) = P(u)W(x|u)k and r(x) =
P (u)V(x|u)m Thus s = P«(u)k, r = P,(u)m and, for 7,, n, sufficiently small,
Lemma 8 implies ’

I(0; Y| X" € Ty 1, U™ = (u,..., u))
> I(0; YOI X* € Ty 1y, U = (u,..., u))
- ¥ (Pa(w)W(ilu)k — P, (u)V(iju)m)I(6; Y|X = i)
i=1
and hence for n = 5, + 7,,
1(6; YMX™ e T3(v), U™ = v;) = 1(8; YHX* € T (u*), U* = u*)

- X Pk = m)I(0; V)X = i)

=1
=Y n(k—m)I(8;Y|X =i).
i=1
Since this holds for all essential V and W, and since (5.29) holds with m, v,V
replaced by &, u*, W, we derive from (5.27)
I(6; Y"|s,(X™)) = U(6; Y|X) + I(6; YHU* = uk) —(k—-m)I(6; Y|X)
q I I

—7|Z|(k — m)I(0; V|X) — ’TI(0 Y|X).

Obviously we have also
I(0; YFU* = u*) > RI(6; Y|U) — knrI(8; Y|X)
and thus for n small and n > n(7),
I1(6; Y"s,(X™)) > RI(6; Y|U) = n(1 — 8)I(6; Y|U). m|

6. Regularity conditions for achievability of the informational bound.
Among the basic work on the asymptotic theory of estimators we mention the
important contributions Le Cam (1953, 1956, 1970), where one also finds a very
good historical account, and Ibragimov and Khas’minskii (1972, 1973, 1975b).
Various sets of regularity conditions have been considered in the extensive
literature. The presence of side information requires additional uniformity condi-
tions. Our aim here is not to have great generality but to have reasonable
conditions under which our novel bounds can be established with not too much
mathematical effort.

Suitable in our case are those conditions on the set of densities which can be
lifted to the case with generic variables

(Y,,...,Y),s(X,..., X.).
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For our Cramér—Rao-type inequality (Theorems 1 and 2 in Section 4) we need,
for instance, that the Fisher information I(6; Y", s,(X™)) is locally bounded in
©. This property follows from the condition (C1). As in the classical situation
asymptotic achievability of the informational bound is guaranteed only under
stronger regularity conditions. In the choice of our conditions here we follow
closely those of Ibragimov and Khas’'minskii (1972, 1973, 1975b).

Relevant for us are their conditions in groups I, II and III of (1972) and
groups III, IV and V of (1975b). We now present our substitutes. Asterisks
identify those related to the groups in (1975b).

We begin with the conditions relating to those in (1972).

Whereas their conditions I, I,,, and I, are already incorporated in our model,
we have to substitute for I,:

(I,) There exists an 2’ C & of positive measure with
[ 110, 00p(0)m(a) = [ 18 2)p(x)u(d) p(d) > 0 for s+

The conditions in our group II are:

(II,) For every y € # the function f(y|0,x) is uniformly in x absolutely
continuous on compact subsets of ® and, for r-almost all y and every x, all
points § € O are Lebesgue points of the function df(y|6, x)/d8.

(II,) For all 8 € ©, x € & the Fisher information at 8 conditional on x exists,
ie.,

. (216, 2)[
1001) & [ =G

The integrand is assumed to vanish wherever f(y|6, x) = 0.
(II,) I(6)U) is a continuous function of § in ® for all U € 4.
(II,) There exists a nonnegative number p such that

v(dy) < .

sup (1 + |0]) "I(|x) < o forall x € Z.
0

(II;) For some & > 0,

2498

/’qyl fo(ylaax), v(dy)

F(318, )"
is locally bounded in @ for all x € .
Our condition in group III is:
(IIT1,) There exists a § > 0 such that for §, € 0,

suplf = 6l° sup _[\[f(518, %)1(58, %) (dy) < oo.

0cO® x,x' €
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Our first auxiliary result implies that properties (II,)—(II,) extend to encoding
functions. This will be used for the proof of Theorems 3 and 4 in Section 7.

