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STRONG CONSISTENCY OF THE PLS CRITERION
FOR ORDER DETERMINATION OF
AUTOREGRESSIVE PROCESSES

By E. M. HEMERLY! AND M. H. A. DavIs
Imperial College of Science and Technology, London

This note concerns the problem of order determination for autoregressive
models. Rissanen’s “Predictive least squares principle” prescribes that one
should choose as order estimate k(n) at time 7 the order of the model which
has given the least mean square prediction error up to that time. We show
that this procedure is strongly consistent, that is, that k(n) - p as. as
n — oo when the data are generated by an AR process of order p, given an
upper bound p*.

1. Introduction. Several criteria have been proposed to solve the problem
of order determination for autoregressive processes. As representative works we
can mention Anderson’s (1963) multiple decision procedure, Akaike’s (1974) AIC
criterion, whose consistency properties were analysed by Shibata (1976), and
Rissanen’s (1978, 1980) MDL criterion [see also Schwarz (1978)] and the ¢(k)
criterion proposed by Hannan and Quinn (1979). An altogether different criterion
has been proposed by Rissanen (1986a). The corresponding principle of mod-
elling, the PMDL (predictive minimum description length principle), unlike the
maximum likelihood method, permits optimal identification of parameters both
in their values and in their number. When specialized to Gaussian models, the
PMDL gives rise to the PLS (predictive least squares principle), Rissanen
(1986b). Whereas the usual least squares minimizes the mean prediction error,
the PLS minimizes the prediction errors on the observations. In so doing, the
minimized criterion can be interpreted as representing the least total accumu-
lated “honest” prediction errors (where the “honest” denotes that only past
data are used to identify the predictor parameters), and as being the stochastic
complexity of the data.

The first study concerning the consistency of the PLS was carried out by
Rissanen (1986b), who considered linear regression models with Gaussian noise.
Based on first and second moments of some random variables of interest and
relying on Chebyshev’s inequality, it is shown that £(n) —» p in probability,
where p is the dimension of the regressor vector, with p € M = {1,2,..., p*},
p* < o0, and k(n) is the PLS estimate at time n. The next study was done by
Wax (1986, 1988), who obtained the same result for autoregressive models
without requiring the Gaussian assumption. Besides giving the proof, Wax
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presented a computationally efficient way of evaluating the PLS estimates by
using predictive lattice filters.

In this work, by relying on Wei’s (1987) result for multiple regression models,
we show that as conjectured by Rissanen (1986¢c) the PLS estimates are also
strongly consistent, that is, 2(n) — p almost surely for AR models.

2. Problem formulation and regularity assumptions. Let (Q, %,
(Z)i=0,1,...» P) be a filtered probability space and {w(¢)} a martingale difference
process with respect to %, The sampled data {y(¢), ¢t > 0}, with y(¢) =0, V
t < 0, is generated by the pth-order autoregressive process
(1) ¥(t) = ayy(t = 1) + apy(t - 2) + -+ +a,y(¢t - p) + w(?).

We assume that an upper bound p* for the model order p is known.
Competing models of order & = 1,2,..., p* are fitted by ordinary least squares.
Let

(2) (:)T(k’t)=[dk,1(t) dk,2(t) dk,k(t)]

denote the estimated predictor coefficients in a kth-order model at time #; then
1

@) Ok = | X0k NOTR )| T ok, )3,

Jj=1 Jj=1
where ®(k, t) denotes the regressor vector
(4) OT(k,t) = [y(t—1) »(t-2) ... y(t—k)].
Now define
(5) e(k,t+1)=y(t+1)—H(k,t+1)=y(t+1) — ®"(k, ¢t + 1)O(k, t)

[this is the “honest” prediction error, in the sense that calculation of §(%, ¢t + 1)
involves only the data y(1),..., ¥(¢)] and let

(6) PLS(, n) = (1/n) fle2(k, ).

The order estimate £(n) at time n is then
k(n) = min PL
(7 k(rn) = min PLS(k, n),

where M = {1,2,..., p*}. Thus E(n) is the order of the model which has given
the least mean square prediction error up to time n. To state our results, the
following mild regularity conditions on the process (1) are required.

(A.1) The roots of the characteristic polynomial z? — @,2?"' — -+ —a, =0
are all inside the unit circle.
(A.2) The linear innovations {w(t)} satisfy
E[w(t)|%_,] =0 as, E[w?(t)%_,]=0% as,

E[|w|%,_,] < o as.forsome a > 2.

(8)
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THEOREM 1. Suppose conditions (A.1) and (A.2) hold. Then the PLS crite-
rion is strongly consistent, that is,

9) k(n)>p a.s.asn- .

The proof is given below in Section 3. Having established (9), it is immediate
that under conditions (A.1) and (A.2) we have strong consistency of the parame-
ter estimates, that is,

(10) O(k(n),n) > 0(p) as.asn - w,
where O(p) = [a, @, ... a,].