LEMMA 9. Let Z be finite and assume that (I1,)~(I15) hold for { f(y|6, x)}.
For U € #,, define

(61) F(3m10, w) = X T1F(6, 2) Pyngy (27100

xn t=1

Then (IIIV)—(II5) hold for { f(y"|0, u)}.

Proor. (i) (II,) holds again, because f(y"|, u) is a polynomial in functions
satisfying (II,).
(i) I(6; Y U)=1(6; Y"U) < I(6; Y"X"U)
=1(6; Y X"U) (by Lemmas1,2)
= nl(6; Y|X) (by the Markov property and Lemma 2)

and

nY Py(x)I(8;Y|x) < oo, by assumption.

(i) (6:;Y"U) = 3 1(6; )y U)

t=1

Since Y"'UeY,© X,, the summands are continuous in # and thus also
I(6; Y"|U).
(iv) Since I(6; Y"|U) < nI(6; Y|X), (I1,) holds again.

(v) It suffices to consider the case n =2, because we can interate the
argument. It is clear from (6.1) that it suffices to establish (II,) first for
I1Z_,/(, 10, x,) and then for convex combinations of such functions. The result
therefore follows from the following two inequalities (a) and (b).

Let f,, f, be two density functions with

|fi/|2+8 )
f?—xdui<oo fOI‘l=1,2.
i

Then

dv

f_1+8 i
12

IR h)*° 2 f|f,~'|2+8

————dp, X dp, < 21*?
(f1f2)1+‘S ' ? =1
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This follows with the well-known inequality|a + b|° < 2°~Y(|a|® + |b?]), p > 2,
as follows:
/If{fz +fif P8
(fif)'"°
<TM/WM“”HAMHS
- (ff)"*

drv, X dvy

dv, X dv,
If{|>*° Ifs)**+°
=21+8[ (e — 5 f2dv; X dvy + f s fidv, X dv,

|f 2+8 |f2/|2+8
2”8[ il dv, + f——dv2 .

f1+8 f21+8

Further, for 0 < A < 1 with the same inequality,

fur+u—xmf”
(Af+(1-Ng)™?

dv

AP 41 - Mg
(A f+(1=21)g)'™*

groa| (M |u—xm¥”dp
Jaa o g

(b) < 21+8/'

14

because f, g > 0. O
Next we show that condition (III,) extends to encoding functions.

LEMMA 10. Let & be finite. If (II1,) holds for { {(¥|6, x)}, then it holds for
{f(y™0, u)} as defined in (6.1).

PROOF. Since for nonnegative reals Jria; < Zi\/ai- , clearly

f\/Zn:f(y"Ib’, x")p(x"w) L f (5”16, ™) p(x"|u’) »(dy")

IA

T UG8, (510, ™) (™)

IA

Ifl"’"(gl’gcch\/f(ylﬂ,x)f(ylﬂo,x') v(dy) '
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Therefore

sup |0 — 6o/ [/(5"10, ) ("6, w') »(dy™)
[Z=1°)

< 11 sup0 — op'max [/7 (610, )iy #To(a)] <o,
=X} X, X

In order to obtain results on uniform asymptotic efficiency on a closed
interval A C ©, we shall apply Theorem 3.1 of Ibragimov and Khas’minskii
(1975b) in the next section. For this we have to extend conditions I-V of that
paper to the case of side information. For the conditions I and II this is done
already with our conditions in group I. The conditions ITI-V are to be replaced
by the following conditions III*-V*,

For d > 0 define

fﬂ(yw’ x)
(6.2) B(d,0,x) = {y: 62 > d}
and for a closed interval A C © set
(6.3) I,(x) = inf I(6; Y|X = x).
A
The conditions in group III* are
(II1%) 0<Iu(x) forxes.
2
(1) sz&:’(”'x“%{ o | } Omdm e

forall x € Z.

We come now to the more restrictive conditions IV* and V*, which are not of
single-letter type:

sup
0,A€A;|0-A|<e

(Iv¥)

(T f(y710, x7) P(x7))"?
.[ r a6
(T (718, ) P(x7))
a6 -

)dv(y’) —0ase— 0
for every r and every probability distribution Pon Z.

v nt | (Zn0.0p00)

0,A€A;|0-Al>e Vo

_(§f(yrm’ x')P(x’))l/Z)zd"(y') >0

for every &€ > 0 and all probability distributions P on Z.
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We have seen already in Lemmas 9 and 10 that the condition (I1I,) extends to
coding functions. There is no essential loss if we consider later only coding
functions which reproduce X, for one component ¢. Therefore for these functions
we have, by (I1I}),

(6.4) I(6]s,) >0 forallf e A.

By our next result these coding functions also satisfy (III}).
Lemma 11. (I1,), (L), and (I11) imply (I111%) for finite % .

Proor. By Holder’s inequality,

7 9,x)
j;g fo( ¥l ) (dx)

14
(d, 8, x) f(y|0,x)

+ 2/(2+9)
M 3/(2+9)
< (f@ f(y|0,x)1+8 v(dy) '/‘B(d‘o‘x)f(yw,x)v(dy) .

Since the first term to the right is by assumption (II;) bounded in A and since by
(I11}), supy e 4 1(0]x) ! = I;}(x) < oo, it suffices to show that

8/(2+8)
| -

lim ( [ 116, x)w(dy)
B(d, 8, x)

d— o0

Now notice that by definition of B(d, 8, x),

,fo(yw’x),v(

d
7 /y)

[ H8,x)w(dy) < |
B(d, 9, x) B

<

(fo(18, 2))* 1(6)x)
/B (516, x)d’ (dy) < =25

and the result follows with (II;), since & is finite. O

We are thus left only with (IV*) and (V*) as non-single-letter conditions.
Nevertheless we use them, because we can think only of single-letter conditions,
which are more restrictive. Also, sometimes they can be verified without much
effort. We discuss an important case.

EXAMPLE 6 (2 and % finite). In this case for {p(y|0): y € ¥, 0 € A},

2
Po(yw) Po(y|A)
sup -
0,A€A;0-Al<e yeo /p(18) /p(y14)

—0ase—0,

is equivalent to the continuity of (py(y|0))/p(¥|0) in the compact set A for
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all y € %. Here we use the notation

ap(y19)
A) = —"7
pa( yl ) 30 en
One readily verifies that with the continuity of
0
pe(16) , cw,
yp(10)
and of
2|0
w0 ey finite,

Ya(z10) °

also (p(y10)qg(2|0))e/|pr(2|0)q(2]0) is continuous on A for all (y,z) € ¥ X Z.
Obviously also for

Apg(¥10) + (1 — X)gy(y10)
yp(y10) + (1 = N)q(19)

is continuous on A for all y € #. Therefore, (IV;*) holds for { p(y|4, x): x € &,

yE ¥, 0 A),if (p(y0, x))/ yp(y|8,x) is continuous on A for all y € ¥ and
xeX.

For the present example the single-letter condition

(Zo(0,2)p())

L9,

inf
a,AeAl;I|10—A|>e/@/
(6.5)

e x)p(x))m)z >0

for every & > 0 and all probability distributions implies (V*), if p(y|0, x) is
continuous in 6 for all x, y. This readily follows from the fact that for two
stochastic matrices W, V with

Z W(xlx)W( ylx,) p(%1, x5) = 2 V(3,12,) V(32l25) (21, %)

*1» %o X1y X2
for all y,, y,, necessarily (by summation)
ZW(y1|x1)p(x1) = EV(yllxl)p(xl) for all y,.

X1 X1

7. Asymptotic achievability of the informational bound in case of a
finite £. In order to avoid unpleasant technicalities in the handling of the side
information we assume here that X takes only finitely many values.