3. Proof of Theorem 1. Since the arguments for the undermodelled (% < p)
and the overmeodelled (% > p) cases are different, we will consider them sepa-
rately.

3.1. Overmodelled case. We rewrite (6) as

n

nPLS(k,n) = 3 wi(2) +2 %, (e(k, ) — w())w(e)
(11) t=1n t=1
+ Zl(e(k, t) — w(z))®

and since (e(k, t) — w(t)) is #,_,-measurable and {w(¢)} is a martingale differ-
ence, from Chow (1965) we have

nPLS(k, n)
(12) _ i w(t) + (1 + o(1)) f‘_‘ (e(k,t) — w(t))”> + O(1) as.

Now, from Wei (1987), Theorem 3, we will have

(13) Y (e(k, £) - w(t)) = (1 + o(1))o? logdet 3" (k, £)®7(k, £) as.

t=1 t=1
if
n -1
(14) ®T(k, n)( Y ®(k, t)0T(k, t)) ®(k,n) >0 as.asn— ©
t=1

and
}\min(D“(k, n)( i o(k, t)0T(k, t))D"(k, n)) - 0 as.asn — oo,

t=1

(15) where D(k, n) = {diag( é(b(k, £)@*(k, t))}w’
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where A ; stands for minimum eigenvalue. These conditions are obviously
satisfied because (A.1) and (A.2) imply

n
(1/n) Y, ®T(k,t)®(k,t) > R(k) as.asn - oo,
(16) t=1
where R(k) = E[®(k, n)®T(k, n)].
Therefore, from (13) and (16),
(17) Y (e(k,t) —w(¢))’= (1 + o(1))o%klogn as.
t=1
and then, from (12) and (17),
(18) n(PLS(k,n) — PLS(p,n)) = (1 +0(1))e%(k —p)logn as.,
which obviously implies
(19) PLS(k,n) — PLS(p,n) >0 as. for n large enough, ¥ & > p.
3.2. Undermodelled case. The model set now is considered to be {1,2,...,
p — 1, p}, where p is the order of the system generating the data. The analysis
here is straightforward because all models of smaller order than p give asymp-

totically a variance which is larger than o2
For any model with order 2 < p, we define

(20) @(p, t) = [al - dk,l(t - 1) cee Qp— dk,k(t -1) (2% B ap]
and from (1), (2) and (4)-(6) we obtain
nPLS(k, n)
= Y (8%(p)®(p, &) — 87(k, £~ 1)0(k, 1) + (1))’
t=1
BV 2 (8%, 00(p, ) + w(e))’
t=1

= (1 +0) X (8%(p, )0(p, 8)) + T w(t) + 0(1) as,

t=1 t=1
where the last equality follows from Chow (1965) and the fact that
0T(p, t)®(p, t) is %,_,-measurable. Considering now that ©( p, t) is converging
a.s. as t — oo, say to @)(p), we can rewrite (21) as

nPLS(k, n) = (1 + 0(1))67(p) éq»( p, £)07(p, 1)|6(p)

(22) N
+ Y wi(t) + 0Q1) as,
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where, from (20), we can estimate

W@%iwwwunﬂmm

t=1

(23) z@@wm4i¢quwnn)

t=1

> af,)\mi,,( Zn: o(p, t)0"(p, t)).

t=1

Recalling that from (12) and (17)

(24) nPLS(p,n) = (1 +0(1))e’plogn + Zn: wi(t) as.,

t=1
from (22)—(24) results
PLS(%k,n) — PLS(p, n)

(25) gn:(l)(p, t)®™(p, t)) + O(R)%) as.,

1
>(1+ o(l))af,-’;-}\min(
t=1

and since from (16)

(26) li’fx_l’igf(l/n)km( i ®(p,t)0"(p, t)) >0 as.,

t=1
from (25) we conclude that

(27) PLS(k,n) — PLS(p,n) >0 as.for n large enough,V &k < p,
and then, from (19) and (27), (9) is proved. O

4. Final remarks. The extension to ARMA models is not straightforward.
This is so because in the ARMA overmodelled case the parameter estimates
provided by the recursive prediction error method may not be well defined.
Recently, however, Veres (1988) has established results concerning this case.

We should mention that the strong consistency of the PLS criterion and the
possibility of evaluating it in real time suggest its application in areas as signal
processing and adaptive control, among others, where recursive computation is
essential. Moreover, the recursive computation can be carried out in an efficient
way by using the lattice form for parameter estimation, since in this case all the
prediction errors e(l, t),..., e( p*, t) are calculated at once [see Wax (1988) for
details].

Finally, an independent, and much more involved, proof of the strong consis-
tency of the PLS criterion for AR processes has been provided by Hannan,
McDougall and Poskitt (1987).
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