We have to find for all large n suitable encoding functions and suitable
estimators. For the encoding functions we only provide an existence proof
(Proposition 3 in Section 5). We shall also always use suitable encoding functions
repeatedly.
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A. Asymptotic efficiency for an encoding function. To fix ideas let us first
use any encoding function s, repeatedly. Thus we are in the familiar case of i.i.d.
drawings ( X,, Y;)> ,, where
(71) X,: sr(X(ifl)r+1""7 er)’

13

(7.2) Y, = (Y(i—l)rﬂ:“ Y, )

1 o Tar

Since I(6; X,Y) = I(6; }7|X' ) and since by Lemmas 9 and 10 in Section 6 the
properties in groups I, II, and III extend to s,, we can apply Theorem 5.1 of
Ibragimov and Khas’'minskii (1973) and get:

THEOREM 3. Assume that the conditions in groups 1, 11, and 111 hold. For

((X'l-, 17i));?°=1 as defined in (7.1) and (7.2) and n = 1 - r we have for the MLE 6:
(a) Vn(6(X', YY) — 8) is asymptotically normal with parameters
(0,(/r)I(0]s(X7)™H).
(b) For all a > 0,

2 )"/2 I'(3(a+ 1))

Tim n*?E|§( XL YY) - 4" = ( (1/r)I(6]s,) Vr

In particular for a = 2,

A, o~ ~ r
im nE|§(X, V) - ' = ———
(c) nlgr:on|( YY) — 6] o) b0,

that is, 6 is asymptotically efficient for s,.

B. Uniform asymptotic efficiency for an encoding function. We have ex-
plained in Section 6 that it suffices to study encoding functions s,, which satisfy
(6.4). Application of Theorem 3.1 of Ibragimov and Khas'minskii (1975b) gives
the following result.

THEOREM 4. Assume that the conditions in groups 1 and 11 as well as the
conditions (II1,), IV), and (V) hold. For n =l - r we have for the MLE 6:

(a) 8(X*, Y) is consistent in the closed interval A C ©.

(b) For all 1 > I (k) this estimator has a moment of positive integral order k
and for any function h(z) growing no faster than a power function as |z| = oo,
the following relation is satisfied uniformly in 6 € A:

1
: Al Y1 YLy _ - -22/2
Jim Eh((9(X',¥") - 0)iI(0]s,) ) yorm fh(z)e dz.
(c) In particular, for h(z) = 22,
1
im E,(§(X,¥) -6) 1= —
11—12,10 o 6(X,Y) - 6) I(9)s,)

uniformly in 0 € A.
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C. Achievability of the informational bound for a closed interval. Let ¢, 8, p

be small numbers, which we further specify soon. By definition of J(R) there
exists an m and a U € #,(R — ¢) such that

1
J(R—-¢) < —I(0|U) + T forall 6 EA.
m 3
By Proposition 3 there exists an » = m - k and an s, with

1 1
(1-8)—I(0U) < ~I(f)s,) forfeA
] m r

and
I(X"As (X)) <k(I(XAU)+p)<k(m(R-¢)+p).
Thus
[}
rate(s,) <R — ¢+ 7
and

1 n
—1(0)s,) = (1 - 8)[J(R —o) - 2| torgea.

Choosing & such that J(R —¢) > J(R) — 1/3, p < ¢ and finally & such that
(1 = 8)J(R) — 27/3) = J(R) — n, we arrive at the inequalities

(7.3) rate(s,) < R,
(7.4) ;I(0|s,) >J(R) — .

Write n in the form n = Ir + j, 0 < j < r. By ignoring the last j observations we
define an estimator 6, by

A

(7.5) 0, = 6(X, 7).

These relations and Theorem 4 imply

THEOREM 5. Under the assumptions of Theorem 4, for any rate R > 0 and
any m, 0 <1 < J(R), there is an estimator 6, based on an encoding function of
rate R such that

a (2 1
limsup sup Ey(0, — 0)'n < ———.
mouw sup Ell = 0)'n < Jy =5

REMARKS.

1. We have proved asymptotic achievability of J( R) within an arbitrarily small
accuracy 7. By a proper modification of the scheme to the case of a sequence
{s,, )32, of independent but nonidentically distributed coding functions one
can establish, with the help of Theorem 3.1 in Ibragimov and Khas’minskii
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(1975b), exact asymptotic achievability. A formal proof requires lengthy
calculations without any new ideas.

2. The results of this paper were announced at the NRW Colloquium on
Statistics held in Bielefeld, May 31-June 1, 1984. They have been presented
at the IVth International Vilnius Conference on Probability Theory and
Statistics held on June 24-29, 1985.

3. In independent work, “Estimation via encoded information,” Z. Zhang and
T. Berger have also considered the problem of parameter estimation for
bivariate distributions under communication constraints. They have included
also the case where both marginal distributions can be made available to the
statistician only at limited rates. In this greater generality they show, under
certain regularity conditions, the existence of a sequence of unbiased estima-
tors with variances converging to 0 at a speed O(1/n). In the gaussian case
they prove uniformity of this convergence in 6. Since the paper contains no
result on efficiency or even a Cramér-Rao-type inequality, the overlap with
our paper is negligible.

8. J single-letterizes in the symmetric Bernoulli case. Recall Example 1
in Section 2. We shall show that in case of side information,

(8.1) sup inflI(0;Y|U) = inf sup I(8;Y|U)
Uet(R) 9 0 Ueay(R)

and that therefore, by Lemma 5,
J(R) = lim J,(R) = J(R),
n—oo

which is the desired single-letterization. The identity (8.1) is an immediate
consequence of

(8.2) I(:;Y\U)<I(8;Y|U) forall@andallUe XoY(6),0<0,

which we now prove.
For any U with values in % = {u,,..., u,} we define

pi = Py(u;), q;= PX|U(OIui)'

Since Py(0) = Py(1) = 3, necessarily
(8.3) ZpiQi =3
l

The constraint I(X A U) < R takes the form

(8.4) Lph(q) = H(X) - R,

where A is the binary entropy function.
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I(0; Y|U) can readily be calculated as follows,

Py(y10, u,)*

I(0; YU =u,) = ZT((%’W—.))’
P(010,u;) = 0g;+ (1 - 0)(1 - q,),
P(1|0, ui) = (1 - 0)%‘ +6(1 - q;),

and thus
S (2¢; — 1)’ (1 - 2¢,)’
oMU =) = g T -0 -a) T =00+ 0(0-a)
_ (2(1i - 1)2
[0%‘ + (1 - 0)(1 - Qi)][(l - 0)%‘ + 0(1 - Qi)]
_ (2%‘ - 1)2
f(8,i) ’
if we use the abbreviation
(8.5) f(0,i) = [0(2q; - 1) + (1 — g)][0(1 - 24;) + qi].
Hence
(2q; - 1)2
(8.6) I(6; Y|U) = Zi:pr—f(*m-

Now for (8.2) to hold it suffices to show that for all i, (8, i) takes its maximum
at 0 = ;. Clearly,

df(8,1)
a0 (2¢; - 1)[6(1 - 2¢;) + ¢;] + [0(2¢; — 1) + (1 — ¢))](1 — 2q,)
and
df(6,i) 1-2¢q; 29,-1
=(2g9. — 1 +q, — —1+4q;,|=0
do o=1/2 ( ql ) 2 qt (It
Furthermore,
d%f(0,1) . . . )
—d‘é2—=—(2qi—1) -2 <0, forqi¢§andforqi=§f(0,z)

is independent of 6. In any case, § = % is a maximal value of f(#, ) and thus
(8.2) holds.

Finally, we mention that by a somewhat lengthy calculation it can be shown
that for rate R an optimal choice of U is specified by

(8.7) 7={12}, Py=(31) PX|U=(1fc 1;C),

where c is a solution of 1 — h(c) = R.



ESTIMATION USING SIDE INFORMATION 171

Furthermore, in this case
(8.8) I6; YIU) ' = [6(1 - 8) + c(1 - ¢)](1 — 2¢) 2.
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